1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cert/cert_verify_proc.h"
#include <stdint.h>
#include <algorithm>
#include <optional>
#include <string_view>
#include "base/containers/flat_set.h"
#include "base/containers/span.h"
#include "base/memory/raw_span.h"
#include "base/metrics/histogram.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/notreached.h"
#include "base/strings/strcat.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/threading/scoped_blocking_call.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "crypto/crypto_buildflags.h"
#include "crypto/sha2.h"
#include "net/base/cronet_buildflags.h"
#include "net/base/features.h"
#include "net/base/net_errors.h"
#include "net/base/registry_controlled_domains/registry_controlled_domain.h"
#include "net/base/url_util.h"
#include "net/cert/asn1_util.h"
#include "net/cert/cert_net_fetcher.h"
#include "net/cert/cert_status_flags.h"
#include "net/cert/cert_verifier.h"
#include "net/cert/cert_verify_result.h"
#include "net/cert/crl_set.h"
#include "net/cert/internal/revocation_checker.h"
#include "net/cert/internal/system_trust_store.h"
#include "net/cert/known_roots.h"
#include "net/cert/x509_certificate.h"
#include "net/cert/x509_certificate_net_log_param.h"
#include "net/cert/x509_util.h"
#include "net/log/net_log_event_type.h"
#include "net/log/net_log_values.h"
#include "net/log/net_log_with_source.h"
#include "third_party/boringssl/src/include/openssl/pki/ocsp.h"
#include "third_party/boringssl/src/include/openssl/pool.h"
#include "third_party/boringssl/src/pki/encode_values.h"
#include "third_party/boringssl/src/pki/extended_key_usage.h"
#include "third_party/boringssl/src/pki/ocsp.h"
#include "third_party/boringssl/src/pki/parse_certificate.h"
#include "third_party/boringssl/src/pki/pem.h"
#include "third_party/boringssl/src/pki/signature_algorithm.h"
#include "url/url_canon.h"
#if BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(CHROME_ROOT_STORE_SUPPORTED)
#include "net/cert/cert_verify_proc_builtin.h"
#endif
#if BUILDFLAG(CHROME_ROOT_STORE_SUPPORTED)
#include "net/cert/internal/trust_store_chrome.h"
#endif // CHROME_ROOT_STORE_SUPPORTED
#if BUILDFLAG(IS_ANDROID)
#include "net/cert/cert_verify_proc_android.h"
#elif BUILDFLAG(IS_IOS)
#include "net/cert/cert_verify_proc_ios.h"
#endif
namespace net {
namespace {
// Constants used to build histogram names
const char kLeafCert[] = "Leaf";
const char kIntermediateCert[] = "Intermediate";
const char kRootCert[] = "Root";
// Histogram buckets for RSA key sizes, as well as unknown key types. RSA key
// sizes < 1024 bits should cause errors, while key sizes > 16K are not
// supported by BoringSSL.
const int kRsaKeySizes[] = {512, 768, 1024, 1536, 2048,
3072, 4096, 8192, 16384};
// Histogram buckets for ECDSA key sizes. The list was historically based upon
// FIPS 186-4 approved curves, but most are impossible. BoringSSL will only ever
// return P-224, P-256, P-384, or P-521, and the verifier will reject P-224.
const int kEcdsaKeySizes[] = {163, 192, 224, 233, 256, 283, 384, 409, 521, 571};
const char* CertTypeToString(X509Certificate::PublicKeyType cert_type) {
switch (cert_type) {
case X509Certificate::kPublicKeyTypeUnknown:
return "Unknown";
case X509Certificate::kPublicKeyTypeRSA:
return "RSA";
case X509Certificate::kPublicKeyTypeECDSA:
return "ECDSA";
}
NOTREACHED();
}
void RecordPublicKeyHistogram(const char* chain_position,
bool baseline_keysize_applies,
size_t size_bits,
X509Certificate::PublicKeyType cert_type) {
std::string histogram_name =
base::StringPrintf("CertificateType2.%s.%s.%s",
baseline_keysize_applies ? "BR" : "NonBR",
chain_position,
CertTypeToString(cert_type));
// Do not use UMA_HISTOGRAM_... macros here, as it caches the Histogram
// instance and thus only works if |histogram_name| is constant.
base::HistogramBase* counter = nullptr;
// Histogram buckets are contingent upon the underlying algorithm being used.
