File: pickle_traits.h

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (630 lines) | stat: -rw-r--r-- 23,741 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Implementation of serialization and deserialization for common types, and
// extension points for supporting serialization for additional types.

// Common serialization formats in Chrome:
//  - base::Pickle is fast, produces compact output, but has zero
//  interoperability. No intrinsic support for forwards/backwards compatibility.
//  Corruption that affects size fields will generally be detected and safely
//  rejected. Other kinds of corruption will result in a valid instance of the
//  data type with corrupted data. There are two systems to extend base::Pickle
//  to handle new types: this one, and IPC::ParamTraits.
//  - Mojo provides an undiscoverable serialization facility for Mojo types.
//  This has similar performance and interoperability characteristics to
//  base::Pickle, but is safer and easier to use. However, code in //net cannot
//  depend on Mojo.
//  - protobuf: slow, compact output, good interoperability. Excellent support
//  for forwards/backwards compatibility. Very large impact on binary size due
//  to generated code. Corruption may be silently ignored, detected and
//  rejected, or give corrupted data.
//  - JSON (base::Value, etc.) is very slow, very large output, excellent
//  interoperability. Usually straightforward to implement forwards/backwards
//  compatibility. Corruption may be detected or produce corrupt data.
//  - SQLite is not actually a serialization format, but is often used for
//  persistence. It is moderately slow due to the need to round-trip through
//  SQL. Good tool availability. Good support for forwards/backwards
//  compatibility. Resistant to disk corruption, but needs a recovery path that
//  recreates an empty database.
//  - Structured headers should be used for HTTP headers.

#ifndef NET_BASE_PICKLE_TRAITS_H_
#define NET_BASE_PICKLE_TRAITS_H_

#include <stddef.h>

#include <concepts>
#include <optional>
#include <ranges>
#include <tuple>
#include <type_traits>
#include <utility>

#include "base/bits.h"
#include "base/containers/span.h"
#include "base/pickle.h"

