1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
|
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "mojo/core/channel_linux.h"
#include <fcntl.h>
#include <linux/futex.h>
#include <linux/memfd.h>
#include <sys/eventfd.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/utsname.h>
#include <unistd.h>
#include <algorithm>
#include <atomic>
#include <cstring>
#include <limits>
#include <memory>
#include "base/bits.h"
#include "base/files/scoped_file.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/memory/page_size.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/memory/ref_counted.h"
#include "base/memory/shared_memory_security_policy.h"
#include "base/message_loop/io_watcher.h"
#include "base/message_loop/message_pump_for_io.h"
#include "base/metrics/histogram_macros.h"
#include "base/posix/eintr_wrapper.h"
#include "base/system/sys_info.h"
#include "base/task/single_thread_task_runner.h"
#include "base/task/task_runner.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "mojo/buildflags.h"
#include "mojo/core/embedder/features.h"
#if BUILDFLAG(IS_ANDROID)
#include "base/android/build_info.h"
#endif
#ifndef EFD_ZERO_ON_WAKE
#define EFD_ZERO_ON_WAKE O_NOFOLLOW
#endif
namespace mojo {
namespace core {
// DataAvailableNotifier is a simple interface which allows us to
// substitute how we notify the reader that we've made data available,
// implementations might be EventFDNotifier or FutexNotifier.
class DataAvailableNotifier {
public:
DataAvailableNotifier() = default;
explicit DataAvailableNotifier(base::RepeatingClosure callback)
: callback_(std::move(callback)) {}
virtual ~DataAvailableNotifier() = default;
// The writer should notify the reader by invoking Notify.
virtual bool Notify() = 0;
// A reader should clear the notification (if appropriate) by calling Clear.
virtual bool Clear() = 0;
// Is_valid will return true if the implementation is valid and can be used.
virtual bool is_valid() const = 0;
protected:
// DataAvailable will be called by implementations of DataAvailableNotifier to
// dispatch this message into the registered callback.
void DataAvailable() {
DCHECK(callback_);
callback_.Run();
}
base::RepeatingClosure callback_;
};
namespace {
constexpr int kMemFDSeals = F_SEAL_SEAL | F_SEAL_SHRINK | F_SEAL_GROW;
std::atomic_bool g_params_set{false};
std::atomic_bool g_use_shared_mem{false};
std::atomic_bool g_use_zero_on_wake{false};
std::atomic_uint32_t g_shared_mem_pages{4};
struct UpgradeOfferMessage {
constexpr static int kEventFdNotifier = 1;
constexpr static int kEventFdZeroWakeNotifier = 2;
constexpr static int kDefaultVersion = kEventFdNotifier;
constexpr static int kDefaultPages = 4;
static bool IsValidVersion(int version) {
return (version == kEventFdNotifier || version == kEventFdZeroWakeNotifier);
}
int version = kDefaultVersion;
int num_pages = kDefaultPages;
};
constexpr size_t RoundUpToWordBoundary(size_t size) {
return base::bits::AlignUp(size, sizeof(void*));
}
base::ScopedFD CreateSealedMemFD(size_t size) {
CHECK_GT(size, 0u);
CHECK_EQ(size % base::GetPageSize(), 0u);
base::ScopedFD fd(syscall(__NR_memfd_create, "mojo_channel_linux",
MFD_CLOEXEC | MFD_ALLOW_SEALING));
if (!fd.is_valid()) {
PLOG(ERROR) << "Unable to create memfd for shared memory channel";
return {};
}
if (ftruncate(fd.get(), size) < 0) {
PLOG(ERROR) << "Unable to truncate memfd for shared memory channel";
return {};
}
// We make sure to use F_SEAL_SEAL to prevent any further changes to the
// seals and F_SEAL_SHRINK guarantees that we won't accidentally decrease
// the size, and similarly F_SEAL_GROW for increasing size.
