1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
|
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "gpu/command_buffer/client/gl_helper.h"
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <GLES2/gl2extchromium.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "base/functional/bind.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/ref_counted_memory.h"
#include "base/run_loop.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/waitable_event.h"
#include "base/test/scoped_feature_list.h"
#include "build/build_config.h"
#include "components/viz/test/test_gpu_service_holder.h"
#include "gpu/command_buffer/client/gl_helper_scaling.h"
#include "gpu/command_buffer/client/gles2_implementation.h"
#include "gpu/command_buffer/client/shared_memory_limits.h"
#include "gpu/ipc/gl_in_process_context.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#if !BUILDFLAG(IS_ANDROID)
namespace gpu {
namespace {
auto kQualities = std::to_array<GLHelper::ScalerQuality>({
GLHelper::SCALER_QUALITY_BEST,
GLHelper::SCALER_QUALITY_GOOD,
GLHelper::SCALER_QUALITY_FAST,
});
auto kQualityNames = std::to_array<const char*>({
"best",
"good",
"fast",
});
} // namespace
class GLHelperTest : public testing::Test {
protected:
void SetUp() override {
feature_list_.Init();
ContextCreationAttribs attributes;
attributes.bind_generates_resource = false;
context_ = std::make_unique<GLInProcessContext>();
auto result = context_->Initialize(
viz::TestGpuServiceHolder::GetInstance()->task_executor(), attributes,
SharedMemoryLimits());
DCHECK_EQ(result, ContextResult::kSuccess);
gl_ = context_->GetImplementation();
ContextSupport* support = context_->GetImplementation();
helper_ = std::make_unique<GLHelper>(gl_, support);
helper_scaling_ = std::make_unique<GLHelperScaling>(gl_, helper_.get());
}
void TearDown() override {
helper_scaling_.reset(nullptr);
helper_.reset(nullptr);
gl_ = nullptr;
context_.reset(nullptr);
}
// Bicubic filter kernel function.
static float Bicubic(float x) {
const float a = -0.5;
x = std::abs(x);
float x2 = x * x;
float x3 = x2 * x;
if (x <= 1) {
return (a + 2) * x3 - (a + 3) * x2 + 1;
} else if (x < 2) {
return a * x3 - 5 * a * x2 + 8 * a * x - 4 * a;
} else {
return 0.0f;
}
}
// Look up a single channel value. Works for 4-channel and single channel
// bitmaps. Clamp x/y.
int Channel(SkBitmap* pixels, int x, int y, int c) {
if (pixels->bytesPerPixel() == 4) {
uint32_t* data =
pixels->getAddr32(std::clamp(x, 0, pixels->width() - 1),
std::clamp(y, 0, pixels->height() - 1));
return (*data) >> (c * 8) & 0xff;
} else {
DCHECK_EQ(pixels->bytesPerPixel(), 1);
DCHECK_EQ(c, 0);
return *pixels->getAddr8(std::clamp(x, 0, pixels->width() - 1),
std::clamp(y, 0, pixels->height() - 1));
}
}
// Set a single channel value. Works for 4-channel and single channel
// bitmaps. Clamp x/y.
void SetChannel(SkBitmap* pixels, int x, int y, int c, int v) {
DCHECK_GE(x, 0);
DCHECK_GE(y, 0);
DCHECK_LT(x, pixels->width());
DCHECK_LT(y, pixels->height());
if (pixels->bytesPerPixel() == 4) {
uint32_t* data = pixels->getAddr32(x, y);
v = std::clamp(v, 0, 255);
*data = (*data & ~(0xffu << (c * 8))) | (v << (c * 8));
} else {
DCHECK_EQ(pixels->bytesPerPixel(), 1);
DCHECK_EQ(c, 0);
uint8_t* data = pixels->getAddr8(x, y);
v = std::clamp(v, 0, 255);
*data = v;
}
}
// Print all the R, G, B or A values from an SkBitmap in a
// human-readable format.
void PrintChannel(SkBitmap* pixels, int c) {
for (int y = 0; y < pixels->height(); y++) {
std::string formatted;
for (int x = 0; x < pixels->width(); x++) {
formatted.append(base::StringPrintf("%3d, ", Channel(pixels, x, y, c)));
}
LOG(ERROR) << formatted;
}
}
// Print out the individual steps of a scaler pipeline.
std::string PrintStages(
const std::vector<GLHelperScaling::ScalerStage>& scaler_stages) {
std::string ret;
for (size_t i = 0; i < scaler_stages.size(); i++) {
ret.append(base::StringPrintf(
"%dx%d -> %dx%d ", scaler_stages[i].scale_from.x(),
scaler_stages[i].scale_from.y(), scaler_stages[i].scale_to.x(),
scaler_stages[i].scale_to.y()));
bool xy_matters = false;
switch (scaler_stages[i].shader) {
case GLHelperScaling::SHADER_BILINEAR:
ret.append("bilinear");
break;
case GLHelperScaling::SHADER_BILINEAR2:
ret.append("bilinear2");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BILINEAR3:
ret.append("bilinear3");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BILINEAR4:
ret.append("bilinear4");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BILINEAR2X2:
ret.append("bilinear2x2");
break;
case GLHelperScaling::SHADER_BICUBIC_UPSCALE:
ret.append("bicubic upscale");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BICUBIC_HALF_1D:
ret.append("bicubic 1/2");
xy_matters = true;
break;
case GLHelperScaling::SHADER_PLANAR:
ret.append("planar");
break;
case GLHelperScaling::SHADER_YUV_MRT_PASS1:
ret.append("rgb2yuv pass 1");
break;
case GLHelperScaling::SHADER_YUV_MRT_PASS2:
ret.append("rgb2yuv pass 2");
break;
}
if (xy_matters) {
if (scaler_stages[i].scale_x) {
ret.append(" X");
} else {
ret.append(" Y");
}
}
ret.append("\n");
}
return ret;
}
bool CheckScale(double scale, int samples, bool already_scaled) {
// 1:1 is valid if there is one sample.
if (samples == 1 && scale == 1.0) {
return true;
}
// Is it an exact down-scale (50%, 25%, etc.?)
if (scale == 2.0 * samples) {
return true;
}
// Upscales, only valid if we haven't already scaled in this dimension.
if (!already_scaled) {
// Is it a valid bilinear upscale?
if (samples == 1 && scale <= 1.0) {
return true;
}
// Multi-sample upscale-downscale combination?
if (scale > samples / 2.0 && scale < samples) {
return true;
}
}
return false;
}
// Make sure that the stages of the scaler pipeline are sane.
