1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/ip_address.h"
#include <stddef.h>
#include <algorithm>
#include <array>
#include <climits>
#include <optional>
#include <string_view>
#include "base/check_op.h"
#include "base/containers/span.h"
#include "base/debug/alias.h"
#include "base/debug/crash_logging.h"
#include "base/logging.h"
#include "base/notreached.h"
#include "base/strings/string_split.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/memory_usage_estimator.h"
#include "base/values.h"
#include "net/base/parse_number.h"
#include "url/gurl.h"
namespace net {
namespace {
// The prefix for IPv6 mapped IPv4 addresses.
// https://tools.ietf.org/html/rfc4291#section-2.5.5.2
constexpr uint8_t kIPv4MappedPrefix[] = {0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0xFF, 0xFF};
// Note that this function assumes:
// * |ip_address| is at least |prefix_length_in_bits| (bits) long;
// * |ip_prefix| is at least |prefix_length_in_bits| (bits) long.
bool IPAddressPrefixCheck(const IPAddressBytes& ip_address,
base::span<const uint8_t> ip_prefix,
size_t prefix_length_in_bits) {
// Compare all the bytes that fall entirely within the prefix.
size_t num_entire_bytes_in_prefix = prefix_length_in_bits / 8;
if (ip_address.span().first(num_entire_bytes_in_prefix) !=
ip_prefix.first(num_entire_bytes_in_prefix)) {
return false;
}
// In case the prefix was not a multiple of 8, there will be 1 byte
// which is only partially masked.
size_t remaining_bits = prefix_length_in_bits % 8;
if (remaining_bits != 0) {
uint8_t mask = 0xFF << (8 - remaining_bits);
size_t i = num_entire_bytes_in_prefix;
if ((ip_address[i] & mask) != (ip_prefix[i] & mask)) {
return false;
}
}
return true;
}
bool CreateIPMask(IPAddressBytes* ip_address,
size_t prefix_length_in_bits,
size_t ip_address_length) {
if (ip_address_length != IPAddress::kIPv4AddressSize &&
ip_address_length != IPAddress::kIPv6AddressSize) {
return false;
}
if (prefix_length_in_bits > ip_address_length * 8) {
return false;
}
ip_address->Resize(ip_address_length);
size_t idx = 0;
// Set all fully masked bytes
size_t num_entire_bytes_in_prefix = prefix_length_in_bits / 8;
for (size_t i = 0; i < num_entire_bytes_in_prefix; ++i) {
(*ip_address)[idx++] = 0xff;
}
// In case the prefix was not a multiple of 8, there will be 1 byte
// which is only partially masked.
size_t remaining_bits = prefix_length_in_bits % 8;
if (remaining_bits != 0) {
uint8_t remaining_bits_mask = 0xFF << (8 - remaining_bits);
(*ip_address)[idx++] = remaining_bits_mask;
}
// Zero out any other bytes.
size_t bytes_remaining = ip_address_length - num_entire_bytes_in_prefix -
(remaining_bits != 0 ? 1 : 0);
for (size_t i = 0; i < bytes_remaining; ++i) {
(*ip_address)[idx++] = 0;
}
return true;
}
// Returns false if |ip_address| matches any of the reserved IPv4 ranges. This
// method operates on a list of reserved IPv4 ranges. Some ranges are
// consolidated.
// Sources for info:
// www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
// www.iana.org/assignments/iana-ipv4-special-registry/
// iana-ipv4-special-registry.xhtml
bool IsPubliclyRoutableIPv4(const IPAddressBytes& ip_address) {
// Different IP versions have different range reservations.