if (fcntl(fd.get(), F_ADD_SEALS, kMemFDSeals) < 0) {
PLOG(ERROR) << "Unable to seal memfd for shared memory channel";
return {};
}
return fd;
}
// It's very important that we always verify that the FD we're passing and the
// FD we're receive is a properly sealed MemFD.
bool ValidateFDIsProperlySealedMemFD(const base::ScopedFD& fd) {
int seals = 0;
if ((seals = fcntl(fd.get(), F_GET_SEALS)) < 0) {
PLOG(ERROR) << "Unable to get seals on memfd for shared memory channel";
return false;
}
return seals == kMemFDSeals;
}
// EventFDNotifier is an implementation of the DataAvailableNotifier interface
// which uses EventFDNotifier to signal the reader.
class EventFDNotifier : public DataAvailableNotifier,
public base::IOWatcher::FdWatcher {
public:
EventFDNotifier(EventFDNotifier&& efd) = default;
EventFDNotifier(const EventFDNotifier&) = delete;
EventFDNotifier& operator=(const EventFDNotifier&) = delete;
~EventFDNotifier() override { reset(); }
static constexpr int kEfdFlags = EFD_CLOEXEC | EFD_NONBLOCK;
static std::unique_ptr<EventFDNotifier> CreateWriteNotifier() {
static bool zero_on_wake_supported = []() -> bool {
base::ScopedFD fd(
syscall(__NR_eventfd2, 0, kEfdFlags | EFD_ZERO_ON_WAKE));
return fd.is_valid();
}();
bool use_zero_on_wake = zero_on_wake_supported && g_use_zero_on_wake;
int extra_flags = use_zero_on_wake ? EFD_ZERO_ON_WAKE : 0;
int fd = syscall(__NR_eventfd2, 0, kEfdFlags | extra_flags);
if (fd < 0) {
PLOG(ERROR) << "Unable to create an eventfd";
return nullptr;
}
return WrapFD(base::ScopedFD(fd), use_zero_on_wake);
}
// The EventFD read notifier MUST be created on the IOThread. Luckily you're
// typically creating the read notifier in response to an OFFER_UPGRADE
// message which was received on the IOThread.
static std::unique_ptr<EventFDNotifier> CreateReadNotifier(
base::ScopedFD efd,
base::RepeatingClosure cb,
scoped_refptr<base::SingleThreadTaskRunner> io_task_runner,
bool zero_on_wake) {
DCHECK(io_task_runner->RunsTasksInCurrentSequence());
DCHECK(cb);
return WrapFDWithCallback(std::move(efd), std::move(cb), io_task_runner,
zero_on_wake);
}
static bool KernelSupported() {
// Try to create an eventfd with bad flags if we get -EINVAL it's supported
// if we get -ENOSYS it's not, we also support -EPERM because seccomp
// policies can cause it to be returned.
int ret = syscall(__NR_eventfd2, 0, ~0);
PCHECK(ret < 0 && (errno == EINVAL || errno == ENOSYS || errno == EPERM));
return (ret < 0 && errno == EINVAL);
}
// DataAvailableNotifier impl:
bool Clear() override {
// When using EFD_ZERO_ON_WAKE we don't have to do anything.
if (zero_on_wake_) {
return true;
}
uint64_t value = 0;
ssize_t res = HANDLE_EINTR(
read(fd_.get(), reinterpret_cast<void*>(&value), sizeof(value)));
if (res < static_cast<int64_t>(sizeof(value))) {
PLOG_IF(ERROR, errno != EWOULDBLOCK) << "eventfd read error";
}
return res == sizeof(value);
}
bool Notify() override {
uint64_t value = 1;
ssize_t res = HANDLE_EINTR(write(fd_.get(), &value, sizeof(value)));
return res == sizeof(value);
}
bool is_valid() const override { return fd_.is_valid(); }
// base::IOWatcher::FdWatcher impl:
void OnFdReadable(int fd) override {
DCHECK(fd == fd_.get());
// Invoke the callback to inform them that data is available to read.