void ValidateScalerStages(
GLHelper::ScalerQuality quality,
const std::vector<GLHelperScaling::ScalerStage>& scaler_stages,
const gfx::Vector2d& overall_scale_from,
const gfx::Vector2d& overall_scale_to,
const std::string& message) {
bool previous_error = HasFailure();
// Used to verify that up-scales are not attempted after some
// other scale.
bool scaled_x = false;
bool scaled_y = false;
double combined_x_scale = 1.0;
double combined_y_scale = 1.0;
for (size_t i = 0; i < scaler_stages.size(); i++) {
// Note: 2.0 means scaling down by 50%
double x_scale = static_cast<double>(scaler_stages[i].scale_from.x()) /
static_cast<double>(scaler_stages[i].scale_to.x());
combined_x_scale *= x_scale;
double y_scale = static_cast<double>(scaler_stages[i].scale_from.y()) /
static_cast<double>(scaler_stages[i].scale_to.y());
combined_y_scale *= y_scale;
int x_samples = 0;
int y_samples = 0;
// Codify valid scale operations.
switch (scaler_stages[i].shader) {
case GLHelperScaling::SHADER_PLANAR:
case GLHelperScaling::SHADER_YUV_MRT_PASS1:
case GLHelperScaling::SHADER_YUV_MRT_PASS2:
EXPECT_TRUE(false) << "Invalid shader.";
break;
case GLHelperScaling::SHADER_BILINEAR:
if (quality != GLHelper::SCALER_QUALITY_FAST) {
x_samples = 1;
y_samples = 1;
}
break;
case GLHelperScaling::SHADER_BILINEAR2:
x_samples = 2;
y_samples = 1;
break;
case GLHelperScaling::SHADER_BILINEAR3:
x_samples = 3;
y_samples = 1;
break;
case GLHelperScaling::SHADER_BILINEAR4:
x_samples = 4;
y_samples = 1;
break;
case GLHelperScaling::SHADER_BILINEAR2X2:
x_samples = 2;
y_samples = 2;
break;
case GLHelperScaling::SHADER_BICUBIC_UPSCALE:
if (scaler_stages[i].scale_x) {
EXPECT_LT(x_scale, 1.0);
EXPECT_EQ(y_scale, 1.0);
} else {
EXPECT_EQ(x_scale, 1.0);
EXPECT_LT(y_scale, 1.0);
}
break;
case GLHelperScaling::SHADER_BICUBIC_HALF_1D:
if (scaler_stages[i].scale_x) {
EXPECT_EQ(x_scale, 2.0);
EXPECT_EQ(y_scale, 1.0);
} else {
EXPECT_EQ(x_scale, 1.0);
EXPECT_EQ(y_scale, 2.0);
}
break;
}
if (!scaler_stages[i].scale_x) {
std::swap(x_samples, y_samples);
}
if (x_samples) {
EXPECT_TRUE(CheckScale(x_scale, x_samples, scaled_x))
<< "x_scale = " << x_scale;
}
if (y_samples) {
EXPECT_TRUE(CheckScale(y_scale, y_samples, scaled_y))
<< "y_scale = " << y_scale;
}
if (x_scale != 1.0) {
scaled_x = true;
}
if (y_scale != 1.0) {
scaled_y = true;
}
}
const double expected_x_scale =
static_cast<double>(overall_scale_from.x()) /
static_cast<double>(overall_scale_to.x());
const double expected_y_scale =
static_cast<double>(overall_scale_from.y()) /
static_cast<double>(overall_scale_to.y());
EXPECT_NEAR(expected_x_scale, combined_x_scale, 1e-9);
EXPECT_NEAR(expected_y_scale, combined_y_scale, 1e-9);
if (HasFailure() && !previous_error) {
LOG(ERROR) << "Invalid scaler stages: " << message;
LOG(ERROR) << "Scaler stages:";
LOG(ERROR) << PrintStages(scaler_stages);
}
}
// Compares two bitmaps taking color types into account. Checks whether each
// component of each pixel is no more than |maxdiff| apart. If bitmaps are not
// similar enough, prints out |truth|, |other|, |source|, |scaler_stages|
// and |message|.
void Compare(SkBitmap* truth,
SkBitmap* other,
int maxdiff,
SkBitmap* source,
const std::vector<GLHelperScaling::ScalerStage>& scaler_stages,
std::string message) {
EXPECT_EQ(truth->width(), other->width());
EXPECT_EQ(truth->height(), other->height());
bool swizzle = (truth->colorType() == kRGBA_8888_SkColorType &&
other->colorType() == kBGRA_8888_SkColorType) ||
(truth->colorType() == kBGRA_8888_SkColorType &&
other->colorType() == kRGBA_8888_SkColorType);
EXPECT_TRUE(swizzle || truth->colorType() == other->colorType());
int bpp = truth->bytesPerPixel();
for (int x = 0; x < truth->width(); x++) {
for (int y = 0; y < truth->height(); y++) {
for (int c = 0; c < bpp; c++) {
int a = Channel(truth, x, y, c);
// swizzle when comparing if needed
int b = swizzle && (c == 0 || c == 2)
? Channel(other, x, y, (c + 2) & 2)
: Channel(other, x, y, c);
EXPECT_NEAR(a, b, maxdiff)
<< " x=" << x << " y=" << y << " c=" << c << " " << message;
if (std::abs(a - b) > maxdiff) {
LOG(ERROR) << "-------expected--------";
for (int i = 0; i < bpp; i++) {
LOG(ERROR) << "Channel " << i << ":";
PrintChannel(truth, i);
}
LOG(ERROR) << "-------actual--------";
for (int i = 0; i < bpp; i++) {
LOG(ERROR) << "Channel " << i << ":";
PrintChannel(other, i);
}
if (source) {
LOG(ERROR) << "-------original--------";
for (int i = 0; i < source->bytesPerPixel(); i++) {
LOG(ERROR) << "Channel " << i << ":";
PrintChannel(source, i);
}
}
LOG(ERROR) << "-----Scaler stages------";
LOG(ERROR) << PrintStages(scaler_stages);
return;
}
}
}
}
}
// Get a single R, G, B or A value as a float.
float ChannelAsFloat(SkBitmap* pixels, int x, int y, int c) {
return Channel(pixels, x, y, c) / 255.0;
}
// Works like a GL_LINEAR lookup on an SkBitmap.
float Bilinear(SkBitmap* pixels, float x, float y, int c) {
x -= 0.5;
y -= 0.5;
int base_x = static_cast<int>(floorf(x));
int base_y = static_cast<int>(floorf(y));
x -= base_x;
y -= base_y;
return (ChannelAsFloat(pixels, base_x, base_y, c) * (1 - x) * (1 - y) +
ChannelAsFloat(pixels, base_x + 1, base_y, c) * x * (1 - y) +
ChannelAsFloat(pixels, base_x, base_y + 1, c) * (1 - x) * y +
ChannelAsFloat(pixels, base_x + 1, base_y + 1, c) * x * y);
}
// Very slow bicubic / bilinear scaler for reference.
