1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
|
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cert/two_qwac.h"
#include "base/base64.h"
#include "base/base64url.h"
#include "base/containers/contains.h"
#include "base/json/json_reader.h"
#include "base/strings/string_split.h"
#include "crypto/signature_verifier.h"
#include "net/cert/asn1_util.h"
#include "net/cert/x509_util.h"
#include "third_party/boringssl/src/include/openssl/bytestring.h"
#include "third_party/boringssl/src/include/openssl/ec.h"
#include "third_party/boringssl/src/include/openssl/ec_key.h"
namespace net {
Jades2QwacHeader::Jades2QwacHeader() = default;
Jades2QwacHeader::Jades2QwacHeader(const Jades2QwacHeader& other) = default;
Jades2QwacHeader::Jades2QwacHeader(Jades2QwacHeader&& other) = default;
Jades2QwacHeader::~Jades2QwacHeader() = default;
namespace {
std::optional<Jades2QwacHeader> ParseJades2QwacHeader(
std::string_view header_string) {
Jades2QwacHeader parsed_header;
// The header of a JWS is a JSON-encoded object (RFC 7515, section 4).
//
// RFC 7515 section 5.2 (signature verification) step 3: verify the resulting
// octet sequence (the header_string variable passed into this function) is a
// UTF-8-encoded representation of a completely valid JSON object. By using
// the JSONReader with base::JSON_PARSE_RFC and checking that the returned
// value is a base::DictValue, we check that the input is UTF-8-encoded and
// a valid JSON object.
std::optional<base::Value> header_value =
base::JSONReader::Read(header_string, base::JSON_PARSE_RFC);
if (!header_value.has_value() || !header_value->is_dict()) {
return std::nullopt;
}
// RFC 7515 section 5.2 (signature verification) step 4: If using the JWS
// compact serialization (which we are), let the JOSE Header (the header
// variable here) be the JWS Protected Header (the JSON object decoded in step
// 3). During this step, verify that the resulting JOSE Header does not
// contain duplicate Header Parameter names.
//
// base::JSONReader will not return an object with duplicate keys. It returns
// the last key-value pair. This is consistent with section 4 of RFC 7515
// which states that a JWS parser must either reject JWSs with duplicate
// Header Parameter names or use a JSON parser that returns only the lexically
// last duplicate member name, as specified in "The JSON Object" section of
// the ECMAScript standard. base::JSONReader chooses this second option for
// compliance with standards.
base::Value::Dict& header = header_value->GetDict();
// "alg" (Algorithm) parameter - RFC 7515, section 4.1.1
//
// Possible values for this field are found in the JSON Web Signature and
// Encryption Algorithms IANA registry:
// https://www.iana.org/assignments/jose/jose.xhtml#web-signature-encryption-algorithms
//
// The only requirement that the 2-QWAC spec (ETSI TS 119 411-5 Annex B)
// imposes on this field is that it not conflict with the type of the public
// key in the signing certificate. Annex B also states that the binding is
// according to ETSI TS 119 182-1. Clause 5.1.2 of ETSI TS 119 182-1 merely
// states that the syntax and semantics of this header parameter are as
// specified in RFC 7515 section 4.1.1. In terms of allowed values, the only
// requirement is that it shall be one specified in the aforementioned IANA
// registry; neither ETSI TS 119 411-5 nor ETSI TS 119 182-1 specify a set of
// required or mandatory-to-implement algorithms. The IANA registry has a
// "JOSE Implementation Requirements" column; no (asymmetric) signature
// algorithms are listed as "Required".