DataAvailable();
}
void OnFdWritable(int fd) override {}
base::ScopedFD take() { return std::move(fd_); }
base::ScopedFD take_dup() {
return base::ScopedFD(HANDLE_EINTR(dup(fd_.get())));
}
void reset() {
watch_.reset();
fd_.reset();
}
int fd() { return fd_.get(); }
bool zero_on_wake() const { return zero_on_wake_; }
private:
explicit EventFDNotifier(base::ScopedFD fd, bool zero_on_wake)
: zero_on_wake_(zero_on_wake), fd_(std::move(fd)) {}
explicit EventFDNotifier(
base::ScopedFD fd,
base::RepeatingClosure cb,
scoped_refptr<base::SingleThreadTaskRunner> io_task_runner,
bool zero_on_wake)
: DataAvailableNotifier(std::move(cb)),
zero_on_wake_(zero_on_wake),
fd_(std::move(fd)),
io_task_runner_(io_task_runner) {
WaitForEventFDOnIOThread();
}
static std::unique_ptr<EventFDNotifier> WrapFD(base::ScopedFD fd,
bool zero_on_wake) {
return base::WrapUnique<EventFDNotifier>(
new EventFDNotifier(std::move(fd), zero_on_wake));
}
static std::unique_ptr<EventFDNotifier> WrapFDWithCallback(
base::ScopedFD fd,
base::RepeatingClosure cb,
scoped_refptr<base::SingleThreadTaskRunner> io_task_runner,
bool zero_on_wake) {
return base::WrapUnique<EventFDNotifier>(new EventFDNotifier(
std::move(fd), std::move(cb), io_task_runner, zero_on_wake));
}
void WaitForEventFDOnIOThread() {
DCHECK(io_task_runner_->RunsTasksInCurrentSequence());
watch_ = base::IOWatcher::Get()->WatchFileDescriptor(
fd_.get(), base::IOWatcher::FdWatchDuration::kPersistent,
base::IOWatcher::FdWatchMode::kRead, *this);
}
bool zero_on_wake_ = false;
base::ScopedFD fd_;
std::unique_ptr<base::IOWatcher::FdWatch> watch_;
scoped_refptr<base::SingleThreadTaskRunner> io_task_runner_;
};
} // namespace
// SharedBuffer is an abstraction around a region of shared memory, it has
// methods to facilitate safely reading and writing into the shared region.
// SharedBuffer only handles the access to the shared memory any notifications
// must be performed separately.
class ChannelLinux::SharedBuffer {
public:
SharedBuffer(SharedBuffer&& other) = default;
SharedBuffer(const SharedBuffer&) = delete;
SharedBuffer& operator=(const SharedBuffer&) = delete;
~SharedBuffer() { reset(); }
enum class Error { kSuccess = 0, kGeneralError = 1, kControlCorruption = 2 };
static std::unique_ptr<SharedBuffer> Create(const base::ScopedFD& memfd,
size_t size) {
if (!memfd.is_valid()) {
return nullptr;
}
// Enforce the system shared memory security policy.
if (!base::SharedMemorySecurityPolicy::AcquireReservationForMapping(size)) {
LOG(ERROR)
<< "Unable to create shared buffer: unable to acquire reservation";
return nullptr;
}
uint8_t* ptr = reinterpret_cast<uint8_t*>(mmap(
nullptr, size, PROT_READ | PROT_WRITE, MAP_SHARED, memfd.get(), 0));
if (ptr == MAP_FAILED) {
PLOG(ERROR) << "Unable to map shared memory";
// Always clean up our reservation if we actually fail to map.