void ScaleSlow(SkBitmap* input,
const gfx::Rect& source_rect,
GLHelper::ScalerQuality quality,
SkBitmap* output) {
float xscale = static_cast<float>(source_rect.width()) / output->width();
float yscale = static_cast<float>(source_rect.height()) / output->height();
float clamped_xscale = xscale < 1.0 ? 1.0 : 1.0 / xscale;
float clamped_yscale = yscale < 1.0 ? 1.0 : 1.0 / yscale;
for (int dst_y = 0; dst_y < output->height(); dst_y++) {
for (int dst_x = 0; dst_x < output->width(); dst_x++) {
for (int channel = 0; channel < 4; channel++) {
float dst_x_in_src = source_rect.x() + (dst_x + 0.5f) * xscale;
float dst_y_in_src = source_rect.y() + (dst_y + 0.5f) * yscale;
float value = 0.0f;
float sum = 0.0f;
switch (quality) {
case GLHelper::SCALER_QUALITY_BEST:
for (int src_y = source_rect.y() - 10;
src_y < source_rect.bottom() + 10; ++src_y) {
float coeff_y =
Bicubic((src_y + 0.5f - dst_y_in_src) * clamped_yscale);
if (coeff_y == 0.0f) {
continue;
}
for (int src_x = source_rect.x() - 10;
src_x < source_rect.right() + 10; ++src_x) {
float coeff =
coeff_y *
Bicubic((src_x + 0.5f - dst_x_in_src) * clamped_xscale);
if (coeff == 0.0f) {
continue;
}
sum += coeff;
float c = ChannelAsFloat(input, src_x, src_y, channel);
value += c * coeff;
}
}
break;
case GLHelper::SCALER_QUALITY_GOOD: {
int xshift = 0, yshift = 0;
while ((output->width() << xshift) < source_rect.width()) {
xshift++;
}
while ((output->height() << yshift) < source_rect.height()) {
yshift++;
}
int xmag = 1 << xshift;
int ymag = 1 << yshift;
if (xmag == 4 && output->width() * 3 >= source_rect.width()) {
xmag = 3;
}
if (ymag == 4 && output->height() * 3 >= source_rect.height()) {
ymag = 3;
}
for (int x = 0; x < xmag; x++) {
for (int y = 0; y < ymag; y++) {
value += Bilinear(input,
source_rect.x() + (dst_x * xmag + x + 0.5) *
xscale / xmag,
source_rect.y() + (dst_y * ymag + y + 0.5) *
yscale / ymag,
channel);
sum += 1.0;
}
}
break;
}
case GLHelper::SCALER_QUALITY_FAST:
value = Bilinear(input, dst_x_in_src, dst_y_in_src, channel);
sum = 1.0;
}
value /= sum;
SetChannel(output, dst_x, dst_y, channel,
static_cast<int>(value * 255.0f + 0.5f));
}
}
}
}
void FlipSKBitmap(SkBitmap* bitmap) {
int bpp = bitmap->bytesPerPixel();
DCHECK(bpp == 4 || bpp == 1);
int top_line = 0;
int bottom_line = bitmap->height() - 1;
while (top_line < bottom_line) {
for (int x = 0; x < bitmap->width(); x++) {
bpp == 4 ? std::swap(*bitmap->getAddr32(x, top_line),
*bitmap->getAddr32(x, bottom_line))
: std::swap(*bitmap->getAddr8(x, top_line),
*bitmap->getAddr8(x, bottom_line));
}
top_line++;
bottom_line--;
}
}
// gl_helper scales recursively, so we'll need to do that
// in the reference implementation too.
void ScaleSlowRecursive(SkBitmap* input,
const gfx::Rect& source_rect,
GLHelper::ScalerQuality quality,
SkBitmap* output) {
if (quality == GLHelper::SCALER_QUALITY_FAST ||
quality == GLHelper::SCALER_QUALITY_GOOD) {
ScaleSlow(input, source_rect, quality, output);
return;
}
float xscale = static_cast<float>(output->width()) / source_rect.width();
// This corresponds to all the operations we can do directly.
float yscale = static_cast<float>(output->height()) / source_rect.height();
if ((xscale == 1.0f && yscale == 1.0f) ||
(xscale == 0.5f && yscale == 1.0f) ||
(xscale == 1.0f && yscale == 0.5f) ||
(xscale >= 1.0f && yscale == 1.0f) ||
(xscale == 1.0f && yscale >= 1.0f)) {
ScaleSlow(input, source_rect, quality, output);
return;
}
// Now we break the problem down into smaller pieces, using the
// operations available.
int xtmp = source_rect.width();
int ytmp = source_rect.height();
if (output->height() != source_rect.height()) {
ytmp = output->height();
while (ytmp < source_rect.height() && ytmp * 2 != source_rect.height()) {
ytmp += ytmp;
}
} else {
xtmp = output->width();
while (xtmp < source_rect.width() && xtmp * 2 != source_rect.width()) {
xtmp += xtmp;
}
}
// Note: The following does not account for scaler overscan. This was
// attempted, but then unit test run time increased by a factor of 30!
SkBitmap tmp;
tmp.allocN32Pixels(xtmp, ytmp);
ScaleSlowRecursive(input, source_rect, quality, &tmp);
ScaleSlowRecursive(&tmp, gfx::Rect(0, 0, xtmp, ytmp), quality, output);
}
// Creates an RGBA SkBitmap with one of the pre-programmed test patterns. The
// pattern starts at the given |origin|. For positions to the left or above
// that point, values are filled-in corresponding to GL_CLAMP_TO_EDGE
// behavior. This is because the reference scaler does not properly account
// for overscan.