switch (cert_type) {
case X509Certificate::kPublicKeyTypeECDSA:
counter = base::CustomHistogram::FactoryGet(
histogram_name,
base::CustomHistogram::ArrayToCustomEnumRanges(kEcdsaKeySizes),
base::HistogramBase::kUmaTargetedHistogramFlag);
break;
case X509Certificate::kPublicKeyTypeRSA:
case X509Certificate::kPublicKeyTypeUnknown:
counter = base::CustomHistogram::FactoryGet(
histogram_name,
base::CustomHistogram::ArrayToCustomEnumRanges(kRsaKeySizes),
base::HistogramBase::kUmaTargetedHistogramFlag);
break;
}
counter->Add(size_bits);
}
// Returns true if |type| is |kPublicKeyTypeRSA| and if |size_bits| is < 1024.
// Note that this means there may be false negatives: keys for other algorithms
// and which are weak will pass this test.
bool IsWeakKey(X509Certificate::PublicKeyType type, size_t size_bits) {
switch (type) {
case X509Certificate::kPublicKeyTypeRSA:
return size_bits < 1024;
default:
return false;
}
}
// Returns true if |cert| contains a known-weak key. Additionally, histograms
// the observed keys for future tightening of the definition of what
// constitutes a weak key.
bool ExaminePublicKeys(const scoped_refptr<X509Certificate>& cert,
bool should_histogram) {
// The effective date of the CA/Browser Forum's Baseline Requirements -
// 2012-07-01 00:00:00 UTC.
const base::Time kBaselineEffectiveDate =
base::Time::FromInternalValue(INT64_C(12985574400000000));
// The effective date of the key size requirements from Appendix A, v1.1.5
// 2014-01-01 00:00:00 UTC.
const base::Time kBaselineKeysizeEffectiveDate =
base::Time::FromInternalValue(INT64_C(13033008000000000));
size_t size_bits = 0;
X509Certificate::PublicKeyType type = X509Certificate::kPublicKeyTypeUnknown;
bool weak_key = false;
bool baseline_keysize_applies =
cert->valid_start() >= kBaselineEffectiveDate &&
cert->valid_expiry() >= kBaselineKeysizeEffectiveDate;
X509Certificate::GetPublicKeyInfo(cert->cert_buffer(), &size_bits, &type);
if (should_histogram) {
RecordPublicKeyHistogram(kLeafCert, baseline_keysize_applies, size_bits,
type);
}
if (IsWeakKey(type, size_bits))
weak_key = true;
const std::vector<bssl::UniquePtr<CRYPTO_BUFFER>>& intermediates =
cert->intermediate_buffers();
for (size_t i = 0; i < intermediates.size(); ++i) {
X509Certificate::GetPublicKeyInfo(intermediates[i].get(), &size_bits,
&type);
if (should_histogram) {
RecordPublicKeyHistogram(
(i < intermediates.size() - 1) ? kIntermediateCert : kRootCert,
baseline_keysize_applies,
size_bits,
type);
}
if (!weak_key && IsWeakKey(type, size_bits))
weak_key = true;
}
return weak_key;
}
void BestEffortCheckOCSP(const std::string& raw_response,
const X509Certificate& certificate,
bssl::OCSPVerifyResult* verify_result) {
if (raw_response.empty()) {
*verify_result = bssl::OCSPVerifyResult();
verify_result->response_status = bssl::OCSPVerifyResult::MISSING;
return;
}
std::string_view cert_der =
x509_util::CryptoBufferAsStringPiece(certificate.cert_buffer());
// Try to get the certificate that signed |certificate|. This will run into
// problems if the CertVerifyProc implementation doesn't return the ordered
// certificates. If that happens the OCSP verification may be incorrect.
std::string_view issuer_der;
if (certificate.intermediate_buffers().empty()) {
if (X509Certificate::IsSelfSigned(certificate.cert_buffer())) {
issuer_der = cert_der;
} else {
// A valid cert chain wasn't provided.
*verify_result = bssl::OCSPVerifyResult();
return;
}
} else {
issuer_der = x509_util::CryptoBufferAsStringPiece(
certificate.intermediate_buffers().front().get());
}
verify_result->revocation_status = bssl::CheckOCSP(
raw_response, cert_der, issuer_der, base::Time::Now().ToTimeT(),
kMaxRevocationLeafUpdateAge.InSeconds(), &verify_result->response_status);
}
// Records details about the most-specific trust anchor in |hashes|, which is
// expected to be ordered with the leaf cert first and the root cert last.