base::SharedMemorySecurityPolicy::ReleaseReservationForMapping(size);
return nullptr;
}
return base::WrapUnique<SharedBuffer>(new SharedBuffer(ptr, size));
}
uint8_t* usable_region_ptr() { return base_ptr_ + kReservedSpace; }
size_t usable_len() const { return len_ - kReservedSpace; }
bool is_valid() const { return base_ptr_ != nullptr && len_ > 0; }
void reset() {
if (is_valid()) {
if (munmap(base_ptr_, len_) < 0) {
PLOG(ERROR) << "Unable to unmap shared buffer";
return;
}
base::SharedMemorySecurityPolicy::ReleaseReservationForMapping(len_);
base_ptr_ = nullptr;
len_ = 0;
}
}
// Only one side should call Initialize, this will initialize the first
// sizeof(ControlStructure) bytes as our control structure. This should be
// done when offering fast comms.
void Initialize() { new (static_cast<void*>(base_ptr_)) ControlStructure; }
// TryWrite will attempt to append |data| of |len| to the shared buffer, this
// call will only succeed if there is no one else trying to write AND there is
// enough space currently in the buffer.
Error TryWrite(const void* data, size_t len) {
DCHECK(data);
DCHECK(len);
if (len > usable_len()) {
return Error::kGeneralError;
}
if (!TryLockForWriting()) {
return Error::kGeneralError;
}
// At this point we know that the space available can only grow because
// we're the only writer we will write from write_pos -> end and 0 -> (len
// - (end - write_pos)) where end is usable_len().
uint32_t cur_read_pos = read_pos().load();
uint32_t cur_write_pos = write_pos().load();
if (!ValidateReadWritePositions(cur_read_pos, cur_write_pos)) {
UnlockForWriting();
return Error::kControlCorruption;
}
uint32_t space_available =
usable_len() - NumBytesInUse(cur_read_pos, cur_write_pos);
if (space_available <= len) {
UnlockForWriting();
return Error::kGeneralError;
}
// If we do not have enough space from the current write position to the end
// then we will be forced to wrap around. If we do have enough space we can
// just start writing at the write position, otherwise we start writing at
// the write position up to the end of the usable area and then we write the
// remainder of the payload starting at position 0.
if ((usable_len() - cur_write_pos) > len) {
memcpy(usable_region_ptr() + cur_write_pos, data, len);
} else {
size_t copy1_len = usable_len() - cur_write_pos;
memcpy(usable_region_ptr() + cur_write_pos, data, copy1_len);
memcpy(usable_region_ptr(),
reinterpret_cast<const uint8_t*>(data) + copy1_len,
len - copy1_len);
}
// Atomically update the write position.
// We also verify that the write position did not advance, it SHOULD NEVER
// advance since we were holding the write lock.
if (write_pos().exchange((cur_write_pos + len) % usable_len()) !=
cur_write_pos) {
UnlockForWriting();
return Error::kControlCorruption;
}
UnlockForWriting();
return Error::kSuccess;
}
Error TryReadLocked(void* data, uint32_t len, uint32_t* bytes_read) {
uint32_t cur_read_pos = read_pos().load();
uint32_t cur_write_pos = write_pos().load();
if (!ValidateReadWritePositions(cur_read_pos, cur_write_pos)) {
return Error::kControlCorruption;
}
// The most we can read is the smaller of what's in use in the shared memory
// usable area and the buffer size we've been passed.
uint32_t bytes_available_to_read =
NumBytesInUse(cur_read_pos, cur_write_pos);
bytes_available_to_read = std::min(bytes_available_to_read, len);
if (bytes_available_to_read == 0) {
*bytes_read = 0;
return Error::kSuccess;
}
// We have two cases when reading, the first is the read position is behind
// the write position, in that case we can simply read all data between the
// read and write position (up to our buffer size). The second case is when
// the write position is behind the read position. In this situation we must
// read from the read position to the end of the available area, and
// continue reading from the 0 position up to the write position or the
// maximum buffer size (bytes_available_to_read).
if (cur_read_pos < cur_write_pos) {
memcpy(data, usable_region_ptr() + cur_read_pos, bytes_available_to_read);
} else {
// We first start by reading to the end of the the usable area, if we
// cannot read all the way (because our buffer is too small, we're done).
uint32_t bytes_from_read_to_end = usable_len() - cur_read_pos;
bytes_from_read_to_end =
std::min(bytes_from_read_to_end, bytes_available_to_read);
memcpy(data, usable_region_ptr() + cur_read_pos, bytes_from_read_to_end);
if (bytes_from_read_to_end < bytes_available_to_read) {
memcpy(reinterpret_cast<uint8_t*>(data) + bytes_from_read_to_end,
usable_region_ptr(),
bytes_available_to_read - bytes_from_read_to_end);
}
}
// Atomically update the read position.
