1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <cinttypes>
#include <cstdlib>
#include <iostream>
#include <map>
#include <memory>
#include <string>
#include "base/at_exit.h"
#include "base/command_line.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/files/scoped_temp_dir.h"
#include "base/functional/callback.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/memory/ref_counted.h"
#include "base/memory/scoped_refptr.h"
#include "base/numerics/checked_math.h"
#include "base/strings/string_number_conversions.h"
#include "base/test/task_environment.h"
#include "base/test/test_timeouts.h"
#include "base/time/time.h"
#include "net/base/cache_type.h"
#include "net/base/interval.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/base/test_completion_callback.h"
#include "net/disk_cache/backend_cleanup_tracker.h"
#include "net/disk_cache/blockfile/backend_impl.h"
#include "net/disk_cache/disk_cache.h"
#include "net/disk_cache/disk_cache_fuzzer.pb.h"
#include "net/disk_cache/disk_cache_test_util.h"
#include "net/disk_cache/memory/mem_backend_impl.h"
#include "net/disk_cache/simple/simple_backend_impl.h"
#include "net/disk_cache/simple/simple_file_tracker.h"
#include "net/disk_cache/simple/simple_index.h"
#include "testing/libfuzzer/proto/lpm_interface.h"
// To get a good idea of what a test case is doing, just run the libfuzzer
// target with LPM_DUMP_NATIVE_INPUT=1 prefixed. This will trigger all the
// prints below and will convey exactly what the test case is doing: use this
// instead of trying to print the protobuf as text.
// For code coverage:
// python ./tools/code_coverage/coverage.py disk_cache_lpm_fuzzer -b
// out/coverage -o out/report -c 'out/coverage/disk_cache_lpm_fuzzer
// -runs=0 -workers=24 corpus_disk_cache_simple' -f net/disk_cache
void IOCallback(std::string io_type, int rv);
namespace {
const uint32_t kMaxSizeKB = 128; // 128KB maximum.
const uint32_t kMaxSize = kMaxSizeKB * 1024;
const uint32_t kMaxEntrySize = kMaxSize * 2;
const uint32_t kNumStreams = 3; // All caches seem to have 3 streams. TODO do
// other specialized caches have this?
const uint64_t kFirstSavedTime =
5; // Totally random number chosen by dice roll. ;)
const uint32_t kMaxNumMillisToWait = 2019;
const int kMaxFdsSimpleCache = 10;
// Known colliding key values taken from SimpleCacheCreateCollision unittest.
const std::string kCollidingKey1 =
"\xfb\x4e\x9c\x1d\x66\x71\xf7\x54\xa3\x11\xa0\x7e\x16\xa5\x68\xf6";
const std::string kCollidingKey2 =
"\xbc\x60\x64\x92\xbc\xa0\x5c\x15\x17\x93\x29\x2d\xe4\x21\xbd\x03";
#define IOTYPES_APPLY(F) \
F(WriteData) \
F(ReadData) \
F(WriteSparseData) \
F(ReadSparseData) \
F(DoomAllEntries) \
F(DoomEntriesSince) \
F(DoomEntriesBetween) \
F(GetAvailableRange) \
F(DoomKey)
enum class IOType {
#define ENUM_ENTRY(IO_TYPE) IO_TYPE,
IOTYPES_APPLY(ENUM_ENTRY)
#undef ENUM_ENTRY
};
struct InitGlobals {
InitGlobals() {
base::CommandLine::Init(0, nullptr);
print_comms_ = ::getenv("LPM_DUMP_NATIVE_INPUT");
// TaskEnvironment requires TestTimeouts initialization to watch for
// problematic long-running tasks.
TestTimeouts::Initialize();
// Mark this thread as an IO_THREAD with MOCK_TIME, and ensure that Now()
// is driven from the same mock clock.
task_environment_ = std::make_unique<base::test::TaskEnvironment>(
base::test::TaskEnvironment::MainThreadType::IO,
base::test::TaskEnvironment::TimeSource::MOCK_TIME);
// Disable noisy logging as per "libFuzzer in Chrome" documentation:
// testing/libfuzzer/getting_started.md#Disable-noisy-error-message-logging.
logging::SetMinLogLevel(logging::LOGGING_FATAL);
// Re-using this buffer for write operations may technically be against
// IOBuffer rules but it shouldn't cause any actual problems.
buffer_ = base::MakeRefCounted<net::IOBufferWithSize>(
static_cast<size_t>(kMaxEntrySize));
CacheTestFillBuffer(buffer_->span(), false);
#define CREATE_IO_CALLBACK(IO_TYPE) \
io_callbacks_.push_back(base::BindRepeating(&IOCallback, #IO_TYPE));
IOTYPES_APPLY(CREATE_IO_CALLBACK)
#undef CREATE_IO_CALLBACK
}
// This allows us to mock time for all threads.
