1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef IPC_IPC_MESSAGE_TEMPLATES_H_
#define IPC_IPC_MESSAGE_TEMPLATES_H_
#include <stdint.h>
#include <tuple>
#include <type_traits>
#include <utility>
#include "base/check.h"
#include "base/notreached.h"
#include "base/trace_event/trace_event.h"
#include "base/tuple.h"
#include "build/build_config.h"
#include "ipc/ipc_message.h"
#include "ipc/ipc_message_utils.h"
#include "ipc/ipc_sync_message.h"
namespace IPC {
template <typename Tuple, size_t... Ns>
auto TupleForwardImpl(Tuple&& tuple, std::index_sequence<Ns...>) -> decltype(
std::forward_as_tuple(std::get<Ns>(std::forward<Tuple>(tuple))...)) {
return std::forward_as_tuple(std::get<Ns>(std::forward<Tuple>(tuple))...);
}
// Transforms std::tuple contents to the forwarding form.
// Example:
// std::tuple<int, int&, const int&, int&&>&&
// -> std::tuple<int&&, int&, const int&, int&&>.
// const std::tuple<int, const int&, int&&>&
// -> std::tuple<const int&, int&, const int&, int&>.
//
// TupleForward(std::make_tuple(a, b, c)) is equivalent to
// std::forward_as_tuple(a, b, c).
template <typename Tuple>
auto TupleForward(Tuple&& tuple) -> decltype(TupleForwardImpl(
std::forward<Tuple>(tuple),
std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>())) {
return TupleForwardImpl(
std::forward<Tuple>(tuple),
std::make_index_sequence<std::tuple_size<std::decay_t<Tuple>>::value>());
}
// This function is for all the async IPCs that don't pass an extra parameter
// using IPC_BEGIN_MESSAGE_MAP_WITH_PARAM.
template <typename ObjT, typename Method, typename P, typename Tuple>
void DispatchToMethod(ObjT* obj, Method method, P*, Tuple&& tuple) {
base::DispatchToMethod(obj, method, std::forward<Tuple>(tuple));
}
template <typename ObjT,
typename Method,
typename P,
typename Tuple,
size_t... Ns>
void DispatchToMethodImpl(ObjT* obj,
Method method,
P* parameter,
Tuple&& tuple,
std::index_sequence<Ns...>) {
(obj->*method)(parameter, std::get<Ns>(std::forward<Tuple>(tuple))...);
}
// The following function is for async IPCs which have a dispatcher with an
// extra parameter specified using IPC_BEGIN_MESSAGE_MAP_WITH_PARAM.
template <typename ObjT, typename P, typename... Args, typename Tuple>
requires(sizeof...(Args) == std::tuple_size_v<std::decay_t<Tuple>>)
void DispatchToMethod(ObjT* obj,
void (ObjT::*method)(P*, Args...),
P* parameter,
Tuple&& tuple) {
constexpr size_t size = std::tuple_size<std::decay_t<Tuple>>::value;
DispatchToMethodImpl(obj, method, parameter, std::forward<Tuple>(tuple),
std::make_index_sequence<size>());
}
enum class MessageKind {
CONTROL,
ROUTED,
};
// Routing is a helper struct so MessageT's private common constructor has a
// different type signature than the public "int32_t routing_id" one.
struct Routing {
explicit Routing(int32_t id) : id(id) {}
int32_t id;
};
// We want to restrict MessageT's constructors so that a routing_id is always
// provided for ROUTED messages and never provided for CONTROL messages, so
// use the SFINAE technique from N4387's "Implementation Hint" section.
#define IPC_MESSAGET_SFINAE(x) \
template <bool X = (x), typename std::enable_if<X, bool>::type = false>
// MessageT is the common template used for all user-defined message types.
// It's intended to be used via the macros defined in ipc_message_macros.h.
template <typename Meta,
typename InTuple = typename Meta::InTuple,
typename OutTuple = typename Meta::OutTuple>
class MessageT;
// Asynchronous message partial specialization.
template <typename Meta, typename... Ins>
class MessageT<Meta, std::tuple<Ins...>, void> : public Message {
public:
using Param = std::tuple<Ins...>;
enum { ID = Meta::ID };
// TODO(mdempsky): Remove. Uses of MyMessage::Schema::Param can be replaced
// with just MyMessage::Param.