// We also verify that the read position did not advance, it SHOULD NEVER
// advance since we were holding the read lock.
uint32_t new_read_pos =
(cur_read_pos + bytes_available_to_read) % usable_len();
if (read_pos().exchange(new_read_pos) != cur_read_pos) {
*bytes_read = 0;
return Error::kControlCorruption;
}
*bytes_read = bytes_available_to_read;
return Error::kSuccess;
}
bool TryLockForReading() {
// We return true if we set the flag (meaning it was false).
return !read_flag().test_and_set(std::memory_order_acquire);
}
void UnlockForReading() { read_flag().clear(std::memory_order_release); }
private:
struct ControlStructure {
std::atomic_flag write_flag{false};
std::atomic_uint32_t write_pos{0};
std::atomic_flag read_flag{false};
std::atomic_uint32_t read_pos{0};
// If we're using a notification mechanism that relies on futex, make the
// space available for one, if not these 32bits are unused. The kernel
// requires they be 32bit aligned.
alignas(4) volatile uint32_t futex = 0;
};
// This function will only validate that the values provided for write and
// read positions are valid based on usable size of the shared memory region.
// This should ALWAYS be called before attempting a write or read using
// atomically loaded values from the control structure.
bool ValidateReadWritePositions(uint32_t read_pos, uint32_t write_pos) {
// The only valid values for read and write positions are [0 - usable_len
// - 1].
if (write_pos >= usable_len()) {
LOG(ERROR) << "Write position of shared buffer is currently beyond the "
"usable length";
return false;
}
if (read_pos >= usable_len()) {
LOG(ERROR) << "Read position of shared buffer is currently beyond the "
"usable length";
return false;
}
return true;
}
// NumBytesInUse will calculate how many bytes in the shared buffer are
// currently in use.
uint32_t NumBytesInUse(uint32_t read_pos, uint32_t write_pos) {
uint32_t bytes_in_use = 0;
if (read_pos <= write_pos) {
bytes_in_use = write_pos - read_pos;
} else {
bytes_in_use = write_pos + (usable_len() - read_pos);
}
return bytes_in_use;
}
bool TryLockForWriting() {
// We return true if we set the flag (meaning it was false).
return !write_flag().test_and_set(std::memory_order_acquire);
}
void UnlockForWriting() { write_flag().clear(std::memory_order_release); }
// This is the space we need to reserve in this shared buffer for our control
// structure at the start.
constexpr static size_t kReservedSpace =
RoundUpToWordBoundary(sizeof(ControlStructure));
std::atomic_flag& write_flag() {
DCHECK(is_valid());
return reinterpret_cast<ControlStructure*>(base_ptr_)->write_flag;
}
std::atomic_flag& read_flag() {
DCHECK(is_valid());
return reinterpret_cast<ControlStructure*>(base_ptr_)->read_flag;
}
std::atomic_uint32_t& read_pos() {
DCHECK(is_valid());
return reinterpret_cast<ControlStructure*>(base_ptr_)->read_pos;
}
std::atomic_uint32_t& write_pos() {
DCHECK(is_valid());
return reinterpret_cast<ControlStructure*>(base_ptr_)->write_pos;
}
SharedBuffer(uint8_t* ptr, size_t len) : base_ptr_(ptr), len_(len) {}
// RAW_PTR_EXCLUSION: Never allocated by PartitionAlloc (always mmap'ed), so
// there is no benefit to using a raw_ptr, only cost.