namespace net {

// To make a type serializable by WriteToPickle and deserializable by
// ReadValueFromPickle, add a specialization of PickleTraits with a Serialize
// method that takes a base::Pickle and a value, and a Deserialize method that
// takes a base::PickleIterator and returns the deserialized value wrapped in
// std::optional, or std::nullopt if the input pickle was invalid.
//
// If the type to be deserialized can be completely reproduced by a call to the
// constructor, it is simple to use ReadValuesFromPickle for deserialization.
//
// For example, suppose your type is:
//
//   class MyHostPortPair {
//    public:
//     MyHostPortPair(std::string_view host, uint16_t port);
//
//     const std::string& host() const { return host_; }
//     uint16_t port() const { return port_; }
//
//    private:
//     std::string host_;
//     uint16_t port_;
//   };
//
// Then you can make it serializable with:
//
//   template <>
//   struct PickleTraits<MyHostPortPair> {
//     static void Serialize(base::Pickle& pickle, const MyHostPortPair& value)
//     {
//       WriteToPickle(pickle, value.host(), value.port());
//     }
//
//     static std::optional<MyHostPortPair>
//     Deserialize(base::PickleIterator& iter) {
//       auto result = ReadValuesFromPickle<std::string, uint16_t>(iter);
//       if (!result) {
//         return std::nullopt;
//       }
//
//       // Perform any additional validation of `host` and `port`and return
//       // std::nullopt if invalid.
//       if (host.empty()) {
//         return std::nullopt;
//       }
//
//       auto [host, port] = std::move(result).value();
//       return MyHostPortPair(host, port);
//     }
//   };
//
// If the state of your type cannot be reconstructed by a constructor call, it
// is probably easier to use ReadPickleInto. For example, suppose your class
// looks like this:
//
//   class MyHeaders {
//    public:
//     MyHeaders();
//
//     void Add(std::string_view name, std::string_view value);
//
//    private:
//     std::vector<std::pair<std::string, std::string>> headers_;
//   };
//
// In the private section, add:
//
//     friend struct PickleTraits<MyHeaders>;
//
// Then you can make it serializable with:
//
//   template <>
//   struct PickleTraits<MyHeaders> {
//     static void Serialize(base::Pickle& pickle, const MyHeaders& value) {
//       WriteToPickle(pickle, value.headers_);
//     }
//
//     static std::optional<MyHeaders> Deserialize(base::PickleIterator& iter) {
//       MyHeaders headers;
//       if (!ReadPickleInto(iter, headers.headers_)) {
//         return std::nullopt;
//       }
//       // Perform any additional validation of `headers_` and return
//       // std::nullopt if invalid.
//       if (std::ranges::any_of(
//               headers.headers_,
//               [](std::string_view name) { return name.empty(); },
//               &std::pair<std::string, std::string>::first)) {
//         return std::nullopt;
//       }
//
//       return headers;
//     }
//
//     static size_t PickleSize(const MyHeaders& value) {
//       return EstimatePickleSize(value.headers_);
//     }
//   };
//
// Providing an implementation of PickleSize() is optional, but will permit the
// right amount of memory to be allocated for the Pickle in advance. It is
// particularly useful for types that will be placed in containers.
//
// There's no need to provide a specialization for "const T" as the const will
// always be removed before looking up a PickleTraits specialization.
//
// Simple structs containing only types for which kPickleAsBytes is true and
// which have no padding bytes can be serialized by copying the underlying
// bytes. This is very fast, particularly when stored in a vector. Beware that
// this may give different results from serializing the members individually, so
// you have to make the choice before serializing anything in production. Also,
// there is no way to verify that the result verifies the constraints for the
// type, so it is only suitable for plain old data.
//
// Suppose you have a struct like this:
//
//   struct MyHttpVersion {
//     uint16_t major;
//     uint16_t minor;
//   };
//
// Then you can make it serializable with:
//
//   template <>
//   constexpr bool kPickleAsBytes<MyHttpVersion> = true;
//
// The declarations to serialize a type should always appear in the same header
// file as the type itself, to ensure that it is always serialized and
// deserialized consistently.

//

// Main implementation of serialization and deserialization, and customization
// point for types to add their own serialization. Types are not serializable by
// default.
template <typename T>
struct PickleTraits {};

// This is automatically set to true for built-in integer types. It can be
// specialized to true for structs of integer types. Some mistaken usage can be
// caught by the compiler, for example using on a struct with padding. But other
// kinds, like using on a struct containing pointers will not be automatically
// caught, so use with care.
template <typename T>
constexpr inline bool kPickleAsBytes = false;

// This is useful in implementations of PickleTraits::PickleSize().
// For many types, the size is known at compile time, so use constexpr to help
// the compiler optimize those cases.
template <typename T>
constexpr size_t EstimatePickleSize(const T& value);

// Multiple-value version for predicting the size of WriteToPickle().
template <typename... Args>
  requires(sizeof...(Args) > 1u)
constexpr size_t EstimatePickleSize(const Args&... args);

namespace internal {

// CanSerialize and CanDeserialize are used to determine whether a type can be
// serialized or deserialized. They work by literally checking whether the
// PickleTraits<T>::Serialize and PickleTraits<T>::Deserialize methods are
// callable. As a result, they will give the wrong answer if you try to use them
// on the type you're currently defining PickleTraits for.
template <typename T>
concept CanSerialize = requires(base::Pickle& pickle, const T& value) {
  PickleTraits<std::remove_const_t<T>>::Serialize(pickle, value);
};
template <typename T>
concept CanDeserialize = requires(base::PickleIterator& iter) {
  PickleTraits<std::remove_const_t<T>>::Deserialize(iter);
};

template <typename T>
concept CanSerializeDeserialize = CanSerialize<T> && CanDeserialize<T>;