DCHECK_EQ(IPAddress::kIPv4AddressSize, ip_address.size());
struct {
uint8_t address[4];
size_t prefix_length_in_bits;
} static constexpr kReservedIPv4Ranges[] = {
{{0, 0, 0, 0}, 8}, {{10, 0, 0, 0}, 8}, {{100, 64, 0, 0}, 10},
{{127, 0, 0, 0}, 8}, {{169, 254, 0, 0}, 16}, {{172, 16, 0, 0}, 12},
{{192, 0, 0, 0}, 24}, {{192, 0, 2, 0}, 24}, {{192, 88, 99, 0}, 24},
{{192, 168, 0, 0}, 16}, {{198, 18, 0, 0}, 15}, {{198, 51, 100, 0}, 24},
{{203, 0, 113, 0}, 24}, {{224, 0, 0, 0}, 3}};
for (const auto& range : kReservedIPv4Ranges) {
if (IPAddressPrefixCheck(ip_address, range.address,
range.prefix_length_in_bits)) {
return false;
}
}
return true;
}
// Returns false if |ip_address| matches any of the IPv6 ranges IANA reserved
// for local networks. This method operates on an allowlist of non-reserved
// IPv6 ranges, plus the list of reserved IPv4 ranges mapped to IPv6.
// Sources for info:
// www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
bool IsPubliclyRoutableIPv6(const IPAddressBytes& ip_address) {
DCHECK_EQ(IPAddress::kIPv6AddressSize, ip_address.size());
struct {
uint8_t address_prefix[2];
size_t prefix_length_in_bits;
} static constexpr kPublicIPv6Ranges[] = {// 2000::/3 -- Global Unicast
{{0x20, 0}, 3},
// ff00::/8 -- Multicast
{{0xff, 0}, 8}};
for (const auto& range : kPublicIPv6Ranges) {
if (IPAddressPrefixCheck(ip_address, range.address_prefix,
range.prefix_length_in_bits)) {
return true;
}
}
IPAddress addr(ip_address);
if (addr.IsIPv4MappedIPv6()) {
IPAddress ipv4 = ConvertIPv4MappedIPv6ToIPv4(addr);
return IsPubliclyRoutableIPv4(ipv4.bytes());
}
return false;
}
} // namespace
bool IPAddressBytes::operator<(const IPAddressBytes& other) const {
// While `span() < other.span()` alone would be sufficient to give a
// consistent ordering, there's no need to sort lexicographically when sizes
// are different.
if (size_ == other.size_) {
return span() < other.span();
}
return size_ < other.size_;
}
bool IPAddressBytes::operator==(const IPAddressBytes& other) const {
return std::ranges::equal(*this, other);
}
void IPAddressBytes::Append(base::span<const uint8_t> data) {
CHECK_LE(data.size(), static_cast<size_t>(16 - size_));
size_ += data.size();
base::span(*this).last(data.size()).copy_from(data);
}
size_t IPAddressBytes::EstimateMemoryUsage() const {
return base::trace_event::EstimateMemoryUsage(bytes_);
}
// static
std::optional<IPAddress> IPAddress::FromValue(const base::Value& value) {
if (!value.is_string()) {
return std::nullopt;
}
return IPAddress::FromIPLiteral(value.GetString());
}
// static
std::optional<IPAddress> IPAddress::FromIPLiteral(std::string_view ip_literal) {
IPAddress address;
if (!address.AssignFromIPLiteral(ip_literal)) {
return std::nullopt;
}
DCHECK(address.IsValid());
return address;
}
bool IPAddress::IsPubliclyRoutable() const {
if (IsIPv4()) {
return IsPubliclyRoutableIPv4(ip_address_);
} else if (IsIPv6()) {
return IsPubliclyRoutableIPv6(ip_address_);
}
return true;
}
bool IPAddress::IsZero() const {
for (auto x : ip_address_) {
if (x != 0)
return false;
}
return !empty();
}
bool IPAddress::IsIPv4MappedIPv6() const {
return IsIPv6() && IPAddressStartsWith(*this, kIPv4MappedPrefix);
}
bool IPAddress::IsLoopback() const {
// 127.0.0.1/8
if (IsIPv4())
return ip_address_[0] == 127;
// ::1
if (IsIPv6()) {
for (size_t i = 0; i + 1 < ip_address_.size(); ++i) {
if (ip_address_[i] != 0)
return false;
}
return ip_address_.back() == 1;
}
return false;
}
bool IPAddress::IsLinkLocal() const {
// 169.254.0.0/16
if (IsIPv4())
return (ip_address_[0] == 169) && (ip_address_[1] == 254);