RAW_PTR_EXCLUSION uint8_t* base_ptr_ = nullptr;
size_t len_ = 0;
};
ChannelLinux::ChannelLinux(
Delegate* delegate,
ConnectionParams connection_params,
HandlePolicy handle_policy,
scoped_refptr<base::SingleThreadTaskRunner> io_task_runner)
: ChannelPosix(delegate,
std::move(connection_params),
handle_policy,
io_task_runner),
num_pages_(g_shared_mem_pages.load()) {}
ChannelLinux::~ChannelLinux() = default;
void ChannelLinux::Write(MessagePtr message) {
if (!shared_mem_writer_ || message->has_handles() || reject_writes_) {
// Let the ChannelPosix deal with this.
return ChannelPosix::Write(std::move(message));
}
// Can we use the fast shared memory buffer?
SharedBuffer::Error write_result =
write_buffer_->TryWrite(message->data(), message->data_num_bytes());
if (write_result == SharedBuffer::Error::kGeneralError) {
// We can handle this with the posix channel.
return ChannelPosix::Write(std::move(message));
} else if (write_result == SharedBuffer::Error::kControlCorruption) {
// We will no longer be issuing writes via shared memory, and we will
// dispatch a write error.
reject_writes_ = true;
// Theoretically we could fall back to only using PosixChannel::Write
// but if this situation happens it's likely something else is going
// horribly wrong.
io_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&ChannelLinux::OnWriteError, this,
Channel::Error::kReceivedMalformedData));
return;
}
// The write with shared memory was successful.
write_notifier_->Notify();
}
void ChannelLinux::OfferSharedMemUpgrade() {
if (!offered_.test_and_set() && UpgradesEnabled()) {
// Before we offer we need to make sure we can send handles, if we can't
// then no point in trying.
if (handle_policy() == HandlePolicy::kAcceptHandles) {
OfferSharedMemUpgradeInternal();
}
}
}
bool ChannelLinux::OnControlMessage(Message::MessageType message_type,
const void* payload,
size_t payload_size,
std::vector<PlatformHandle> handles) {
switch (message_type) {
case Message::MessageType::UPGRADE_OFFER: {
if (payload_size < sizeof(UpgradeOfferMessage)) {
LOG(ERROR) << "Received an UPGRADE_OFFER without a payload";
return true;
}
const UpgradeOfferMessage* msg =
reinterpret_cast<const UpgradeOfferMessage*>(payload);
if (!UpgradeOfferMessage::IsValidVersion(msg->version)) {
LOG(ERROR) << "Reject shared mem upgrade unexpected version: "
<< msg->version;
RejectUpgradeOffer();
return true;
}
if (handles.size() != 2) {
LOG(ERROR) << "Received an UPGRADE_OFFER without two FDs";
RejectUpgradeOffer();
return true;
}
if (read_buffer_ || read_notifier_) {
LOG(ERROR) << "Received an UPGRADE_OFFER on already upgraded channel";
return true;
}
base::ScopedFD memfd(handles[0].TakeFD());
if (memfd.is_valid() && !ValidateFDIsProperlySealedMemFD(memfd)) {
PLOG(ERROR) << "Passed FD was not properly sealed";
DLOG(FATAL) << "MemFD was NOT properly sealed";
memfd.reset();
}
if (!memfd.is_valid()) {
RejectUpgradeOffer();
return true;
}
if (msg->num_pages <= 0 || msg->num_pages > 128) {
LOG(ERROR) << "SharedMemory upgrade offer was received with invalid "
"number of pages: "
<< msg->num_pages;
RejectUpgradeOffer();
}
std::unique_ptr<DataAvailableNotifier> read_notifier;
if (msg->version == UpgradeOfferMessage::kEventFdNotifier ||
msg->version == UpgradeOfferMessage::kEventFdZeroWakeNotifier) {
bool zero_on_wake =
msg->version == UpgradeOfferMessage::kEventFdZeroWakeNotifier;
read_notifier = EventFDNotifier::CreateReadNotifier(
handles[1].TakeFD(),
base::BindRepeating(&ChannelLinux::SharedMemReadReady, this),
io_task_runner_, zero_on_wake);
}
if (!read_notifier) {
RejectUpgradeOffer();
return true;
}
read_notifier_ = std::move(read_notifier);
std::unique_ptr<SharedBuffer> read_sb = SharedBuffer::Create(
std::move(memfd), msg->num_pages * base::GetPageSize());
if (!read_sb || !read_sb->is_valid()) {
RejectUpgradeOffer();
return true;
}
read_buffer_ = std::move(read_sb);
read_buf_.resize(read_buffer_->usable_len());
AcceptUpgradeOffer();
// And if we haven't offered ourselves just go ahead and do it now.