//
// Given that there are no required signature algorithms, this only supports
// algorithms that at the time of writing are both listed in the IANA registry
// and supported by crypto::SignatureVerifier.
std::string* alg = header.FindString("alg");
if (!alg) {
return std::nullopt;
} else if (*alg == "RS256") {
parsed_header.sig_alg = JwsSigAlg::kRsaPkcs1Sha256;
} else if (*alg == "PS256") {
parsed_header.sig_alg = JwsSigAlg::kRsaPssSha256;
} else if (*alg == "ES256") {
parsed_header.sig_alg = JwsSigAlg::kEcdsaP256Sha256;
} else {
return std::nullopt;
}
header.Remove("alg");
// "kid" (Key ID) parameter - RFC 7515, section 4.1.4
//
// The Key ID can be of any type and is used to identify the key used for
// signing. In this profile, the key used to verify the signature will be
// found in the "x5c" parameter, so the "kid" is useless to us and is ignored.
header.Remove("kid");
// "cty" (Content Type) parameter - RFC 7515, section 4.1.10
//
// ETSI TS 119 411-5 V2.1.1 requires the "cty" parameter to be
// "TLS-Certificate-Binding-v1".
std::string* cty = header.FindString("cty");
if (!cty || *cty != "TLS-Certificate-Binding-v1") {
return std::nullopt;
}
header.Remove("cty");
// "x5t#S256" (X.509 Certificate SHA-256 Thumbprint) parameter (RFC 7515,
// section 4.1.8) is the base64url-encoded SHA-256 thumbprint of the
// DER encoding of the X.509 certificate used to sign the JWS. This value is
// not needed to verify the signature (the leaf cert of the "x5c" parameter is
// the signing cert), and it is optional according to RFC 7515, so we ignore
// it.
if (header.FindString("x5t#S256")) {
header.Remove("x5t#S256");
}
// "x5c" (X.509 Certificate Chain) header - RFC 7515 section 4.1.6
base::ListValue* x5c_list = header.FindList("x5c");
if (!x5c_list) {
return std::nullopt;
}
size_t i = 0;
bssl::UniquePtr<CRYPTO_BUFFER> leaf;
std::vector<bssl::UniquePtr<CRYPTO_BUFFER>> intermediates;
for (const base::Value& cert_value : *x5c_list) {
// RFC 7515 section 4.1.6:
// "Each string in the array is a base64-encoded (not base64url-encoded) DER
// PKIX certificate value."
if (!cert_value.is_string()) {
return std::nullopt;
}
auto cert_bytes = base::Base64Decode(cert_value.GetString());
if (!cert_bytes.has_value()) {
return std::nullopt;
}
auto buf = x509_util::CreateCryptoBuffer(*cert_bytes);
if (i == 0) {
leaf = std::move(buf);
} else {
intermediates.emplace_back(std::move(buf));
}
i++;
}
parsed_header.two_qwac_cert = X509Certificate::CreateFromBuffer(
std::move(leaf), std::move(intermediates));
if (!parsed_header.two_qwac_cert) {
return std::nullopt;
}
header.Remove("x5c");
// "iat" header. TS 119 182-1 section 5.1.11 defines this header parameter to
// be almost the same as RFC 7519's JWT "iat" claim. Despite TS 119 182-1
// citing RFC 7519 as the definition for this header parameter, JWS header
// parameters and JWT claims are not the same thing. In any case, ETSI defines
// this header to be an integer representing the claimed signing time.
//
// I see no indication in TS 119 411-5 that "iat" is required to be present,
// and RFC 7519 specifies it as optional. Further, I haven't yet found an
// indication as to how one would interpret and apply this field in signature
// validation, so I'm ignoring it.
if (header.FindInt("iat")) {
header.Remove("iat");
}
// "exp" header. TS 119 411-5 Annex B defines this as the expiry date of the
// binding, and like TS 119 182-1 for the "iat" header, incorrectly cites RFC
// 7519's claim definition of the field (section 4.1.4). Unlike the ETSI
// specification for "iat" that restricts its NumericDate type to an integer,
// we only have the RFC 7519 definition of "exp" to use, which defines
// NumericDate as a JSON numeric value. RFC 7159 allows JSON numeric values to
// contain a fraction part.