// These types can be implicitly converted to char and back without loss of
// precision. This permits highly efficient deserialization of contiguous
// containers of these types.
template <typename T>
concept IsCharLike = std::same_as<T, char> || std::same_as<T, uint8_t> ||
                     std::same_as<T, int8_t>;

// A shorthand for the type a range contains.
template <typename T>
using ValueType = std::ranges::range_value_t<T>;

// True for std::string, std::vector<uint8_t>, etc.
template <typename T>
concept IsConstructableFromCharLikeIteratorPair =
    IsCharLike<ValueType<T>> &&
    std::constructible_from<T, const char*, const char*>;

// True for std::u16string, std::vector<int>, etc.
template <typename T>
concept CanResizeAndCopyFromBytes =
    std::ranges::contiguous_range<T> && kPickleAsBytes<ValueType<T>> &&
    std::default_initializable<T> &&
    requires(T t, size_t size, base::span<const uint8_t> byte_span) {
      t.resize(size);
      base::as_writable_byte_span(t).copy_from(byte_span);
    };

// True for std::vector and similar containers.
template <typename T>
concept IsReserveAndPushBackable =
    std::default_initializable<T> &&
    requires(T t, size_t size, const ValueType<T>& value) {
      t.reserve(size);
      t.push_back(value);
    };

// True for std::list, std::map, std::unordered_set, base::flat_set, etc.
template <typename T>
concept IsInsertAtEndable =
    std::default_initializable<T> &&
    requires(T t, const ValueType<T>& value) { t.insert(t.end(), value); };

// We only consider a range serializable if we know a way to deserialize it.
template <typename T>
concept IsSerializableRange =
    std::ranges::sized_range<T> && CanSerializeDeserialize<ValueType<T>> &&
    (IsConstructableFromCharLikeIteratorPair<T> ||
     CanResizeAndCopyFromBytes<T> || IsReserveAndPushBackable<T> ||
     IsInsertAtEndable<T>);

// True for std::tuple, std::pair and std::array.
template <typename T>
constexpr inline bool kIsTupleLike = false;

// std::tuple_size_v<T> does not work here. Clang refuses to ignore the error
// for non-tuple types.
template <typename T>
  requires std::same_as<decltype(std::tuple_size<T>::value), const size_t>
constexpr inline bool kIsTupleLike<T> = true;

// CanSerializeDeserializeTuple is implemented using a consteval function to
// make convenient use of std::index_sequence.
template <typename TupleLike, size_t... I>
  requires(kIsTupleLike<TupleLike> &&
           std::tuple_size_v<TupleLike> == sizeof...(I))
consteval bool CanSerializeDeserializeTupleImpl(std::index_sequence<I...>) {
  return (CanSerializeDeserialize<std::tuple_element_t<I, TupleLike>> && ...);
}

template <typename TupleLike>
  requires kIsTupleLike<TupleLike>
consteval bool CanSerializeDeserializeTupleImpl() {
  return CanSerializeDeserializeTupleImpl<TupleLike>(
      std::make_index_sequence<std::tuple_size_v<TupleLike>>());
}

// A tuple-like type is serializable if all of its elements are serializable.
template <typename TupleLike>
concept CanSerializeDeserializeTuple =
    CanSerializeDeserializeTupleImpl<TupleLike>();

// Convenient shortcut when implementing PickleTraits::PickleSize().
// base::Pickle aligns everything to 32-bit boundaries, so we need to round up
// to a multiple of 4 when calculating how big something will be. See
// base::Pickle::ClaimUninitializedBytesInternal().
constexpr size_t RoundUp(size_t size) {
  return base::bits::AlignUp(size, sizeof(uint32_t));
}