// [::ffff:169.254.0.0]/112
if (IsIPv4MappedIPv6())
return (ip_address_[12] == 169) && (ip_address_[13] == 254);
// [fe80::]/10
if (IsIPv6())
return (ip_address_[0] == 0xFE) && ((ip_address_[1] & 0xC0) == 0x80);
return false;
}
bool IPAddress::IsUniqueLocalIPv6() const {
// [fc00::]/7
return IsIPv6() && ((ip_address_[0] & 0xFE) == 0xFC);
}
std::vector<uint8_t> IPAddress::CopyBytesToVector() const {
return std::vector<uint8_t>(ip_address_.begin(), ip_address_.end());
}
// static
IPAddress IPAddress::IPv4Localhost() {
static const uint8_t kLocalhostIPv4[] = {127, 0, 0, 1};
return IPAddress(kLocalhostIPv4);
}
// static
IPAddress IPAddress::IPv6Localhost() {
static const uint8_t kLocalhostIPv6[] = {0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1};
return IPAddress(kLocalhostIPv6);
}
// static
IPAddress IPAddress::AllZeros(size_t num_zero_bytes) {
CHECK_LE(num_zero_bytes, 16u);
IPAddress result;
for (size_t i = 0; i < num_zero_bytes; ++i)
result.ip_address_.push_back(0u);
return result;
}
// static
IPAddress IPAddress::IPv4AllZeros() {
return AllZeros(kIPv4AddressSize);
}
// static
IPAddress IPAddress::IPv6AllZeros() {
return AllZeros(kIPv6AddressSize);
}
// static
bool IPAddress::CreateIPv4Mask(IPAddress* ip_address,
size_t mask_prefix_length) {
return CreateIPMask(&(ip_address->ip_address_), mask_prefix_length,
kIPv4AddressSize);
}
// static
bool IPAddress::CreateIPv6Mask(IPAddress* ip_address,
size_t mask_prefix_length) {
return CreateIPMask(&(ip_address->ip_address_), mask_prefix_length,
kIPv6AddressSize);
}
bool IPAddress::operator==(const IPAddress& that) const {
return ip_address_ == that.ip_address_;
}
bool IPAddress::operator!=(const IPAddress& that) const {
return ip_address_ != that.ip_address_;
}
bool IPAddress::operator<(const IPAddress& that) const {
// Sort IPv4 before IPv6.
if (ip_address_.size() != that.ip_address_.size()) {
return ip_address_.size() < that.ip_address_.size();
}
return ip_address_ < that.ip_address_;
}
std::string IPAddress::ToString() const {
std::string str;
url::StdStringCanonOutput output(&str);
if (IsIPv4()) {
url::AppendIPv4Address(ip_address_.span().data(), &output);
} else if (IsIPv6()) {
url::AppendIPv6Address(ip_address_.span().data(), &output);
}
output.Complete();
return str;
}
base::Value IPAddress::ToValue() const {
DCHECK(IsValid());
return base::Value(ToString());
}
size_t IPAddress::EstimateMemoryUsage() const {
return base::trace_event::EstimateMemoryUsage(ip_address_);
}
std::string IPAddressToStringWithPort(const IPAddress& address, uint16_t port) {
std::string address_str = address.ToString();
if (address_str.empty())
return address_str;
if (address.IsIPv6()) {
// Need to bracket IPv6 addresses since they contain colons.
return base::StringPrintf("[%s]:%d", address_str.c_str(), port);
}
return base::StringPrintf("%s:%d", address_str.c_str(), port);
}
IPAddress ConvertIPv4ToIPv4MappedIPv6(const IPAddress& address) {
CHECK(address.IsIPv4());
// IPv4-mapped addresses are formed by:
// <80 bits of zeros> + <16 bits of ones> + <32-bit IPv4 address>.
IPAddressBytes bytes;
bytes.Append(kIPv4MappedPrefix);
bytes.Append(address.bytes());
return IPAddress(bytes);
}
IPAddress ConvertIPv4MappedIPv6ToIPv4(const IPAddress& address) {
CHECK(address.IsIPv4MappedIPv6());
return IPAddress(
address.bytes().span().subspan(std::size(kIPv4MappedPrefix)));
}
bool IPAddressMatchesPrefix(const IPAddress& ip_address,
const IPAddress& ip_prefix,
size_t prefix_length_in_bits) {
// Both the input IP address and the prefix IP address should be either IPv4
// or IPv6.