//
// Like the "iat" header, TS 119 411-5 does not require the presence of "exp",
// RFC 7519 specifies it as optional, and there is no indication in any ETSI
// spec on how this field would affect signature validation, so it is ignored.
if (header.FindDouble("exp")) {
header.Remove("exp");
}
// "sigD" header - ETSI TS 119 182-1 section 5.2.8, with additional
// requirements specified in ETSI TS 119 411-5 Annex B. This parameter is a
// JSON object and is required to be present.
base::DictValue* sig_d = header.FindDict("sigD");
if (!sig_d) {
return std::nullopt;
}
// The sigD header must have a "mId" (mechanism ID) of
// "http://uri.etsi.org/19182/ObjectIdByURIHash". (ETSI TS 119 411-5 Annex B.)
std::string* m_id = sig_d->FindString("mId");
if (!m_id || *m_id != "http://uri.etsi.org/19182/ObjectIdByURIHash") {
return std::nullopt;
}
sig_d->Remove("mId");
// The sigD header must have a "pars" member, which is a list of strings. We
// don't care about the contents of this list, but its size must match that of
// "hashV". (ETSI 119 182-1 clause 5.2.8.)
const base::ListValue* pars = sig_d->FindList("pars");
if (!pars) {
return std::nullopt;
}
size_t bound_cert_count = pars->size();
for (const base::Value& par : *pars) {
if (!par.is_string()) {
return std::nullopt;
}
}
sig_d->Remove("pars");
// The sigD header must have a "hashM" member (TS 119 182-1
// section 5.2.8.3.3), which is a string identifying the hashing algorithm
// used for the "hashV" member. ETSI TS 119 411-5 only requires that S256,
// S384, and S512 be supported.
std::string* hash_m = sig_d->FindString("hashM");
if (!hash_m) {
return std::nullopt;
}
if (*hash_m == "S256") {
parsed_header.hash_alg = crypto::hash::kSha256;
} else if (*hash_m == "S384") {
parsed_header.hash_alg = crypto::hash::kSha384;
} else if (*hash_m == "S512") {
parsed_header.hash_alg = crypto::hash::kSha512;
} else {
// Unsupported hashing algorithm.
return std::nullopt;
}
sig_d->Remove("hashM");
// The sigD header must have a "hashV" member, which is a list of
// base64url-encoded digest values of the base64url-encoded data objects.
// (ETSI TS 119 182-1 clause 5.2.8. The "b64" header parameter is absent, so
// the digest is computed over the base64url-encoded data object instead of
// computed directly over the data object.)
const base::ListValue* hash_v = sig_d->FindList("hashV");
if (!hash_v) {
return std::nullopt;
}
if (hash_v->size() != bound_cert_count) {
return std::nullopt;
}
parsed_header.bound_cert_hashes.reserve(bound_cert_count);
for (const base::Value& hash_value : *hash_v) {
const std::string* hash_b64url = hash_value.GetIfString();
if (!hash_b64url) {
return std::nullopt;
}
// ETSI TS 119 182-1 fails to specify the definition of "base64url-encoded".
// Given that other uses of base64url encoding come from the JWS spec, and
// JWS disallows padding in its base64url encoding, we disallow it here as
// well.
auto hash = base::Base64UrlDecode(
*hash_b64url, base::Base64UrlDecodePolicy::DISALLOW_PADDING);
if (!hash.has_value()) {
return std::nullopt;
}
parsed_header.bound_cert_hashes.emplace_back(std::move(*hash));
}
sig_d->Remove("hashV");
// Given the mId used, the sigD header may have a "ctys" member (TS 119 182-1
// clause 5.2.8.3.3), with semantics and syntax as specified in clause
// 5.2.8.1. Clause 5.2.8.1 defines the "ctys" member's syntax to be an array
// of strings. This array has the same length as the "pars" (and "hashV")
// array, and each element is the content type (RFC 7515 section 4.1.10) of
// the data object referred to by the value in "pars" at the same index.
// RFC 7515 specifies that the content type parameter is ignored by JWS
// implementations and processing of it is performed by the JWS application.