// "Most-specific" refers to the case that it is not uncommon to have multiple
// potential trust anchors present in a chain, depending on the client trust
// store. For example, '1999-Root' cross-signing '2005-Root' cross-signing
// '2012-Root' cross-signing '2017-Root', then followed by intermediate and
// leaf. For purposes of assessing impact of, say, removing 1999-Root, while
// including 2017-Root as a trust anchor, then the validation should be
// counted as 2017-Root, rather than 1999-Root.
//
// This also accounts for situations in which a new CA is introduced, and
// has been cross-signed by an existing CA. Assessing impact should use the
// most-specific trust anchor, when possible.
//
// This also histograms for divergence between the root store and
// |spki_hashes| - that is, situations in which the OS methods of detecting
// a known root flag a certificate as known, but its hash is not known as part
// of the built-in list.
void RecordTrustAnchorHistogram(const HashValueVector& spki_hashes,
bool is_issued_by_known_root) {
int32_t id = 0;
for (const auto& hash : spki_hashes) {
id = GetNetTrustAnchorHistogramIdForSPKI(hash);
if (id != 0)
break;
}
base::UmaHistogramSparse("Net.Certificate.TrustAnchor.Verify", id);
// Record when a known trust anchor is not found within the chain, but the
// certificate is flagged as being from a known root (meaning a fallback to
// OS-based methods of determination).
if (id == 0) {
UMA_HISTOGRAM_BOOLEAN("Net.Certificate.TrustAnchor.VerifyOutOfDate",
is_issued_by_known_root);
}
}
// Inspects the signature algorithms in a single certificate |cert|.
//
// * Sets |verify_result->has_sha1| to true if the certificate uses SHA1.
//
// Returns false if the signature algorithm was unknown or mismatched.
[[nodiscard]] bool InspectSignatureAlgorithmForCert(
const CRYPTO_BUFFER* cert,
CertVerifyResult* verify_result) {
std::string_view cert_algorithm_sequence;
std::string_view tbs_algorithm_sequence;
// Extract the AlgorithmIdentifier SEQUENCEs
if (!asn1::ExtractSignatureAlgorithmsFromDERCert(
x509_util::CryptoBufferAsStringPiece(cert), &cert_algorithm_sequence,
&tbs_algorithm_sequence)) {
return false;
}
std::optional<bssl::SignatureAlgorithm> cert_algorithm =
bssl::ParseSignatureAlgorithm(bssl::der::Input(cert_algorithm_sequence));
std::optional<bssl::SignatureAlgorithm> tbs_algorithm =
bssl::ParseSignatureAlgorithm(bssl::der::Input(tbs_algorithm_sequence));
if (!cert_algorithm || !tbs_algorithm || *cert_algorithm != *tbs_algorithm) {
return false;
}
switch (*cert_algorithm) {
case bssl::SignatureAlgorithm::kRsaPkcs1Sha1:
case bssl::SignatureAlgorithm::kEcdsaSha1:
verify_result->has_sha1 = true;
return true; // For now.
case bssl::SignatureAlgorithm::kRsaPkcs1Sha256:
case bssl::SignatureAlgorithm::kRsaPkcs1Sha384:
case bssl::SignatureAlgorithm::kRsaPkcs1Sha512:
case bssl::SignatureAlgorithm::kEcdsaSha256:
case bssl::SignatureAlgorithm::kEcdsaSha384:
case bssl::SignatureAlgorithm::kEcdsaSha512:
case bssl::SignatureAlgorithm::kRsaPssSha256:
case bssl::SignatureAlgorithm::kRsaPssSha384:
case bssl::SignatureAlgorithm::kRsaPssSha512:
return true;
}
NOTREACHED();
}
// InspectSignatureAlgorithmsInChain() sets |verify_result->has_*| based on
// the signature algorithms used in the chain, and also checks that certificates
// don't have contradictory signature algorithms.
//
// Returns false if any signature algorithm in the chain is unknown or
// mismatched.
//
// Background:
//
// X.509 certificates contain two redundant descriptors for the signature
// algorithm; one is covered by the signature, but in order to verify the
// signature, the other signature algorithm is untrusted.
//
// RFC 5280 states that the two should be equal, in order to mitigate risk of
// signature substitution attacks, but also discourages verifiers from enforcing
// the profile of RFC 5280.