using Schema = MessageT;
IPC_MESSAGET_SFINAE(Meta::kKind == MessageKind::CONTROL)
MessageT(const Ins&... ins) : MessageT(Routing(MSG_ROUTING_CONTROL), ins...) {
DCHECK(Meta::kKind == MessageKind::CONTROL) << Meta::kName;
}
IPC_MESSAGET_SFINAE(Meta::kKind == MessageKind::ROUTED)
MessageT(int32_t routing_id, const Ins&... ins)
: MessageT(Routing(routing_id), ins...) {
DCHECK(Meta::kKind == MessageKind::ROUTED) << Meta::kName;
}
static bool Read(const Message* msg, Param* p);
static void Log(std::string* name, const Message* msg, std::string* l);
template <class T, class S, class P, class Method>
static bool Dispatch(const Message* msg,
T* obj,
S* sender,
P* parameter,
Method func) {
TRACE_EVENT0("ipc", Meta::kName);
Param p;
if (Read(msg, &p)) {
DispatchToMethod(obj, func, parameter, std::move(p));
return true;
}
return false;
}
private:
MessageT(Routing routing, const Ins&... ins);
};
// Synchronous message partial specialization.
template <typename Meta, typename... Ins, typename... Outs>
class MessageT<Meta, std::tuple<Ins...>, std::tuple<Outs...>>
: public SyncMessage {
public:
using SendParam = std::tuple<Ins...>;
using ReplyParam = std::tuple<Outs...>;
enum { ID = Meta::ID };
// TODO(mdempsky): Remove. Uses of MyMessage::Schema::{Send,Reply}Param can
// be replaced with just MyMessage::{Send,Reply}Param.
using Schema = MessageT;
IPC_MESSAGET_SFINAE(Meta::kKind == MessageKind::CONTROL)
MessageT(const Ins&... ins, Outs*... outs)
: MessageT(Routing(MSG_ROUTING_CONTROL), ins..., outs...) {
DCHECK(Meta::kKind == MessageKind::CONTROL) << Meta::kName;
}
IPC_MESSAGET_SFINAE(Meta::kKind == MessageKind::ROUTED)
MessageT(int32_t routing_id, const Ins&... ins, Outs*... outs)
: MessageT(Routing(routing_id), ins..., outs...) {
DCHECK(Meta::kKind == MessageKind::ROUTED) << Meta::kName;
}
static bool ReadSendParam(const Message* msg, SendParam* p);
static bool ReadReplyParam(const Message* msg, ReplyParam* p);
static void WriteReplyParams(Message* reply, const Outs&... outs);
static void Log(std::string* name, const Message* msg, std::string* l);
template <class T, class S, class P, class Method>
static bool Dispatch(const Message* msg,
T* obj,
S* sender,
P* /* parameter */,
Method func) {
TRACE_EVENT0("ipc", Meta::kName);
SendParam send_params;
bool ok = ReadSendParam(msg, &send_params);
Message* reply = SyncMessage::GenerateReply(msg);
if (!ok) {
NOTREACHED() << "Error deserializing message " << msg->type();
}
ReplyParam reply_params;
base::DispatchToMethod(obj, func, std::move(send_params), &reply_params);
WriteParam(reply, reply_params);
LogReplyParamsToMessage(reply_params, msg);
sender->Send(reply);
return true;
}
template <class T, class P, class Method>
static bool DispatchDelayReply(const Message* msg,
T* obj,
P* /* parameter */,
Method func) {
TRACE_EVENT0("ipc", Meta::kName);
SendParam send_params;
bool ok = ReadSendParam(msg, &send_params);
Message* reply = SyncMessage::GenerateReply(msg);
if (!ok) {
NOTREACHED() << "Error deserializing message " << msg->type();
}
std::tuple<Message&> t = std::tie(*reply);
ConnectMessageAndReply(msg, reply);
base::DispatchToMethod(obj, func, std::move(send_params), &t);
return true;
}
template <class T, class P, class Method>
static bool DispatchWithParamDelayReply(const Message* msg,
T* obj,
P* parameter,
Method func) {
TRACE_EVENT0("ipc", Meta::kName);
SendParam send_params;
bool ok = ReadSendParam(msg, &send_params);
Message* reply = SyncMessage::GenerateReply(msg);
if (!ok) {
NOTREACHED() << "Error deserializing message " << msg->type();
}
std::tuple<Message&> t = std::tie(*reply);
ConnectMessageAndReply(msg, reply);
std::tuple<P*> parameter_tuple(parameter);
base::DispatchToMethod(
obj, func,
std::tuple_cat(std::move(parameter_tuple), TupleForward(send_params)),
&t);
return true;
}
private:
MessageT(Routing routing, const Ins&... ins, Outs*... outs);
};
} // namespace IPC
#if defined(IPC_MESSAGE_IMPL)
#include "ipc/ipc_message_templates_impl.h"
#endif
#endif // IPC_IPC_MESSAGE_TEMPLATES_H_
|