// Since neither ETSI TS 119 182-1 nor TS 119 411-5 provide guidance on the
// content type used for the individual data objects, this implementation has
// no opinion on the stated content types.
const base::ListValue* ctys = sig_d->FindList("ctys");
if (ctys) {
if (ctys->size() != bound_cert_count) {
return std::nullopt;
}
for (const base::Value& cty_value : *ctys) {
if (!cty_value.is_string()) {
return std::nullopt;
}
}
} else if (sig_d->contains("ctys")) {
// check that there isn't a "ctys" of the wrong type
return std::nullopt;
}
sig_d->Remove("ctys");
// sigD has no other members than the aforementioned "mId", "pars", "hashM",
// "hashV", and "ctys". (ETSI TS 119 182-1 clause 5.2.8.)
if (!sig_d->empty()) {
return std::nullopt;
}
header.Remove("sigD");
// The header must not contain fields other than "alg", "kid", "cty",
// "x5t#S256", "x5c", "iat", "exp", or "sigD", as required by ETSI TS 119
// 411-5 V2.1.1, Annex B.
//
// ETSI TS 119 182-1 V1.2.1 section 5.1.9 specifies that if the "sigD" header
// parameter is present, then the "crit" header parameter shall also be
// present with "sigD" as one of its array elements. This is in conflict with
// the requirement in 119 411-5 V2.1.1 Annex B. To resolve this conflict, this
// implementation will allow the presence of "crit", but if it is present, it
// must be an array containing exactly "sigD".
const auto* crit_value = header.Find("crit");
if (crit_value) {
if (!crit_value->is_list()) {
return std::nullopt;
}
const auto& crit_list = crit_value->GetList();
if (crit_list.size() != 1 || !crit_list.contains("sigD")) {
return std::nullopt;
}
}
header.Remove("crit");
// RFC 7515 section 5.2 (signature verification) step 5: Verify that the
// implementation understands and can process all fields that it is required
// to support. This implementation rejects a JWS header that contains unknown
// fields.
if (!header.empty()) {
return std::nullopt;
}
return parsed_header;
}
} // namespace
TwoQwacCertBinding::TwoQwacCertBinding(Jades2QwacHeader header,
std::string header_string,
std::vector<uint8_t> signature)
: header_(header), header_string_(header_string), signature_(signature) {}
TwoQwacCertBinding::TwoQwacCertBinding(const TwoQwacCertBinding& other) =
default;
TwoQwacCertBinding::TwoQwacCertBinding(TwoQwacCertBinding&& other) = default;
TwoQwacCertBinding::~TwoQwacCertBinding() = default;
std::optional<TwoQwacCertBinding> TwoQwacCertBinding::Parse(
std::string_view jws) {
// ETSI TS 119 411-5 V2.1.1 Annex B: The JAdES signatures shall be serialized
// using JWS Compact Serialization as specified in IETF RFC 7515.
//
// The JWS Compact Serialization format consists of 3 components separated by
// a dot (".") (RFC 7515, section 7.1).
//
// RFC 7515 section 5.2 (signature verification) step 1: parse the JWS
// representation to extract the serialized values for the components of the
// JWS.
std::vector<std::string_view> jws_components = base::SplitStringPiece(
jws, ".", base::KEEP_WHITESPACE, base::SPLIT_WANT_ALL);
if (jws_components.size() != 3) {
// Reject a JWS that does not consist of 3 components.
return std::nullopt;
}
std::string_view header_b64 = jws_components[0];
std::string_view payload_b64 = jws_components[1];
std::string_view signature_b64 = jws_components[2];
// The 3 components of a JWS are the header, the payload, and the signature.
// The components are base64url encoded (RFC 7515, section 7.1) and the base64
// encoding is without any padding "=" characters (Ibid., section 2).