//
// System verifiers are inconsistent - some use the unsigned signature, some use
// the signed signature, and they generally do not enforce that both match. This
// creates confusion, as it's possible that the signature itself may be checked
// using algorithm A, but if subsequent consumers report the certificate
// algorithm, they may end up reporting algorithm B, which was not used to
// verify the certificate. This function enforces that the two signatures match
// in order to prevent such confusion.
[[nodiscard]] bool InspectSignatureAlgorithmsInChain(
CertVerifyResult* verify_result) {
const std::vector<bssl::UniquePtr<CRYPTO_BUFFER>>& intermediates =
verify_result->verified_cert->intermediate_buffers();
// If there are no intermediates, then the leaf is trusted or verification
// failed.
if (intermediates.empty())
return true;
DCHECK(!verify_result->has_sha1);
// Fill in hash algorithms for the leaf certificate.
if (!InspectSignatureAlgorithmForCert(
verify_result->verified_cert->cert_buffer(), verify_result)) {
return false;
}
// Fill in hash algorithms for the intermediate cerificates, excluding the
// final one (which is presumably the trust anchor; may be incorrect for
// partial chains).
for (size_t i = 0; i + 1 < intermediates.size(); ++i) {
if (!InspectSignatureAlgorithmForCert(intermediates[i].get(),
verify_result))
return false;
}
return true;
}
base::Value::Dict CertVerifyParams(X509Certificate* cert,
const std::string& hostname,
const std::string& ocsp_response,
const std::string& sct_list,
int flags,
CRLSet* crl_set) {
base::Value::Dict dict;
dict.Set("certificates", NetLogX509CertificateList(cert));
if (!ocsp_response.empty()) {
dict.Set("ocsp_response",
bssl::PEMEncode(ocsp_response, "NETLOG OCSP RESPONSE"));
}
if (!sct_list.empty()) {
dict.Set("sct_list", bssl::PEMEncode(sct_list, "NETLOG SCT LIST"));
}
dict.Set("host", NetLogStringValue(hostname));
dict.Set("verify_flags", flags);
dict.Set("crlset_sequence", NetLogNumberValue(crl_set->sequence()));
if (crl_set->IsExpired())
dict.Set("crlset_is_expired", true);
return dict;
}
} // namespace
#if !(BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(CHROME_ROOT_STORE_ONLY))
// static
scoped_refptr<CertVerifyProc> CertVerifyProc::CreateSystemVerifyProc(
scoped_refptr<CertNetFetcher> cert_net_fetcher,
scoped_refptr<CRLSet> crl_set) {
#if BUILDFLAG(IS_ANDROID)
return base::MakeRefCounted<CertVerifyProcAndroid>(
std::move(cert_net_fetcher), std::move(crl_set));
#elif BUILDFLAG(IS_IOS)
return base::MakeRefCounted<CertVerifyProcIOS>(std::move(crl_set));
#else
#error Unsupported platform
#endif
}
#endif
#if BUILDFLAG(IS_FUCHSIA)
// static
scoped_refptr<CertVerifyProc> CertVerifyProc::CreateBuiltinVerifyProc(
scoped_refptr<CertNetFetcher> cert_net_fetcher,
scoped_refptr<CRLSet> crl_set,
std::unique_ptr<CTVerifier> ct_verifier,
scoped_refptr<CTPolicyEnforcer> ct_policy_enforcer,
const InstanceParams instance_params,
std::optional<network_time::TimeTracker> time_tracker) {
return CreateCertVerifyProcBuiltin(
std::move(cert_net_fetcher), std::move(crl_set), std::move(ct_verifier),
std::move(ct_policy_enforcer), CreateSslSystemTrustStore(),
instance_params, std::move(time_tracker));
}
#endif
#if BUILDFLAG(CHROME_ROOT_STORE_SUPPORTED)
// static
scoped_refptr<CertVerifyProc> CertVerifyProc::CreateBuiltinWithChromeRootStore(
scoped_refptr<CertNetFetcher> cert_net_fetcher,
scoped_refptr<CRLSet> crl_set,
std::unique_ptr<CTVerifier> ct_verifier,
scoped_refptr<CTPolicyEnforcer> ct_policy_enforcer,
const ChromeRootStoreData* root_store_data,
const InstanceParams instance_params,
std::optional<network_time::TimeTracker> time_tracker) {
std::unique_ptr<TrustStoreChrome> chrome_root =
root_store_data ? std::make_unique<TrustStoreChrome>(*root_store_data)
: std::make_unique<TrustStoreChrome>();
return CreateCertVerifyProcBuiltin(