std::unique_ptr<SkBitmap> CreateTestBitmap(const gfx::Size& size,
const gfx::Point& origin,
int test_pattern) {
std::unique_ptr<SkBitmap> bitmap(new SkBitmap);
bitmap->allocPixels(SkImageInfo::Make(size.width(), size.height(),
kRGBA_8888_SkColorType,
kPremul_SkAlphaType));
for (int x = 0; x < size.width(); ++x) {
for (int y = 0; y < size.height(); ++y) {
const int s = std::max(0, x - origin.x());
const int t = std::max(0, y - origin.y());
switch (test_pattern) {
case 0: // Smooth test pattern
SetChannel(bitmap.get(), x, y, 0, s * 10);
SetChannel(bitmap.get(), x, y, 0, t == 0 ? s * 50 : s * 10);
SetChannel(bitmap.get(), x, y, 1, t * 10);
SetChannel(bitmap.get(), x, y, 2, (s + t) * 10);
SetChannel(bitmap.get(), x, y, 3, 255);
break;
case 1: // Small blocks
SetChannel(bitmap.get(), x, y, 0, s & 1 ? 255 : 0);
SetChannel(bitmap.get(), x, y, 1, t & 1 ? 255 : 0);
SetChannel(bitmap.get(), x, y, 2, (s + t) & 1 ? 255 : 0);
SetChannel(bitmap.get(), x, y, 3, 255);
break;
case 2: // Medium blocks
SetChannel(bitmap.get(), x, y, 0, 10 + s / 2 * 50);
SetChannel(bitmap.get(), x, y, 1, 10 + t / 3 * 50);
SetChannel(bitmap.get(), x, y, 2, (s + t) / 5 * 50 + 5);
SetChannel(bitmap.get(), x, y, 3, 255);
break;
}
}
}
return bitmap;
}
// Scaling test: Create a test image, scale it using GLHelperScaling
// and a reference implementation and compare the results.
void TestScale(const gfx::Rect& source_rect,
const gfx::Size& scaled_size,
int test_pattern,
size_t quality_index,
bool flip_output) {
// The source texture is meant to be the contents of a framebuffer. Thus, it
// includes (0,0), and all the way out to the lower-right corner of the
// |source_rect|.
const gfx::Size framebuffer_size(source_rect.right(), source_rect.bottom());
std::unique_ptr<SkBitmap> input_pixels =
CreateTestBitmap(framebuffer_size, source_rect.origin(), test_pattern);
GLuint src_texture;
gl_->GenTextures(1, &src_texture);
gl_->BindTexture(GL_TEXTURE_2D, src_texture);
gl_->TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, framebuffer_size.width(),
framebuffer_size.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE,
input_pixels->getPixels());
std::string message = base::StringPrintf(
"source rect: %s "
"output size: %s "
"pattern: %d quality: %s %s",
source_rect.ToString().c_str(), scaled_size.ToString().c_str(),
test_pattern, kQualityNames[quality_index],
flip_output ? "flipout" : "noflipout");
std::vector<GLHelperScaling::ScalerStage> stages;
const auto scale_from =
gfx::Vector2d(source_rect.width(), source_rect.height());
const auto scale_to =
gfx::Vector2d(scaled_size.width(), scaled_size.height());
helper_scaling_->ComputeScalerStages(kQualities[quality_index], scale_from,
scale_to, false, flip_output, false,
&stages);
ValidateScalerStages(kQualities[quality_index], stages, scale_from,
scale_to, message);
// Scale the source texture, producing the results in a new output
// texture.
std::unique_ptr<GLHelper::ScalerInterface> scaler =
helper_->CreateScaler(kQualities[quality_index], scale_from, scale_to,
false, flip_output, false);
ASSERT_FALSE(scaler->IsSamplingFlippedSource());
ASSERT_EQ(flip_output, scaler->IsFlippingOutput());
GLuint dst_texture = 0;
gl_->GenTextures(1, &dst_texture);
gl_->BindTexture(GL_TEXTURE_2D, dst_texture);
gl_->TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, scaled_size.width(),
scaled_size.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE,
nullptr);
scaler->Scale(src_texture, framebuffer_size, source_rect.OffsetFromOrigin(),
dst_texture, gfx::Rect(scaled_size));
SkBitmap output_pixels;
output_pixels.allocPixels(
SkImageInfo::Make(scaled_size.width(), scaled_size.height(),
kRGBA_8888_SkColorType, kPremul_SkAlphaType));
EXPECT_TRUE(ReadBackTexture(
dst_texture, gfx::Rect(scaled_size),
static_cast<unsigned char*>(output_pixels.getPixels()),
output_pixels.rowBytes(), flip_output, kRGBA_8888_SkColorType));
// If the bitmap shouldn't have changed - compare against input.
if (source_rect == gfx::Rect(scaled_size)) {
Compare(input_pixels.get(), &output_pixels, 0, nullptr, stages,
message + " comparing against input");
return;
}
// Now scale the bitmap using the reference implementation.
SkBitmap truth_pixels;
truth_pixels.allocPixels(
SkImageInfo::Make(scaled_size.width(), scaled_size.height(),
kRGBA_8888_SkColorType, kPremul_SkAlphaType));
ScaleSlowRecursive(input_pixels.get(), source_rect,
kQualities[quality_index], &truth_pixels);
// Compare the results produced by the two implementations. Note that the
// reference implementation does not fully account for overscan (see
// comment in ScaleSlowRecursive()), and so the the maxdiff must be
// increased when the bicubic scaler is being used.
const int maxdiff = 2 + (quality_index == 0 ? (2 * stages.size()) : 0);
Compare(&truth_pixels, &output_pixels, maxdiff, input_pixels.get(), stages,
message + " comparing against scaled");
gl_->DeleteTextures(1, &src_texture);
gl_->DeleteTextures(1, &dst_texture);
}
// Scaling patching test: Scale an entire source image, and then scale various
// subsets of the source image; and then confirm that the pixels in the
// subsets exactly match their corresponding ones in the whole. This is
// critical for use cases where the scaler only needs to render the changed
// region of a source image.
void TestScalePatching(const gfx::Vector2d& scale_from,
const gfx::Vector2d& scale_to,
int test_pattern,
size_t quality_index,
bool flipped_source) {
// Generate a source texture representing copied-from-framebuffer content
// with a test pattern that is twice the size of the "from" vector.
const gfx::Size framebuffer_size(scale_from.x() * 2, scale_from.y() * 2);
std::unique_ptr<SkBitmap> test_bitmap =
CreateTestBitmap(framebuffer_size, gfx::Point(), test_pattern);
if (flipped_source)
FlipSKBitmap(test_bitmap.get());
GLuint src_texture;
gl_->GenTextures(1, &src_texture);
gl_->BindTexture(GL_TEXTURE_2D, src_texture);
gl_->TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, framebuffer_size.width(),
framebuffer_size.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE,
test_bitmap->getPixels());
const std::unique_ptr<GLHelper::ScalerInterface> scaler =
helper_->CreateScaler(kQualities[quality_index], scale_from, scale_to,
flipped_source, false, false);
ASSERT_EQ(flipped_source, scaler->IsSamplingFlippedSource());
ASSERT_FALSE(scaler->IsFlippingOutput());
// Note: These scaler stages are only being computed here for the benefit
// Compare()'s error output messaging, below.