// RFC 7515 section 5.2 (signature verification) step 2: base64url-decode the
// encoded representation of the JWS Protected Header.
std::string header_string;
if (!base::Base64UrlDecode(header_b64,
base::Base64UrlDecodePolicy::DISALLOW_PADDING,
&header_string)) {
return std::nullopt;
}
// RFC 7515 section 5.2 (signature verification) step 7: base64url-decode the
// encoded representation of the JWS Signature.
std::optional<std::vector<uint8_t>> signature = base::Base64UrlDecode(
signature_b64, base::Base64UrlDecodePolicy::DISALLOW_PADDING);
if (!signature.has_value()) {
return std::nullopt;
}
// Parse the JWS/JAdES header. This function will perform steps 3-5 of RFC
// 7515 section 5.2 (signature verification).
auto header = ParseJades2QwacHeader(header_string);
if (!header.has_value()) {
return std::nullopt;
}
// ETSI TS 119 411-5 V2.1.1 Annex B specifies a "sigD" header parameter. This
// header parameter is defined in ETSI TS 119 182-1 V1.2.1, section 5.2.8,
// which states "The sigD header parameter shall not appear in JAdES
// signatures whose JWS Payload is attached". Thus, it can be inferred that
// the JWS Payload is detached. A detached payload for a JWS means that the
// encoded payload is empty (RFC 7515, Appendix F).
//
// RFC 7515 section 5.2 (signature verification) step 6: base64url-decode the
// encoded representation of the JWS Payload. Since the only valid payload is
// the empty payload, checking that the encoded representation is empty is
// sufficient to decode and check that the JWS Payload is empty.
if (!payload_b64.empty()) {
return std::nullopt;
}
return TwoQwacCertBinding(*header, std::string(header_b64), *signature);
}
namespace {
// Given a SPKI, returns whether the public key is an ECDSA key on the curve
// P-256.
bool IsKeyP256(base::span<const uint8_t> spki) {
CBS cbs;
CBS_init(&cbs, spki.data(), spki.size());
bssl::UniquePtr<EVP_PKEY> public_key(EVP_parse_public_key(&cbs));
if (!public_key) {
return false;
}
EC_KEY* ec_key = EVP_PKEY_get0_EC_KEY(public_key.get());
if (!ec_key) {
return false;
}
const EC_GROUP* group = EC_KEY_get0_group(ec_key);
if (!group) {
return false;
}
return EC_GROUP_get_curve_name(group) == NID_X9_62_prime256v1;
}
} // namespace
bool TwoQwacCertBinding::VerifySignature() {
// ETSI TS 119 411-5 clause 6.2.2 step 5 states:
//
// Validate the JAdES signature on the TLS Certificate binding according to
// ETSI EN 319 102-1.
//
// - If this step fails or the TLS Certificate binding is not considered
// valid, the procedure finishes negatively.
//
// ETSI EN 319 102-1 does not say how to validate a JAdES signature. If we
// attempt to apply the processes that it describes generically for AdES
// signatures, we encounter a problem in the cryptographic validation building
// block in clause 5.2.7.4. That clause states that the technical details on
// how to perform the cryptogrpahic validation are out of scope, and to see
// other documents for details. None of the listed documents provide any
// details about JAdES signatures or JWSs.
//
// Since ETSI EN 319 102-1 lacks a pointer to the proper specification
// containing the technical details needed to cryptographically validate a
// JAdES signature, I look at the 2-QWAC spec (ETSI TS 119 411-5) which cited
// ETSI EN 319 102-1 for assistance. ETSI TS 119 411-5 includes ETSI TS 119
// 182-1 ("JAdES digital signatures") as a normative reference. ETSI TS 119
// 182-1 clause 1 defines the scope of that document, and the validation of
// JAdES digital signatures is out of scope for that document. Although the
// validation of JAdES digital signatures is out of scope for that document,
// it does define a JAdES signature as being an extension of JSON Web
// Signatures as specified in IETF RFC 7515.
//
// For lack of a better reference, this 2-QWAC implementation will use the
// process defined in section 5.2 of RFC 7515 (Message Signature or MAC
// Validation) to validate the signature on the TLS Certificate Binding JWS/
// JAdES signature. This function only implements the process defined in RFC
// 7515; it does not implement any of the other building blocks used by the
// validation process for Basic Signatures defined in clause 5.3 of ETSI EN
// 319 102-1.