OfferSharedMemUpgrade();
return true;
}
case Message::MessageType::UPGRADE_ACCEPT: {
if (!write_buffer_ || !write_notifier_ || !write_notifier_->is_valid()) {
LOG(ERROR) << "Received unexpected UPGRADE_ACCEPT";
// Clean up anything that may have been set.
shared_mem_writer_ = false;
write_buffer_.reset();
write_notifier_.reset();
return true;
}
shared_mem_writer_ = true;
return true;
}
case Message::MessageType::UPGRADE_REJECT: {
// We can free our resources.
shared_mem_writer_ = false;
write_buffer_.reset();
write_notifier_.reset();
return true;
}
default:
break;
}
return ChannelPosix::OnControlMessage(message_type, payload, payload_size,
std::move(handles));
}
void ChannelLinux::SharedMemReadReady() {
CHECK(read_buffer_);
if (read_buffer_->TryLockForReading()) {
read_notifier_->Clear();
bool read_fail = false;
do {
uint32_t bytes_read = 0;
SharedBuffer::Error read_res = read_buffer_->TryReadLocked(
read_buf_.data(), read_buf_.size(), &bytes_read);
if (read_res == SharedBuffer::Error::kControlCorruption) {
// This is an error we cannot recover from.
OnError(Error::kReceivedMalformedData);
break;
}
if (bytes_read == 0) {
break;
}
// Now dispatch the message, we KNOW it's at least one full message
// because we checked the message size before putting it into the
// shared buffer, this mechanism can never write a partial message.
off_t data_offset = 0;
while (bytes_read - data_offset > 0) {
size_t read_size_hint;
DispatchResult result = TryDispatchMessage(
base::span(reinterpret_cast<char*>(read_buf_.data() + data_offset),
static_cast<size_t>(bytes_read - data_offset)),
&read_size_hint);
// We cannot have a message parse failure, we KNOW that we wrote a
// full message if we get one something has gone horribly wrong.
if (result != DispatchResult::kOK) {
LOG(ERROR) << "Recevied a bad message via shared memory";
read_fail = true;
OnError(Error::kReceivedMalformedData);
break;
}
// The next message will start after read_size_hint bytes the writer
// guarantees that we wrote a full message and we've guaranteed that the
// message was dispatched correctly so we know where the next message
// starts.
data_offset += read_size_hint;
}
} while (!read_fail);
read_buffer_->UnlockForReading();
}
}
void ChannelLinux::OnWriteError(Error error) {
reject_writes_ = true;
ChannelPosix::OnWriteError(error);
}
void ChannelLinux::ShutDownOnIOThread() {
reject_writes_ = true;
read_notifier_.reset();
write_notifier_.reset();
ChannelPosix::ShutDownOnIOThread();
}
void ChannelLinux::StartOnIOThread() {
ChannelPosix::StartOnIOThread();
}
void ChannelLinux::OfferSharedMemUpgradeInternal() {
if (reject_writes_) {
return;
}
if (write_buffer_ || write_notifier_) {
LOG(ERROR) << "Upgrade attempted on an already upgraded channel";
return;
}
const size_t kSize = num_pages_ * base::GetPageSize();
base::ScopedFD memfd = CreateSealedMemFD(kSize);
if (!memfd.is_valid()) {
PLOG(ERROR) << "Unable to create memfd";
return;
}
bool properly_sealed = ValidateFDIsProperlySealedMemFD(memfd);
if (!properly_sealed) {
// We will not attempt an offer, something has gone wrong.