std::move(cert_net_fetcher), std::move(crl_set), std::move(ct_verifier),
std::move(ct_policy_enforcer),
CreateSslSystemTrustStoreChromeRoot(std::move(chrome_root)),
instance_params, std::move(time_tracker));
}
#endif
CertVerifyProc::CertVerifyProc(scoped_refptr<CRLSet> crl_set)
: crl_set_(std::move(crl_set)) {
CHECK(crl_set_);
}
CertVerifyProc::~CertVerifyProc() = default;
int CertVerifyProc::Verify(X509Certificate* cert,
const std::string& hostname,
const std::string& ocsp_response,
const std::string& sct_list,
int flags,
CertVerifyResult* verify_result,
const NetLogWithSource& net_log) {
CHECK(cert);
CHECK(verify_result);
net_log.BeginEvent(NetLogEventType::CERT_VERIFY_PROC, [&] {
return CertVerifyParams(cert, hostname, ocsp_response, sct_list, flags,
crl_set());
});
// CertVerifyProc's contract allows ::VerifyInternal() to wait on File I/O
// (such as the Windows registry or smart cards on all platforms) or may re-
// enter this code via extension hooks (such as smart card UI). To ensure
// threads are not starved or deadlocked, the base::ScopedBlockingCall below
// increments the thread pool capacity when this method takes too much time to
// run.
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
verify_result->Reset();
verify_result->verified_cert = cert;
int rv = VerifyInternal(cert, hostname, ocsp_response, sct_list, flags,
verify_result, net_log);
CHECK(verify_result->verified_cert);
// Check for mismatched signature algorithms and unknown signature algorithms
// in the chain. Also fills in the has_* booleans for the digest algorithms
// present in the chain.
if (!InspectSignatureAlgorithmsInChain(verify_result)) {
verify_result->cert_status |= CERT_STATUS_INVALID;
rv = MapCertStatusToNetError(verify_result->cert_status);
}
if (!cert->VerifyNameMatch(hostname)) {
verify_result->cert_status |= CERT_STATUS_COMMON_NAME_INVALID;
rv = MapCertStatusToNetError(verify_result->cert_status);
}
if (verify_result->ocsp_result.response_status ==
bssl::OCSPVerifyResult::NOT_CHECKED) {
// If VerifyInternal did not record the result of checking stapled OCSP,
// do it now.
BestEffortCheckOCSP(ocsp_response, *verify_result->verified_cert,
&verify_result->ocsp_result);
}
// Check to see if the connection is being intercepted.
for (const auto& hash : verify_result->public_key_hashes) {
if (hash.tag() != HASH_VALUE_SHA256) {
continue;
}
if (!crl_set()->IsKnownInterceptionKey(hash.span())) {
continue;
}
if (verify_result->cert_status & CERT_STATUS_REVOKED) {
// If the chain was revoked, and a known MITM was present, signal that
// with a more meaningful error message.
verify_result->cert_status |= CERT_STATUS_KNOWN_INTERCEPTION_BLOCKED;
rv = MapCertStatusToNetError(verify_result->cert_status);
} else {
// Otherwise, simply signal informatively. Both statuses are not set
// simultaneously.
verify_result->cert_status |= CERT_STATUS_KNOWN_INTERCEPTION_DETECTED;
}
break;
}
std::vector<std::string> dns_names, ip_addrs;
cert->GetSubjectAltName(&dns_names, &ip_addrs);
if (HasNameConstraintsViolation(verify_result->public_key_hashes,
cert->subject().common_name,
dns_names,
ip_addrs)) {
verify_result->cert_status |= CERT_STATUS_NAME_CONSTRAINT_VIOLATION;
rv = MapCertStatusToNetError(verify_result->cert_status);
}
// Check for weak keys in the entire verified chain.
bool weak_key = ExaminePublicKeys(verify_result->verified_cert,
verify_result->is_issued_by_known_root);
if (weak_key) {
verify_result->cert_status |= CERT_STATUS_WEAK_KEY;
// Avoid replacing a more serious error, such as an OS/library failure,
// by ensuring that if verification failed, it failed with a certificate
// error.
if (rv == OK || IsCertificateError(rv))
rv = MapCertStatusToNetError(verify_result->cert_status);
}
if (verify_result->has_sha1)
verify_result->cert_status |= CERT_STATUS_SHA1_SIGNATURE_PRESENT;
// Flag certificates using weak signature algorithms.