// Extract public key from certificate and initialize verifier. ETSI TS 119
// 411-5 Annex B requires checking that the "alg" parameter does not conflict
// with the type of public key in the signing certificate. The call to
// VerifyInit checks that the signature algorithm is compatible with the
// signing key (from the signing certificate).
std::string_view spki;
if (!asn1::ExtractSPKIFromDERCert(x509_util::CryptoBufferAsStringPiece(
header_.two_qwac_cert->cert_buffer()),
&spki)) {
return false;
}
crypto::SignatureVerifier::SignatureAlgorithm sig_alg;
switch (header_.sig_alg) {
case JwsSigAlg::kEcdsaP256Sha256:
// SignatureAlgorithm::ECDSA_SHA256 doesn't require that the EC curve be
// P-256, but the JWS signature algorithm does require that it be P-256.
// Before converting JwsSigAlg::kEcdsaP256Sha256 to ECDSA_SHA256, check
// that the key is P-256.
if (!IsKeyP256(base::as_byte_span(spki))) {
return false;
}
sig_alg = crypto::SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256;
break;
case JwsSigAlg::kRsaPkcs1Sha256:
sig_alg = crypto::SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256;
break;
case JwsSigAlg::kRsaPssSha256:
sig_alg = crypto::SignatureVerifier::SignatureAlgorithm::RSA_PSS_SHA256;
break;
}
// The crypto::SignatureVerifier checks that the public key in |spki| is
// compatible with the signature algorithm in |sig_alg| that came from the JWS
// header. This handles the requirement in the 2-QWAC spec (ETSI TS 119 411-5
// Annex B) that the "alg" JWS header field not conflict with the type of the
// public key in the "x5c" JWS header field.
crypto::SignatureVerifier verifier;
if (!verifier.VerifyInit(sig_alg, signature_, base::as_byte_span(spki))) {
return false;
}
// RFC 7515 section 5.2 steps 1-7 are performed by TwoQwacCertBinding::Parse.
// Step 8: Validate the JWS Signature against the JWS Signing Input.
//
// The JWS Signing Input is ASCII(BASE64URL(UTF8(JWS Protected Header)) || '.'
// || BASE64URL(JWS Payload)) (RFC 7515 section 5.2 step 8).
//
// The first component of the input - BASE64URL(UTF8(JWS Protected Header)) -
// is the unparsed JWS header:
verifier.VerifyUpdate(base::as_byte_span(header_string_));
static constexpr uint8_t separator[] = {'.'};
verifier.VerifyUpdate(separator);
// The JWS Payload is empty, so there are 0 bytes to contribute to the
// BASE64URL(JWS Payload) component of the JWS Signing Input.
// Step 9 only applies if the JWS JSON Serialization is being used; we use the
// JWS Compact Serialization.
// Step 10: In the JWS Compact Serialization case, the result can simply
// indicate whether or not the JWS was successfully validated.
return verifier.VerifyFinal();
}
bool TwoQwacCertBinding::BindsTlsCert(base::span<const uint8_t> tls_cert_der) {
// header.bound_cert_hashes contains a list of Digest(base64url(der)), where
// the digest algorithm is specified by header.hash_alg. Compute the digest of
// the base64url-encoded cert and search for that in the list of bound cert
// hashes.
std::string tls_cert_b64;
base::Base64UrlEncode(tls_cert_der, base::Base64UrlEncodePolicy::OMIT_PADDING,
&tls_cert_b64);
std::vector<uint8_t> tls_cert_hash(
crypto::hash::DigestSizeForHashKind(header_.hash_alg));
crypto::hash::Hash(header_.hash_alg, tls_cert_b64, tls_cert_hash);
return base::Contains(header_.bound_cert_hashes, tls_cert_hash);
}
} // namespace net
|