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ComputeScalerStages(kQualities[quality_index], scale_from,
scale_to, flipped_source, false, false,
&stages);
// First, produce the entire output image, a full scan of the source to
// produce all the output pixels. The output image is twice the size of the
// "to" vector.
GLuint dst_texture;
gl_->GenTextures(1, &dst_texture);
gl_->BindTexture(GL_TEXTURE_2D, dst_texture);
const gfx::Size entire_output_size(scale_to.x() * 2, scale_to.y() * 2);
gl_->TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, entire_output_size.width(),
entire_output_size.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE,
nullptr);
scaler->Scale(src_texture, framebuffer_size, gfx::Vector2dF(), dst_texture,
gfx::Rect(entire_output_size));
SkBitmap entire_output;
entire_output.allocPixels(SkImageInfo::Make(
entire_output_size.width(), entire_output_size.height(),
kRGBA_8888_SkColorType, kPremul_SkAlphaType));
EXPECT_TRUE(ReadBackTexture(
dst_texture, gfx::Rect(entire_output_size),
static_cast<unsigned char*>(entire_output.getPixels()),
entire_output.rowBytes(), /*flip_y=*/false, kRGBA_8888_SkColorType));
const std::string human_readable_test_params = base::StringPrintf(
"scale from: %s "
"scale to: %s "
"pattern: %d quality: %s %s",
scale_from.ToString().c_str(), scale_to.ToString().c_str(),
test_pattern, kQualityNames[quality_index],
flipped_source ? "flippedsource" : "");
// Check the entire output image against the reference implementation.
SkBitmap entire_output_ref;
entire_output_ref.allocPixels(SkImageInfo::Make(
entire_output_size.width(), entire_output_size.height(),
kRGBA_8888_SkColorType, kPremul_SkAlphaType));
ScaleSlowRecursive(test_bitmap.get(), gfx::Rect(framebuffer_size),
kQualities[quality_index], &entire_output_ref);
Compare(&entire_output_ref, &entire_output, 2, test_bitmap.get(), stages,
human_readable_test_params + " ENTIRE OUTPUT");
if (HasFailure())
return;
// Now, produce patches at various offsets and compare to the pixels in
// |entire_output|.
const gfx::Size patch_size(scale_to.x(), scale_to.y());
gl_->BindTexture(GL_TEXTURE_2D, dst_texture);
gl_->TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, patch_size.width(),
patch_size.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
for (int xoffset = 0; xoffset < scale_to.x(); ++xoffset) {
for (int yoffset = 0; yoffset < scale_to.y(); ++yoffset) {
const gfx::Rect patch_rect(gfx::Point(xoffset, yoffset), patch_size);
// First method of producing a patch: Scale from the same source texture
// and just provide an offset output Rect.
scaler->Scale(src_texture, framebuffer_size, gfx::Vector2dF(),
dst_texture, patch_rect);
SkBitmap patch_output;
patch_output.allocPixels(
SkImageInfo::Make(patch_size.width(), patch_size.height(),
kRGBA_8888_SkColorType, kPremul_SkAlphaType));
EXPECT_TRUE(ReadBackTexture(
dst_texture, gfx::Rect(patch_size),
static_cast<unsigned char*>(patch_output.getPixels()),
patch_output.rowBytes(), /*flip_y=*/false, kRGBA_8888_SkColorType));
SkBitmap expected;
SkIRect expected_subrect{patch_rect.x(), patch_rect.y(),
patch_rect.right(), patch_rect.bottom()};
if (flipped_source) {
expected_subrect.fTop = entire_output.height() - patch_rect.bottom();
expected_subrect.fBottom = entire_output.height() - patch_rect.y();
}
ASSERT_TRUE(entire_output.extractSubset(&expected, expected_subrect));
Compare(&expected, &patch_output, 2, test_bitmap.get(), stages,
"METHOD1 " + human_readable_test_params +
" patch rect: " + patch_rect.ToString());
if (HasFailure())
return;
// Second method of producing a patch: First copy just the "region of
// influence" of the source texture, then produced a scaled image from
// that.
gfx::Rect sampling_rect;
gfx::Vector2dF offset;
scaler->ComputeRegionOfInfluence(framebuffer_size, gfx::Vector2dF(),
patch_rect, &sampling_rect, &offset);
// TODO(crbug.com/41350322): Only test offsets having whole-numbered
// coordinates until the scalers can account for the other case.
if (offset.x() == std::floor(offset.x()) &&
offset.y() == std::floor(offset.y())) {
GLuint src_subset_texture;
gl_->GenTextures(1, &src_subset_texture);
gl_->BindTexture(GL_TEXTURE_2D, src_subset_texture);
gl_->TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, sampling_rect.width(),
sampling_rect.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE,
nullptr);
gl_->CopySubTextureCHROMIUM(
src_texture, 0 /* source_level */, GL_TEXTURE_2D,
src_subset_texture, 0 /* dest_level */, 0 /* xoffset */,
0 /* yoffset */, sampling_rect.x(), sampling_rect.y(),
sampling_rect.width(), sampling_rect.height(), false, false,
false);
scaler->Scale(src_subset_texture, sampling_rect.size(), offset,
dst_texture, gfx::Rect(patch_size));
gl_->DeleteTextures(1, &src_subset_texture);
EXPECT_TRUE(ReadBackTexture(
dst_texture, gfx::Rect(patch_size),
static_cast<unsigned char*>(patch_output.getPixels()),
patch_output.rowBytes(), /*flip_y=*/false,
kRGBA_8888_SkColorType));
Compare(&expected, &patch_output, 2, test_bitmap.get(), stages,
"METHOD2 " + human_readable_test_params +
" patch rect: " + patch_rect.ToString());
if (HasFailure())
return;
}
}
}
gl_->DeleteTextures(1, &src_texture);
gl_->DeleteTextures(1, &dst_texture);
}
// Create a scaling pipeline and check that it is made up of
// valid scaling operations.
void TestScalerPipeline(size_t quality,
int xsize,
int ysize,
int dst_xsize,
int dst_ysize) {
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ComputeScalerStages(
kQualities[quality], gfx::Vector2d(xsize, ysize),
gfx::Vector2d(dst_xsize, dst_ysize), false, false, false, &stages);
ValidateScalerStages(kQualities[quality], stages,
gfx::Vector2d(xsize, ysize),
gfx::Vector2d(dst_xsize, dst_ysize),
base::StringPrintf("input size: %dx%d "
"output size: %dx%d "
"quality: %s",
xsize, ysize, dst_xsize, dst_ysize,
kQualityNames[quality]));
}
// Create a scaling pipeline and make sure that the steps
// are exactly the steps we expect.