bool sha1_allowed = (flags & VERIFY_ENABLE_SHA1_LOCAL_ANCHORS) &&
!verify_result->is_issued_by_known_root;
if (!sha1_allowed && verify_result->has_sha1) {
verify_result->cert_status |= CERT_STATUS_WEAK_SIGNATURE_ALGORITHM;
// Avoid replacing a more serious error, such as an OS/library failure,
// by ensuring that if verification failed, it failed with a certificate
// error.
if (rv == OK || IsCertificateError(rv))
rv = MapCertStatusToNetError(verify_result->cert_status);
}
// Flag certificates using too long validity periods.
if (verify_result->is_issued_by_known_root && HasTooLongValidity(*cert)) {
verify_result->cert_status |= CERT_STATUS_VALIDITY_TOO_LONG;
if (rv == OK)
rv = MapCertStatusToNetError(verify_result->cert_status);
}
// Flag certificates from publicly-trusted CAs that are issued to intranet
// hosts. These are not allowed per the CA/Browser Forum requirements.
//
// Validity period is checked first just for testing convenience; there's not
// a strong security reason to let validity period vs non-unique names take
// precedence.
if (verify_result->is_issued_by_known_root && IsHostnameNonUnique(hostname)) {
verify_result->cert_status |= CERT_STATUS_NON_UNIQUE_NAME;
// On Cronet, CERT_STATUS_NON_UNIQUE_NAME is recorded as a warning but not
// treated as an error, because consumers have tests that use certs with
// non-unique names. See b/337196170 (Google-internal).
#if !BUILDFLAG(CRONET_BUILD)
if (rv == OK) {
rv = MapCertStatusToNetError(verify_result->cert_status);
}
#endif // !BUILDFLAG(CRONET_BUILD)
}
// Record a histogram for per-verification usage of root certs.
if (rv == OK) {
RecordTrustAnchorHistogram(verify_result->public_key_hashes,
verify_result->is_issued_by_known_root);
}
net_log.EndEvent(NetLogEventType::CERT_VERIFY_PROC,
[&] { return verify_result->NetLogParams(rv); });
return rv;
}
scoped_refptr<X509Certificate> CertVerifyProc::Verify2QwacBinding(
std::string_view binding,
const std::string& hostname,
base::span<const uint8_t> tls_cert,
const NetLogWithSource& net_log) {
return nullptr;
}
int CertVerifyProc::Verify2Qwac(X509Certificate* cert,
const std::string& hostname,
CertVerifyResult* verify_result,
const NetLogWithSource& net_log) {
// Default implementation of Verify2QwacInternal that always fails.
// Subclasses that actually implement 2-QWAC verification should override
// this.
verify_result->cert_status |= CERT_STATUS_INVALID;
return ERR_CERT_INVALID;
}
// static
void CertVerifyProc::LogNameNormalizationResult(
const std::string& histogram_suffix,
NameNormalizationResult result) {
base::UmaHistogramEnumeration(
std::string("Net.CertVerifier.NameNormalizationPrivateRoots") +
histogram_suffix,
result);
}
// static
void CertVerifyProc::LogNameNormalizationMetrics(
const std::string& histogram_suffix,
X509Certificate* verified_cert,
bool is_issued_by_known_root) {
if (is_issued_by_known_root)
return;
if (verified_cert->intermediate_buffers().empty()) {
LogNameNormalizationResult(histogram_suffix,
NameNormalizationResult::kChainLengthOne);
return;
}
std::vector<CRYPTO_BUFFER*> der_certs;
der_certs.push_back(verified_cert->cert_buffer());
for (const auto& buf : verified_cert->intermediate_buffers())
der_certs.push_back(buf.get());
bssl::ParseCertificateOptions options;
options.allow_invalid_serial_numbers = true;
std::vector<bssl::der::Input> subjects;
std::vector<bssl::der::Input> issuers;
for (auto* buf : der_certs) {
bssl::der::Input tbs_certificate_tlv;
bssl::der::Input signature_algorithm_tlv;
bssl::der::BitString signature_value;
bssl::ParsedTbsCertificate tbs;
if (!bssl::ParseCertificate(
bssl::der::Input(CRYPTO_BUFFER_data(buf), CRYPTO_BUFFER_len(buf)),
&tbs_certificate_tlv, &signature_algorithm_tlv, &signature_value,
nullptr /* errors*/) ||
!ParseTbsCertificate(tbs_certificate_tlv, options, &tbs,
nullptr /*errors*/)) {
LogNameNormalizationResult(histogram_suffix,
NameNormalizationResult::kError);
return;
}
subjects.push_back(tbs.subject_tlv);
issuers.push_back(tbs.issuer_tlv);
}
for (size_t i = 0; i < subjects.size() - 1; ++i) {
if (issuers[i] != subjects[i + 1]) {
LogNameNormalizationResult(histogram_suffix,
NameNormalizationResult::kNormalized);
return;
}
}
LogNameNormalizationResult(histogram_suffix,
NameNormalizationResult::kByteEqual);
}
// CheckNameConstraints verifies that every name in |dns_names| is in one of
// the domains specified by |domains|.