CHECK(ip_address.IsValid());
CHECK(ip_prefix.IsValid());
CHECK_LE(prefix_length_in_bits, ip_prefix.size() * 8);
// In case we have an IPv6 / IPv4 mismatch, convert the IPv4 addresses to
// IPv6 addresses in order to do the comparison.
if (ip_address.size() != ip_prefix.size()) {
if (ip_address.IsIPv4()) {
return IPAddressMatchesPrefix(ConvertIPv4ToIPv4MappedIPv6(ip_address),
ip_prefix, prefix_length_in_bits);
}
return IPAddressMatchesPrefix(ip_address,
ConvertIPv4ToIPv4MappedIPv6(ip_prefix),
96 + prefix_length_in_bits);
}
return IPAddressPrefixCheck(ip_address.bytes(), ip_prefix.bytes().span(),
prefix_length_in_bits);
}
bool ParseCIDRBlock(std::string_view cidr_literal,
IPAddress* ip_address,
size_t* prefix_length_in_bits) {
// We expect CIDR notation to match one of these two templates:
// <IPv4-literal> "/" <number of bits>
// <IPv6-literal> "/" <number of bits>
std::vector<std::string_view> parts = base::SplitStringPiece(
cidr_literal, "/", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
if (parts.size() != 2)
return false;
// Parse the IP address.
if (!ip_address->AssignFromIPLiteral(parts[0]))
return false;
// Parse the prefix length.
uint32_t number_of_bits;
if (!ParseUint32(parts[1], ParseIntFormat::NON_NEGATIVE, &number_of_bits)) {
return false;
}
// Make sure the prefix length is in a valid range.
if (number_of_bits > ip_address->size() * 8)
return false;
*prefix_length_in_bits = number_of_bits;
return true;
}
bool ParseURLHostnameToAddress(std::string_view hostname,
IPAddress* ip_address) {
if (hostname.size() >= 2 && hostname.front() == '[' &&
hostname.back() == ']') {
// Strip the square brackets that surround IPv6 literals.
auto ip_literal = std::string_view(hostname).substr(1, hostname.size() - 2);
return ip_address->AssignFromIPLiteral(ip_literal) && ip_address->IsIPv6();
}
return ip_address->AssignFromIPLiteral(hostname) && ip_address->IsIPv4();
}
size_t CommonPrefixLength(const IPAddress& a1, const IPAddress& a2) {
DCHECK_EQ(a1.size(), a2.size());
for (size_t i = 0; i < a1.size(); ++i) {
unsigned diff = a1.bytes()[i] ^ a2.bytes()[i];
if (!diff)
continue;
for (unsigned j = 0; j < CHAR_BIT; ++j) {
if (diff & (1 << (CHAR_BIT - 1)))
return i * CHAR_BIT + j;
diff <<= 1;
}
NOTREACHED();
}
return a1.size() * CHAR_BIT;
}
size_t MaskPrefixLength(const IPAddress& mask) {
IPAddressBytes all_ones;
all_ones.Resize(mask.size());
std::ranges::fill(all_ones.span(), 0xFF);
return CommonPrefixLength(mask, IPAddress(all_ones));
}
Dns64PrefixLength ExtractPref64FromIpv4onlyArpaAAAA(const IPAddress& address) {
DCHECK(address.IsIPv6());
IPAddress ipv4onlyarpa0(192, 0, 0, 170);
IPAddress ipv4onlyarpa1(192, 0, 0, 171);
auto span = base::span(address.bytes());
if (std::ranges::equal(ipv4onlyarpa0.bytes(), span.subspan(12u)) ||
std::ranges::equal(ipv4onlyarpa1.bytes(), span.subspan(12u))) {
return Dns64PrefixLength::k96bit;
}
if (std::ranges::equal(ipv4onlyarpa0.bytes(), span.subspan(9u, 4u)) ||
std::ranges::equal(ipv4onlyarpa1.bytes(), span.subspan(9u, 4u))) {