}  // namespace internal

template <typename T>
constexpr size_t EstimatePickleSize(const T& value) {
  if constexpr (requires {
                  {
                    PickleTraits<T>::PickleSize(value)
                  } -> std::same_as<size_t>;
                }) {
    return PickleTraits<T>::PickleSize(value);
  } else {
    return internal::RoundUp(1);  // Everything is padded to at least 4 bytes.
  }
}

template <typename... Args>
  requires(sizeof...(Args) > 1u)
constexpr size_t EstimatePickleSize(const Args&... args) {
  return (EstimatePickleSize(args) + ...);
}

// These are defined in //net/base/pickle.h, but also declared here so that we
// can reference them in non-dependant contexts.
template <typename... Args>
  requires(internal::CanSerialize<Args> && ...)
void WriteToPickle(base::Pickle& pickle, const Args&... args);

template <typename T>
  requires(internal::CanDeserialize<T>)
std::optional<T> ReadValueFromPickle(base::PickleIterator& iter);

// Built-in non-pointer types can be copied if they have unique representations.
// has_unique_object_representations_v is true for bool and enums but it is not
// safe to deserialize them by copying so specifically exclude them. Exclude
// pointers since we shouldn't ever serialize them. Can be specialized to true
// for structs that contain only types for which kCopyAsBytes is true and which
// have no padding bytes.
template <typename T>
  requires(std::has_unique_object_representations_v<T> &&
           std::is_trivially_destructible_v<T> &&
           std::is_trivially_default_constructible_v<T> &&
           !std::is_aggregate_v<T> && !std::is_pointer_v<T> &&
           !std::is_member_pointer_v<T> && !std::is_enum_v<T> &&
           !std::same_as<T, bool>)
constexpr inline bool kPickleAsBytes<T> = true;

// Implementation of PickleTraits for types for which kPickleAsBytes is true,
// including all built-in integer types.
template <typename T>
  requires(kPickleAsBytes<T> && !std::is_const_v<T>)
struct PickleTraits<T> {
  static void Serialize(base::Pickle& pickle, const T& value) {
    // These are intentionally static_asserts rather than requirements to avoid
    // hiding cases where kPickleAsBytes is set incorrectly.
    static_assert(std::has_unique_object_representations_v<T>,
                  "do not set kPickleAsBytes for types where byte equality "
                  "isn't identical to object equality");
    static_assert(std::is_trivially_destructible_v<T>,
                  "do not set kPickleAsBytes for types that are not trivially "
                  "destructible");
    static_assert(std::is_trivially_default_constructible_v<T>,
                  "do not set kPickleAsBytes for types that are not trivially "
                  "default constructible");
    pickle.WriteBytes(base::byte_span_from_ref(value));
  }

  static std::optional<T> Deserialize(base::PickleIterator& iter) {
    static_assert(std::has_unique_object_representations_v<T>,
                  "do not set kPickleAsBytes for types where byte equality "
                  "isn't identical to object equality");
    static_assert(std::is_trivially_destructible_v<T>,
                  "do not set kPickleAsBytes for types that are not trivially "
                  "destructible");
    static_assert(std::is_trivially_default_constructible_v<T>,
                  "do not set kPickleAsBytes for types that are not trivially "
                  "default constructible");
    const char* data = nullptr;
    if (!iter.ReadBytes(&data, sizeof(T))) {
      return std::nullopt;
    }
    CHECK(data);
    T t;

    // SAFETY: The `data` pointer is guaranteed to point to at least `sizeof(T)`
    // bytes by the ReadBytes call above.
    base::byte_span_from_ref(t).copy_from(
        base::as_bytes(UNSAFE_BUFFERS(base::span(data, sizeof(T)))));
    return t;
  }

  static constexpr size_t PickleSize(const T& value) {
    return internal::RoundUp(sizeof(value));
  }
};