LOG(ERROR) << "FD was not properly sealed we cannot offer upgrade.";
return;
}
std::unique_ptr<SharedBuffer> write_buffer =
SharedBuffer::Create(memfd, kSize);
if (!write_buffer || !write_buffer->is_valid()) {
PLOG(ERROR) << "Unable to map shared memory";
return;
}
write_buffer->Initialize();
auto notifier_version = UpgradeOfferMessage::kEventFdNotifier;
std::unique_ptr<EventFDNotifier> write_notifier =
EventFDNotifier::CreateWriteNotifier();
if (!write_notifier) {
PLOG(ERROR) << "Failed to create eventfd write notifier";
return;
}
if (write_notifier->zero_on_wake()) {
// The notifier was created using EFD_ZERO_ON_WAKE
notifier_version = UpgradeOfferMessage::kEventFdZeroWakeNotifier;
}
std::vector<PlatformHandle> fds;
fds.emplace_back(std::move(memfd));
fds.emplace_back(write_notifier->take_dup());
write_notifier_ = std::move(write_notifier);
write_buffer_ = std::move(write_buffer);
UpgradeOfferMessage offer_msg;
offer_msg.num_pages = num_pages_;
offer_msg.version = notifier_version;
MessagePtr msg = Message::CreateMessage(sizeof(UpgradeOfferMessage),
/*num handles=*/fds.size(),
Message::MessageType::UPGRADE_OFFER);
msg->SetHandles(std::move(fds));
memcpy(msg->mutable_payload(), &offer_msg, sizeof(offer_msg));
ChannelPosix::Write(std::move(msg));
}
// static
bool ChannelLinux::KernelSupportsUpgradeRequirements() {
static bool supported = []() -> bool {
// See https://crbug.com/1192696 for more context, but some Android vendor
// kernels pre-3.17 would use higher undefined syscall numbers for private
// syscalls. To start we'll validate the kernel version is greater than or
// equal to 3.17 before even bothering to call memfd_create.
//
// Additionally, the behavior of eventfd prior to the 4.0 kernel could be
// racy.
if (base::SysInfo::KernelVersionNumber::Current() <
base::SysInfo::KernelVersionNumber(4, 0)) {
// Due to the potentially races in 3.17/3.18 kernels with eventfd,
// explicitly require a 4.x+ kernel.
return false;
}
#if BUILDFLAG(IS_ANDROID)
// Finally, if running on Android it must have API version of at
// least 29 (Q). The reason for this was SELinux seccomp policies prior to
// that API version wouldn't allow moving a memfd.
if (base::android::BuildInfo::GetInstance()->sdk_int() <
base::android::SdkVersion::SDK_VERSION_Q) {
return false;
}
#endif
// Do we have memfd_create support, we check by seeing if we get an
// -ENOSYS or an -EINVAL. We also support -EPERM because of seccomp
// rules this is another possible outcome.
int ret = syscall(__NR_memfd_create, "", ~0);
PCHECK(ret < 0 && (errno == EINVAL || errno == ENOSYS || errno == EPERM));
bool memfd_supported = (ret < 0 && errno == EINVAL);
return memfd_supported && EventFDNotifier::KernelSupported();
}();
return supported;
}
// static
bool ChannelLinux::UpgradesEnabled() {
if (!g_params_set.load())
return g_use_shared_mem.load();
return base::FeatureList::IsEnabled(kMojoLinuxChannelSharedMem);
}
// static
void ChannelLinux::SetSharedMemParameters(bool enabled,
uint32_t num_pages,
bool use_zero_on_wake) {
g_params_set.store(true);
g_use_shared_mem.store(enabled);
g_shared_mem_pages.store(num_pages);
g_use_zero_on_wake.store(use_zero_on_wake);
}
} // namespace core
} // namespace mojo
|