static bool CheckNameConstraints(const std::vector<std::string>& dns_names,
base::span<const std::string_view> domains) {
for (const auto& host : dns_names) {
bool ok = false;
url::CanonHostInfo host_info;
const std::string dns_name = CanonicalizeHost(host, &host_info);
if (host_info.IsIPAddress())
continue;
// If the name is not in a known TLD, ignore it. This permits internal
// server names.
if (!registry_controlled_domains::HostHasRegistryControlledDomain(
dns_name, registry_controlled_domains::EXCLUDE_UNKNOWN_REGISTRIES,
registry_controlled_domains::INCLUDE_PRIVATE_REGISTRIES)) {
continue;
}
for (const auto& domain : domains) {
// The |domain| must be of ".somesuffix" form, and |dns_name| must
// have |domain| as a suffix.
DCHECK_EQ('.', domain[0]);
if (dns_name.size() <= domain.size())
continue;
std::string_view suffix =
std::string_view(dns_name).substr(dns_name.size() - domain.size());
if (!base::EqualsCaseInsensitiveASCII(suffix, domain))
continue;
ok = true;
break;
}
if (!ok)
return false;
}
return true;
}
// static
bool CertVerifyProc::HasNameConstraintsViolation(
const HashValueVector& public_key_hashes,
const std::string& common_name,
const std::vector<std::string>& dns_names,
const std::vector<std::string>& ip_addrs) {
static constexpr std::string_view kDomainsANSSI[] = {
".fr", // France
".gp", // Guadeloupe
".gf", // Guyane
".mq", // Martinique
".re", // Réunion
".yt", // Mayotte
".pm", // Saint-Pierre et Miquelon
".bl", // Saint Barthélemy
".mf", // Saint Martin
".wf", // Wallis et Futuna
".pf", // Polynésie française
".nc", // Nouvelle Calédonie
".tf", // Terres australes et antarctiques françaises
};
static constexpr std::string_view kDomainsTest[] = {
".example.com",
};
// PublicKeyDomainLimitation contains SHA-256(SPKI) and a pointer to an array
// of fixed-length strings that contain the domains that the SPKI is allowed
// to issue for.
//
// A public key hash can be generated with the following command:
// openssl x509 -noout -in <cert>.pem -pubkey | \
// openssl asn1parse -noout -inform pem -out - | \
// openssl dgst -sha256 -binary | xxd -i
static const struct PublicKeyDomainLimitation {
SHA256HashValue public_key_hash;
base::raw_span<const std::string_view> domains;
} kLimits[] = {
// C=FR, ST=France, L=Paris, O=PM/SGDN, OU=DCSSI,
// CN=IGC/A/emailAddress=igca@sgdn.pm.gouv.fr
//
// net/data/ssl/name_constrained/b9bea7860a962ea3611dab97ab6da3e21c1068b97d55575ed0e11279c11c8932.pem
{
{{0x86, 0xc1, 0x3a, 0x34, 0x08, 0xdd, 0x1a, 0xa7, 0x7e, 0xe8, 0xb6,
0x94, 0x7c, 0x03, 0x95, 0x87, 0x72, 0xf5, 0x31, 0x24, 0x8c, 0x16,
0x27, 0xbe, 0xfb, 0x2c, 0x4f, 0x4b, 0x04, 0xd0, 0x44, 0x96}},
kDomainsANSSI,
},
// Not a real certificate - just for testing.