void CheckPipeline(GLHelper::ScalerQuality quality,
int xsize,
int ysize,
int dst_xsize,
int dst_ysize,
const std::string& description) {
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ComputeScalerStages(quality, gfx::Vector2d(xsize, ysize),
gfx::Vector2d(dst_xsize, dst_ysize),
false, false, false, &stages);
ValidateScalerStages(GLHelper::SCALER_QUALITY_GOOD, stages,
gfx::Vector2d(xsize, ysize),
gfx::Vector2d(dst_xsize, dst_ysize), "");
EXPECT_EQ(PrintStages(stages), description);
}
void DrawGridToBitmap(int w,
int h,
SkColor background_color,
SkColor grid_color,
int grid_pitch,
int grid_width,
const SkBitmap& bmp) {
ASSERT_GT(grid_pitch, 0);
ASSERT_GT(grid_width, 0);
ASSERT_NE(background_color, grid_color);
for (int y = 0; y < h; ++y) {
bool y_on_grid = ((y % grid_pitch) < grid_width);
for (int x = 0; x < w; ++x) {
bool on_grid = (y_on_grid || ((x % grid_pitch) < grid_width));
*bmp.getAddr32(x, y) = (on_grid ? grid_color : background_color);
}
}
}
void DrawCheckerToBitmap(int w,
int h,
SkColor color1,
SkColor color2,
int rect_w,
int rect_h,
const SkBitmap& bmp) {
ASSERT_GT(rect_w, 0);
ASSERT_GT(rect_h, 0);
ASSERT_NE(color1, color2);
for (int y = 0; y < h; ++y) {
bool y_bit = (((y / rect_h) & 0x1) == 0);
for (int x = 0; x < w; ++x) {
bool x_bit = (((x / rect_w) & 0x1) == 0);
bool use_color2 = (x_bit != y_bit); // xor
*bmp.getAddr32(x, y) = (use_color2 ? color2 : color1);
}
}
}
bool ColorComponentsClose(SkColor component1, SkColor component2) {
int c1 = static_cast<int>(component1);
int c2 = static_cast<int>(component2);
return (std::abs(c1 - c2) == 0);
}
bool ColorsClose(SkColor color1, SkColor color2) {
bool red = ColorComponentsClose(SkColorGetR(color1), SkColorGetR(color2));
bool green = ColorComponentsClose(SkColorGetG(color1), SkColorGetG(color2));
bool blue = ColorComponentsClose(SkColorGetB(color1), SkColorGetB(color2));
bool alpha = ColorComponentsClose(SkColorGetA(color1), SkColorGetA(color2));
return red && blue && green && alpha;
}
bool IsEqual(const SkBitmap& bmp1, const SkBitmap& bmp2) {
if (bmp1.isNull() && bmp2.isNull())
return true;
if (bmp1.width() != bmp2.width() || bmp1.height() != bmp2.height()) {
LOG(ERROR) << "Bitmap geometry check failure";
return false;
}
if (bmp1.colorType() != bmp2.colorType())
return false;
if (!bmp1.getPixels() || !bmp2.getPixels()) {
LOG(ERROR) << "Empty Bitmap!";
return false;
}
for (int y = 0; y < bmp1.height(); ++y) {
for (int x = 0; x < bmp1.width(); ++x) {
if (!ColorsClose(bmp1.getColor(x, y), bmp2.getColor(x, y))) {
LOG(ERROR) << "Bitmap color comparison failure";
return false;
}
}
}
return true;
}
void BindAndAttachTextureWithPixels(GLuint src_texture,
SkColorType color_type,
const gfx::Size& src_size,
const SkBitmap& input_pixels) {
gl_->BindTexture(GL_TEXTURE_2D, src_texture);
const GLenum format =
(color_type == kBGRA_8888_SkColorType) ? GL_BGRA_EXT : GL_RGBA;
gl_->TexImage2D(GL_TEXTURE_2D, 0, format, src_size.width(),
src_size.height(), 0, format, GL_UNSIGNED_BYTE,
input_pixels.getPixels());
}
bool ReadBackTexture(GLuint src_texture,
const gfx::Rect& src_rect,
unsigned char* pixels,
size_t pixels_stride,
bool flip_y,
SkColorType color_type) {
DCHECK(color_type == kRGBA_8888_SkColorType ||
color_type == kBGRA_8888_SkColorType);
base::RunLoop run_loop;
bool success = false;
GLenum format;
if (color_type == kRGBA_8888_SkColorType)
format = GL_RGBA;
else
format = GL_BGRA_EXT;
helper_->ReadbackTextureAsync(
src_texture, GL_TEXTURE_2D, src_rect.origin(), src_rect.size(), pixels,
pixels_stride, flip_y, format,
base::BindOnce(
[](bool* success, base::OnceClosure callback, bool result) {
*success = result;
std::move(callback).Run();
},
&success, run_loop.QuitClosure()));
run_loop.Run();
return success;
}
// Test basic format readback.
bool TestTextureFormatReadback(const gfx::Size& src_size,
SkColorType color_type) {
SkImageInfo info = SkImageInfo::Make(src_size.width(), src_size.height(),
color_type, kPremul_SkAlphaType);
GLuint src_texture;
gl_->GenTextures(1, &src_texture);
SkBitmap input_pixels;
input_pixels.allocPixels(info);
// Test Pattern-1, Fill with Plain color pattern.
// Erase the input bitmap with red color.
input_pixels.eraseColor(SK_ColorRED);
BindAndAttachTextureWithPixels(src_texture, color_type, src_size,
input_pixels);
SkBitmap output_pixels;
output_pixels.allocPixels(info);
// Initialize the output bitmap with Green color.
// When the readback is over output bitmap should have the red color.
output_pixels.eraseColor(SK_ColorGREEN);
uint8_t* pixels = static_cast<uint8_t*>(output_pixels.getPixels());
if (!ReadBackTexture(src_texture, gfx::Rect(src_size), pixels,
output_pixels.rowBytes(), /*flip_y=*/false,
color_type) ||
!IsEqual(input_pixels, output_pixels)) {
LOG(ERROR) << "Bitmap comparison failure Pattern-1";
return false;
}
const int rect_w = 10, rect_h = 4, src_grid_pitch = 10, src_grid_width = 4;
const SkColor color1 = SK_ColorRED, color2 = SK_ColorBLUE;
// Test Pattern-2, Fill with Grid Pattern.