// Implementation of PickleTraits for standard containers and types that behave
// like them.
template <typename T>
  requires(internal::IsSerializableRange<T>)
struct PickleTraits<T> {
  using Value = internal::ValueType<T>;

  static void Serialize(base::Pickle& pickle, const T& value) {
    // Intentionally crash for containers that are too large to fit in an int.
    pickle.WriteInt(base::checked_cast<int>(value.size()));
    if constexpr (internal::CanResizeAndCopyFromBytes<T>) {
      // This handles string types and vectors of integers.
      pickle.WriteBytes(base::as_byte_span(value));
    } else {
      // This handles non-contiguous containers and values that need to be
      // written one at a time.
      for (const auto& v : value) {
        WriteToPickle(pickle, v);
      }
    }
  }

  static std::optional<T> Deserialize(base::PickleIterator& iter) {
    int size_as_int = 0;
    if (!iter.ReadInt(&size_as_int) || size_as_int < 0) {
      return std::nullopt;
    }
    // Every non-negative integer will fit in a size_t.
    const size_t size = static_cast<size_t>(size_as_int);
    if (size > iter.RemainingBytes()) {
      // Every item in the container must consume at least 1 byte, so this size
      // cannot possibly be correct.
      return std::nullopt;
    }
    if constexpr (internal::IsConstructableFromCharLikeIteratorPair<T>) {
      // Highly efficient path for std::string, std::vector<uint8_t>, etc.
      const char* data = nullptr;
      static_assert(sizeof(Value) == 1);
      if (!iter.ReadBytes(&data, size)) {
        return std::nullopt;
      }
      CHECK(data);
      // SAFETY: The `data` pointer is guaranteed to point to at least `size`
      // bytes by the ReadBytes call above.
      return T(data, UNSAFE_BUFFERS(data + size));
    } else if constexpr (internal::CanResizeAndCopyFromBytes<T>) {
      // Slightly less efficient path for std::u16string, std::vector<int>, etc.
      T t;
      t.resize(size);  // Pointlessly zero-fills the container, but avoids UB.
      const char* data = nullptr;
      const size_t size_in_bytes = size * sizeof(Value);
      if (!iter.ReadBytes(&data, size_in_bytes)) {
        return std::nullopt;
      }
      CHECK(data);
      // SAFETY: The `data` pointer is guaranteed to point to at least
      // `size_in_bytes` bytes by the ReadBytes call above.
      base::as_writable_byte_span(t).copy_from(
          base::as_bytes(UNSAFE_BUFFERS(base::span(data, size_in_bytes))));
      return t;
    } else if constexpr (internal::IsReserveAndPushBackable<T>) {
      // Slower path for vectors of types that have non-trivial deserialization
      // semantics. Also works for vector-like types like absl::InlinedVector.
      T t;
      t.reserve(size);
      for (size_t i = 0; i < size; ++i) {
        auto maybe_v = ReadValueFromPickle<Value>(iter);
        if (!maybe_v) {
          return std::nullopt;
        }
        t.push_back(std::move(maybe_v).value());
      }
      return t;
    } else {
      // std::list, std::map, std::unordered_set, base::flat_set, etc.
      static_assert(internal::IsInsertAtEndable<T>);
      T t;
      for (size_t i = 0; i < size; ++i) {
        auto maybe_v = ReadValueFromPickle<Value>(iter);
        if (!maybe_v) {
          return std::nullopt;
        }
        t.insert(t.end(), std::move(maybe_v).value());
      }
      return t;
    }
  }

  static constexpr size_t PickleSize(const T& value) {
    if constexpr (internal::CanResizeAndCopyFromBytes<T>) {
      return internal::RoundUp(value.size() * sizeof(Value)) + sizeof(int);
    } else {
      size_t size = sizeof(int);
      for (const auto& v : value) {
        // If the elements of the container are containers, each one may be a
        // different size. If not, the compiler should optimize this down to a
        // multiplication.
        size += EstimatePickleSize(v);
      }
      return size;
    }
  }
};