return Dns64PrefixLength::k64bit;
}
IPAddressBytes ipv4;
ipv4.Append(span.subspan(7u, 1u));
ipv4.Append(span.subspan(9u, 3u));
if (std::ranges::equal(ipv4onlyarpa0.bytes(), ipv4) ||
std::ranges::equal(ipv4onlyarpa1.bytes(), ipv4)) {
return Dns64PrefixLength::k56bit;
}
ipv4 = IPAddressBytes();
ipv4.Append(span.subspan(6u, 2u));
ipv4.Append(span.subspan(9u, 2u));
if (std::ranges::equal(ipv4onlyarpa0.bytes(), ipv4) ||
std::ranges::equal(ipv4onlyarpa1.bytes(), ipv4)) {
return Dns64PrefixLength::k48bit;
}
ipv4 = IPAddressBytes();
ipv4.Append(span.subspan(5u, 3u));
ipv4.Append(span.subspan(9u, 1u));
if (std::ranges::equal(ipv4onlyarpa0.bytes(), ipv4) ||
std::ranges::equal(ipv4onlyarpa1.bytes(), ipv4)) {
return Dns64PrefixLength::k40bit;
}
if (std::ranges::equal(ipv4onlyarpa0.bytes(), span.subspan(4u, 4u)) ||
std::ranges::equal(ipv4onlyarpa1.bytes(), span.subspan(4u, 4u))) {
return Dns64PrefixLength::k32bit;
}
// if ipv4onlyarpa address is not found return 0
return Dns64PrefixLength::kInvalid;
}
IPAddress ConvertIPv4ToIPv4EmbeddedIPv6(const IPAddress& ipv4_address,
const IPAddress& ipv6_address,
Dns64PrefixLength prefix_length) {
DCHECK(ipv4_address.IsIPv4());
DCHECK(ipv6_address.IsIPv6());
IPAddressBytes bytes;
constexpr uint8_t kZeroBits[8] = {0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00};
switch (prefix_length) {
case Dns64PrefixLength::k96bit:
bytes.Append(base::span(ipv6_address.bytes()).first(12u));
bytes.Append(ipv4_address.bytes());
return IPAddress(bytes);
case Dns64PrefixLength::k64bit:
bytes.Append(base::span(ipv6_address.bytes()).first(8u));
bytes.Append(base::span(kZeroBits).first(1u));
bytes.Append(ipv4_address.bytes());
bytes.Append(base::span(kZeroBits).first(3u));
return IPAddress(bytes);
case Dns64PrefixLength::k56bit: {
bytes.Append(base::span(ipv6_address.bytes()).first(7u));
auto [first, second] = base::span(ipv4_address.bytes()).split_at(1u);
bytes.Append(first);
bytes.Append(base::span(kZeroBits).first(1u));
bytes.Append(second);
bytes.Append(base::span(kZeroBits).first(4u));
return IPAddress(bytes);
}
case Dns64PrefixLength::k48bit: {
bytes.Append(base::span(ipv6_address.bytes()).first(6u));
auto [first, second] = base::span(ipv4_address.bytes()).split_at(2u);
bytes.Append(first);
bytes.Append(base::span(kZeroBits).first(1u));
bytes.Append(second);
bytes.Append(base::span(kZeroBits).first(5u));
return IPAddress(bytes);
}
case Dns64PrefixLength::k40bit: {
bytes.Append(base::span(ipv6_address.bytes()).first(5u));
auto [first, second] = base::span(ipv4_address.bytes()).split_at(3u);
bytes.Append(first);
bytes.Append(base::span(kZeroBits).first(1u));
bytes.Append(second);
bytes.Append(base::span(kZeroBits).first(6u));
return IPAddress(bytes);
}
case Dns64PrefixLength::k32bit:
bytes.Append(base::span(ipv6_address.bytes()).first(4u));
bytes.Append(ipv4_address.bytes());
bytes.Append(base::span(kZeroBits).first(8u));
return IPAddress(bytes);
case Dns64PrefixLength::kInvalid:
return ipv4_address;
}
}
} // namespace net
|