// net/data/ssl/certificates/name_constrained_key.pem
{
{{0xa2, 0x2a, 0x88, 0x82, 0xba, 0x0c, 0xae, 0x9d, 0xf2, 0xc4, 0x5b,
0x15, 0xa6, 0x1e, 0xfd, 0xfd, 0x19, 0x6b, 0xb1, 0x09, 0x19, 0xfd,
0xac, 0x77, 0x9b, 0xd6, 0x08, 0x66, 0xda, 0xa8, 0xd2, 0x88}},
kDomainsTest,
},
};
for (const auto& limit : kLimits) {
for (const auto& hash : public_key_hashes) {
if (hash.tag() != HASH_VALUE_SHA256)
continue;
if (hash.span() != limit.public_key_hash) {
continue;
}
if (dns_names.empty() && ip_addrs.empty()) {
std::vector<std::string> names;
names.push_back(common_name);
if (!CheckNameConstraints(names, limit.domains))
return true;
} else {
if (!CheckNameConstraints(dns_names, limit.domains))
return true;
}
}
}
return false;
}
// static
bool CertVerifyProc::HasTooLongValidity(const X509Certificate& cert) {
const base::Time& start = cert.valid_start();
const base::Time& expiry = cert.valid_expiry();
if (start.is_max() || start.is_null() || expiry.is_max() ||
expiry.is_null() || start > expiry) {
return true;
}
// The maximum lifetime of publicly trusted certificates has reduced
// gradually over time. These dates are derived from the transitions noted in
// Section 1.2.2 (Relevant Dates) of the Baseline Requirements.
//
// * Certificates issued before BRs took effect, Chrome limited to max of ten
// years validity and a max notAfter date of 2019-07-01.
// * Last possible expiry: 2019-07-01.
//
// * Cerificates issued on-or-after the BR effective date of 1 July 2012: 60
// months.
// * Last possible expiry: 1 April 2015 + 60 months = 2020-04-01
//
// * Certificates issued on-or-after 1 April 2015: 39 months.
// * Last possible expiry: 1 March 2018 + 39 months = 2021-06-01
//
// * Certificates issued on-or-after 1 March 2018: 825 days.
// * Last possible expiry: 1 September 2020 + 825 days = 2022-12-05
//
// The current limit, from Chrome Root Certificate Policy:
// * Certificates issued on-or-after 1 September 2020: 398 days.
base::TimeDelta validity_duration = cert.valid_expiry() - cert.valid_start();
// No certificates issued before the latest lifetime requirement was enacted
// could possibly still be accepted, so we don't need to check the older
// limits explicitly.
return validity_duration > base::Days(398);
}
CertVerifyProc::ImplParams::ImplParams() {
crl_set = net::CRLSet::BuiltinCRLSet();
#if BUILDFLAG(CHROME_ROOT_STORE_OPTIONAL)
// Defaults to using Chrome Root Store, though we have to keep this option in
// here to allow WebView to turn this option off.
use_chrome_root_store = true;
#endif
}
CertVerifyProc::ImplParams::~ImplParams() = default;
CertVerifyProc::ImplParams::ImplParams(const ImplParams&) = default;
CertVerifyProc::ImplParams& CertVerifyProc::ImplParams::operator=(
const ImplParams& other) = default;
CertVerifyProc::ImplParams::ImplParams(ImplParams&&) = default;
CertVerifyProc::ImplParams& CertVerifyProc::ImplParams::operator=(
ImplParams&& other) = default;
CertVerifyProc::InstanceParams::InstanceParams() = default;
CertVerifyProc::InstanceParams::~InstanceParams() = default;
CertVerifyProc::InstanceParams::InstanceParams(const InstanceParams&) = default;
CertVerifyProc::InstanceParams& CertVerifyProc::InstanceParams::operator=(
const InstanceParams& other) = default;
CertVerifyProc::InstanceParams::InstanceParams(InstanceParams&&) = default;
CertVerifyProc::InstanceParams& CertVerifyProc::InstanceParams::operator=(
InstanceParams&& other) = default;
CertVerifyProc::CertificateWithConstraints::CertificateWithConstraints() =
default;
CertVerifyProc::CertificateWithConstraints::~CertificateWithConstraints() =
default;
CertVerifyProc::CertificateWithConstraints::CertificateWithConstraints(
const CertificateWithConstraints&) = default;
CertVerifyProc::CertificateWithConstraints&
CertVerifyProc::CertificateWithConstraints::operator=(
const CertificateWithConstraints& other) = default;
CertVerifyProc::CertificateWithConstraints::CertificateWithConstraints(
CertificateWithConstraints&&) = default;
CertVerifyProc::CertificateWithConstraints&
CertVerifyProc::CertificateWithConstraints::operator=(
CertificateWithConstraints&& other) = default;
} // namespace net
|