// Tuple-like types like std::tuple and std::pair.
template <typename T>
  requires internal::CanSerializeDeserializeTuple<T>
struct PickleTraits<T> {
  static void Serialize(base::Pickle& pickle, const T& value) {
    SerializeImpl(pickle, value, kIndexSequence);
  }

  static std::optional<T> Deserialize(base::PickleIterator& iter) {
    return DeserializeImpl(iter, kIndexSequence);
  }

  static constexpr size_t PickleSize(const T& value) {
    return PickleSizeImpl(value, kIndexSequence);
  }

 private:
  template <size_t I>
  using ElementType = std::tuple_element_t<I, T>;

  template <size_t... I>
  static void SerializeImpl(base::Pickle& pickle,
                            const T& value,
                            std::index_sequence<I...>) {
    (WriteToPickle(pickle, std::get<I>(value)), ...);
  }

  template <size_t... I>
  static std::optional<T> DeserializeImpl(base::PickleIterator& iter,
                                          std::index_sequence<I...>) {
    // This is tricky. We cannot expand the template pack directly into the
    // parameters of std::make_tuple() because parameter evaluation order is
    // different on Windows and Linux, and ReadValueFromPickle() has the
    // side-effect of advancing the iterator so order matters. However,
    // initializer elements are guaranteed to be evaluated in order, so we can
    // safely use initializer syntax.
    using TupleOfOptionals = std::tuple<std::optional<ElementType<I>>...>;
    TupleOfOptionals tuple_of_optionals = {
        ReadValueFromPickle<ElementType<I>>(iter)...};
    if (!(std::get<I>(tuple_of_optionals).has_value() && ...)) {
      return std::nullopt;
    }
    return T(std::move(std::get<I>(tuple_of_optionals)).value()...);
  }

  template <size_t... I>
  static constexpr size_t PickleSizeImpl(const T& value,
                                         std::index_sequence<I...>) {
    return (EstimatePickleSize(std::get<I>(value)) + ...);
  }

  static constexpr std::make_index_sequence<std::tuple_size_v<T>>
      kIndexSequence;
};

// bool is treated specially by base::Pickle.
template <>
struct PickleTraits<bool> {
  static void Serialize(base::Pickle& pickle, bool value) {
    pickle.WriteBool(value);
  }

  static std::optional<bool> Deserialize(base::PickleIterator& iter) {
    bool b;
    if (!iter.ReadBool(&b)) {
      return std::nullopt;
    }
    return b;
  }

  static constexpr size_t PickleSize(bool value) {
    return internal::RoundUp(1);
  }
};

template <typename T>
  requires(internal::CanSerializeDeserialize<std::remove_const_t<T>>)
struct PickleTraits<std::optional<T>> {
  static void Serialize(base::Pickle& pickle, std::optional<T> value) {
    // Write as `uint8_t` to match Deserialize().
    WriteToPickle(pickle, static_cast<uint8_t>(value.has_value()));
    if (value.has_value()) {
      WriteToPickle(pickle, *value);
    }
  }

  static std::optional<std::optional<T>> Deserialize(
      base::PickleIterator& iter) {
    auto maybe_has_value = ReadValueFromPickle<uint8_t>(iter);
    if (!maybe_has_value) {
      return std::nullopt;
    }

    uint8_t has_value = maybe_has_value.value();
    // This is more strict than base::PickleIterator::ReadBool() as it is useful
    // to notice data corruption.
    if (has_value != 0 && has_value != 1) {
      return std::nullopt;
    }

    if (!has_value) {
      // Use the default constructor instead of std::nullopt to avoid confusion.
      return std::optional<T>();
    }

    return ReadValueFromPickle<T>(iter);
  }

  static constexpr size_t PickleSize(const std::optional<T>& value) {
    return EstimatePickleSize(value.has_value()) +
           (value.has_value() ? EstimatePickleSize(value.value()) : 0u);
  }
};

}  // namespace net

#endif  // NET_BASE_PICKLE_TRAITS_H_