DrawGridToBitmap(src_size.width(), src_size.height(), color2, color1,
src_grid_pitch, src_grid_width, input_pixels);
BindAndAttachTextureWithPixels(src_texture, color_type, src_size,
input_pixels);
if (!ReadBackTexture(src_texture, gfx::Rect(src_size), pixels,
output_pixels.rowBytes(), /*flip_y=*/false,
color_type) ||
!IsEqual(input_pixels, output_pixels)) {
LOG(ERROR) << "Bitmap comparison failure Pattern-2";
return false;
}
// Test Pattern-3, Fill with CheckerBoard Pattern.
DrawCheckerToBitmap(src_size.width(), src_size.height(), color1, color2,
rect_w, rect_h, input_pixels);
BindAndAttachTextureWithPixels(src_texture, color_type, src_size,
input_pixels);
if (!ReadBackTexture(src_texture, gfx::Rect(src_size), pixels,
output_pixels.rowBytes(), /*flip_y=*/false,
color_type) ||
!IsEqual(input_pixels, output_pixels)) {
LOG(ERROR) << "Bitmap comparison failure Pattern-3";
return false;
}
gl_->DeleteTextures(1, &src_texture);
if (HasFailure()) {
return false;
}
return true;
}
void TestAddOps(int src, int dst, bool scale_x, bool allow3) {
base::circular_deque<GLHelperScaling::ScaleOp> ops;
GLHelperScaling::ScaleOp::AddOps(src, dst, scale_x, allow3, &ops);
// Scale factor 3 is a special case.
// It is currently only allowed by itself.
if (allow3 && dst * 3 >= src && dst * 2 < src) {
EXPECT_EQ(ops[0].scale_factor, 3);
EXPECT_EQ(ops.size(), 1U);
EXPECT_EQ(ops[0].scale_x, scale_x);
EXPECT_EQ(ops[0].scale_size, dst);
return;
}
for (size_t i = 0; i < ops.size(); i++) {
EXPECT_EQ(ops[i].scale_x, scale_x);
if (i == 0) {
// Only the first op is allowed to be a scale up.
// (Scaling up *after* scaling down would make it fuzzy.)
EXPECT_TRUE(ops[0].scale_factor == 0 || ops[0].scale_factor == 2);
} else {
// All other operations must be 50% downscales.
EXPECT_EQ(ops[i].scale_factor, 2);
}
}
// Check that the scale factors make sense and add up.
int tmp = dst;
for (int i = static_cast<int>(ops.size() - 1); i >= 0; i--) {
EXPECT_EQ(tmp, ops[i].scale_size);
if (ops[i].scale_factor == 0) {
EXPECT_EQ(i, 0);
EXPECT_GT(tmp, src);
tmp = src;
} else {
tmp *= ops[i].scale_factor;
}
}
EXPECT_EQ(tmp, src);
}
void CheckPipeline2(int xsize,
int ysize,
int dst_xsize,
int dst_ysize,
const std::string& description) {
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ConvertScalerOpsToScalerStages(
GLHelper::SCALER_QUALITY_GOOD, gfx::Vector2d(xsize, ysize), &x_ops_,
&y_ops_, &stages);
EXPECT_EQ(x_ops_.size(), 0U);
EXPECT_EQ(y_ops_.size(), 0U);
ValidateScalerStages(GLHelper::SCALER_QUALITY_GOOD, stages,
gfx::Vector2d(xsize, ysize),
gfx::Vector2d(dst_xsize, dst_ysize), "");
EXPECT_EQ(PrintStages(stages), description);
}
void CheckOptimizationsTest() {
// Basic upscale. X and Y should be combined into one pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 2000));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 2000));
CheckPipeline2(1024, 768, 2000, 2000, "1024x768 -> 2000x2000 bilinear\n");
// X scaled 1/2, Y upscaled, should still be one pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 512));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 2000));
CheckPipeline2(1024, 768, 512, 2000, "1024x768 -> 512x2000 bilinear\n");
// X upscaled, Y scaled 1/2, one bilinear pass
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 2000));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 384));
CheckPipeline2(1024, 768, 2000, 384, "1024x768 -> 2000x384 bilinear\n");
// X scaled 1/2, Y scaled 1/2, one bilinear pass
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 512));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 384));
CheckPipeline2(1024, 768, 512, 384, "1024x768 -> 512x384 bilinear\n");
// X scaled 1/2, Y scaled to 60%, one bilinear2 pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 50));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
CheckPipeline2(100, 100, 50, 60, "100x100 -> 50x60 bilinear2 Y\n");
// X scaled to 60%, Y scaled 1/2, one bilinear2 pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 50));
CheckPipeline2(100, 100, 60, 50, "100x100 -> 60x50 bilinear2 X\n");
// X scaled to 60%, Y scaled 60%, one bilinear2x2 pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
CheckPipeline2(100, 100, 60, 60, "100x100 -> 60x60 bilinear2x2\n");
// X scaled to 40%, Y scaled 40%, two bilinear3 passes.
x_ops_.push_back(GLHelperScaling::ScaleOp(3, true, 40));
y_ops_.push_back(GLHelperScaling::ScaleOp(3, false, 40));
CheckPipeline2(100, 100, 40, 40,
"100x100 -> 100x40 bilinear3 Y\n"
"100x40 -> 40x40 bilinear3 X\n");
// X scaled to 60%, Y scaled 40%
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(3, false, 40));
CheckPipeline2(100, 100, 60, 40,
"100x100 -> 100x40 bilinear3 Y\n"
"100x40 -> 60x40 bilinear2 X\n");
// X scaled to 40%, Y scaled 60%
x_ops_.push_back(GLHelperScaling::ScaleOp(3, true, 40));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
CheckPipeline2(100, 100, 40, 60,
"100x100 -> 100x60 bilinear2 Y\n"
"100x60 -> 40x60 bilinear3 X\n");
// X scaled to 30%, Y scaled 30%
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 30));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30));
CheckPipeline2(100, 100, 30, 30,
"100x100 -> 100x30 bilinear4 Y\n"
"100x30 -> 30x30 bilinear4 X\n");
// X scaled to 50%, Y scaled 30%
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 50));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30));
CheckPipeline2(100, 100, 50, 30, "100x100 -> 50x30 bilinear4 Y\n");
// X scaled to 150%, Y scaled 30%
// Note that we avoid combinding X and Y passes
// as that would probably be LESS efficient here.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 150));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30));
CheckPipeline2(100, 100, 150, 30,
"100x100 -> 100x30 bilinear4 Y\n"
"100x30 -> 150x30 bilinear\n");
// X scaled to 1%, Y scaled 1%
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 128));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 64));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 32));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 16));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 8));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 4));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 2));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 1));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 128));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 64));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 32));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 16));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 8));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 4));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 2));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 1));
CheckPipeline2(100, 100, 1, 1,
"100x100 -> 100x32 bilinear4 Y\n"
"100x32 -> 100x4 bilinear4 Y\n"
"100x4 -> 64x1 bilinear2x2\n"
"64x1 -> 8x1 bilinear4 X\n"
"8x1 -> 1x1 bilinear4 X\n");
}
base::test::ScopedFeatureList feature_list_;
std::unique_ptr<GLInProcessContext> context_;
raw_ptr<gles2::GLES2Interface> gl_; // This is owned by |context_|.
std::unique_ptr<GLHelper> helper_;
std::unique_ptr<GLHelperScaling> helper_scaling_;
base::circular_deque<GLHelperScaling::ScaleOp> x_ops_, y_ops_;
};
class GLHelperPixelTest : public GLHelperTest {
private:
gl::DisableNullDrawGLBindings enable_pixel_output_;
};
// TODO(crbug.com/40246425): Re-enable this test
TEST_F(GLHelperTest, DISABLED_RGBAASyncReadbackTest) {
const int kTestSize = 64;
bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize),
kRGBA_8888_SkColorType);
EXPECT_EQ(result, true);
}
TEST_F(GLHelperTest, BGRAASyncReadbackTest) {
const int kTestSize = 64;
bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize),
kBGRA_8888_SkColorType);
EXPECT_EQ(result, true);
}
auto kRGBReadBackSizes = std::to_array<int>({3, 6, 16});
class GLHelperPixelReadbackTest
: public GLHelperPixelTest,
public ::testing::WithParamInterface<std::tuple<unsigned int,
unsigned int,
unsigned int,
unsigned int,
unsigned int>> {};
// Per pixel tests, all sizes are small so that we can print
// out the generated bitmaps.
// TODO(crbug.com/40867694): Very flaky on Linux ASAN.
#if BUILDFLAG(IS_LINUX) && defined(ADDRESS_SANITIZER)
#define MAYBE_ScaleTest DISABLED_ScaleTest
#else
#define MAYBE_ScaleTest ScaleTest
#endif
TEST_P(GLHelperPixelReadbackTest, MAYBE_ScaleTest) {
unsigned int q_index = std::get<0>(GetParam());
unsigned int x = std::get<1>(GetParam());
unsigned int y = std::get<2>(GetParam());
unsigned int dst_x = std::get<3>(GetParam());
unsigned int dst_y = std::get<4>(GetParam());
for (int flip_output = 0; flip_output <= 1; ++flip_output) {
for (int pattern = 0; pattern < 3; ++pattern) {
for (int xoffset = 0; xoffset < 4; ++xoffset) {
for (int yoffset = 0; yoffset < 4; ++yoffset) {
TestScale(
gfx::Rect(xoffset, yoffset, kRGBReadBackSizes[x],
kRGBReadBackSizes[y]),
gfx::Size(kRGBReadBackSizes[dst_x], kRGBReadBackSizes[dst_y]),
pattern, q_index, !!flip_output);
if (HasFailure()) {
return;
}
}
}
}
}
}
// FLAKY: https://crbug.com/871799
TEST_P(GLHelperPixelReadbackTest, DISABLED_ScalePatching) {
for (int flipped_source = 0; flipped_source <= 1; ++flipped_source) {
for (int pattern = 0; pattern < 3; ++pattern) {
TestScalePatching(
gfx::Vector2d(kRGBReadBackSizes[std::get<1>(GetParam())],
kRGBReadBackSizes[std::get<2>(GetParam())]),
gfx::Vector2d(kRGBReadBackSizes[std::get<3>(GetParam())],
kRGBReadBackSizes[std::get<4>(GetParam())]),
pattern, std::get<0>(GetParam()), !!flipped_source);
if (HasFailure()) {
return;
}
}
}
}
INSTANTIATE_TEST_SUITE_P(
All,
GLHelperPixelReadbackTest,
::testing::Combine(
::testing::Range<unsigned int>(0, std::size(kQualities)),
::testing::Range<unsigned int>(0, std::size(kRGBReadBackSizes)),
::testing::Range<unsigned int>(0, std::size(kRGBReadBackSizes)),
::testing::Range<unsigned int>(0, std::size(kRGBReadBackSizes)),
::testing::Range<unsigned int>(0, std::size(kRGBReadBackSizes))));
// Validate that all scaling generates valid pipelines.
TEST_F(GLHelperTest, ValidateScalerPipelines) {
auto sizes = std::to_array<int>({
7,
99,
128,
256,
512,
719,
720,
721,
1920,
2011,
3217,
4096,
});
for (size_t q = 0; q < std::size(kQualities); q++) {
for (size_t x = 0; x < std::size(sizes); x++) {
for (size_t y = 0; y < std::size(sizes); y++) {
for (size_t dst_x = 0; dst_x < std::size(sizes); dst_x++) {
for (size_t dst_y = 0; dst_y < std::size(sizes); dst_y++) {
TestScalerPipeline(q, sizes[x], sizes[y], sizes[dst_x],
sizes[dst_y]);
if (HasFailure()) {
return;
}
}
}
}
}
}
}
// Make sure we don't create overly complicated pipelines
// for a few common use cases.
TEST_F(GLHelperTest, CheckSpecificPipelines) {
// Upscale should be single pass.
CheckPipeline(GLHelper::SCALER_QUALITY_GOOD, 1024, 700, 1280, 720,
"1024x700 -> 1280x720 bilinear\n");
// Slight downscale should use BILINEAR2X2.
CheckPipeline(GLHelper::SCALER_QUALITY_GOOD, 1280, 720, 1024, 700,
"1280x720 -> 1024x700 bilinear2x2\n");
// Most common tab capture pipeline on the Pixel.
// Should be using two BILINEAR3 passes.
CheckPipeline(GLHelper::SCALER_QUALITY_GOOD, 2560, 1476, 1249, 720,
"2560x1476 -> 2560x720 bilinear3 Y\n"
"2560x720 -> 1249x720 bilinear3 X\n");
}
TEST_F(GLHelperTest, ScalerOpTest) {
for (int allow3 = 0; allow3 <= 1; allow3++) {
for (int dst = 1; dst < 2049; dst += 1 + (dst >> 3)) {
for (int src = 1; src < 2049; src++) {
TestAddOps(src, dst, allow3 == 1, (src & 1) == 1);
if (HasFailure()) {
LOG(ERROR) << "Failed for src=" << src << " dst=" << dst
<< " allow3=" << allow3;
return;
}
}
}
}
}
TEST_F(GLHelperTest, CheckOptimizations) {
// Test in baseclass since it is friends with GLHelperScaling
CheckOptimizationsTest();
}
} // namespace gpu
#endif // BUILDFLAG(IS_ANDROID)
|