std::unique_ptr<base::test::TaskEnvironment> task_environment_;
// Used as a pre-filled buffer for all writes.
scoped_refptr<net::IOBuffer> buffer_;
// Should we print debugging info?
bool print_comms_;
// List of IO callbacks. They do nothing (except maybe print) but are used by
// all async entry operations.
std::vector<base::RepeatingCallback<void(int)>> io_callbacks_;
};
InitGlobals* init_globals = new InitGlobals();
} // namespace
class DiskCacheLPMFuzzer {
public:
DiskCacheLPMFuzzer() {
CHECK(temp_dir_.CreateUniqueTempDir());
cache_path_ = temp_dir_.GetPath();
}
~DiskCacheLPMFuzzer();
void RunCommands(const disk_cache_fuzzer::FuzzCommands& commands);
private:
struct EntryInfo {
EntryInfo() = default;
EntryInfo(const EntryInfo&) = delete;
EntryInfo& operator=(const EntryInfo&) = delete;
// RAW_PTR_EXCLUSION: #addr-of
RAW_PTR_EXCLUSION disk_cache::Entry* entry_ptr = nullptr;
std::unique_ptr<TestEntryResultCompletionCallback> tcb;
};
void RunTaskForTest(base::OnceClosure closure);
// Waits for an entry to be ready. Only should be called if there is a pending
// callback for this entry; i.e. ei->tcb != nullptr.
// Also takes the rv that the cache entry creation functions return, and does
// not wait if rv.net_error != net::ERR_IO_PENDING (and would never have
// called the callback).
disk_cache::EntryResult WaitOnEntry(
EntryInfo* ei,
disk_cache::EntryResult result =
disk_cache::EntryResult::MakeError(net::ERR_IO_PENDING));
// Used as a callback for entry-opening backend calls. Will record the entry
// in the map as usable and will release any entry-specific calls waiting for
// the entry to be ready.
void OpenCacheEntryCallback(uint64_t entry_id,
bool async,
bool set_is_sparse,
disk_cache::EntryResult result);
// Waits for the entry to finish opening, in the async case. Then, if the
// entry is successfully open (callback returns net::OK, or was already
// successfully opened), check if the entry_ptr == nullptr. If so, the
// entry has been closed.
bool IsValidEntry(EntryInfo* ei);
// Closes any non-nullptr entries in open_cache_entries_.
void CloseAllRemainingEntries();
// Fully shuts down and cleans up the cache backend.
void ShutdownBackend();
int64_t ComputeMaxSize(const disk_cache_fuzzer::SetMaxSize* maybe_max_size);
void CreateBackend(
disk_cache_fuzzer::FuzzCommands::CacheBackend cache_backend,
uint32_t mask,
const disk_cache_fuzzer::SetMaxSize* maybe_max_size,
net::CacheType type,
bool simple_cache_wait_for_index);
// Places to keep our cache files.
base::FilePath cache_path_;
base::ScopedTempDir temp_dir_;
// Pointers to our backend. Only one of block_impl_, simple_cache_impl_, and
// mem_cache_ are active at one time.
std::unique_ptr<disk_cache::Backend> cache_;
raw_ptr<disk_cache::BackendImpl> block_impl_ = nullptr;
std::unique_ptr<disk_cache::SimpleFileTracker> simple_file_tracker_;
raw_ptr<disk_cache::SimpleBackendImpl> simple_cache_impl_ = nullptr;
raw_ptr<disk_cache::MemBackendImpl> mem_cache_ = nullptr;
// This "consistent hash table" keeys track of the keys we've added to the
// backend so far. This should always be indexed by a "key_id" from a
// protobuf.
std::map<uint64_t, std::string> created_cache_entries_;
// This "consistent hash table" keeps track of all opened entries we have from
// the backend, and also contains some nullptr's where entries were already
// closed. This should always be indexed by an "entry_id" from a protobuf.
// When destructed, we close all entries that are still open in order to avoid
// memory leaks.
std::map<uint64_t, EntryInfo> open_cache_entries_;
// This "consistent hash table" keeps track of all times we have saved, so
// that we can call backend methods like DoomEntriesSince or
// DoomEntriesBetween with sane timestamps. This should always be indexed by a
// "time_id" from a protobuf.
std::map<uint64_t, base::Time> saved_times_;
// This "consistent hash table" keeps tack of all the iterators we have open
// from the backend. This should always be indexed by a "it_id" from a
// protobuf.
std::map<uint64_t, std::unique_ptr<disk_cache::Backend::Iterator>>
open_iterators_;
// This maps keeps track of the sparsity of each entry, using their pointers.
// TODO(mpdenton) remove if CreateEntry("Key0"); WriteData("Key0", index = 2,
// ...); WriteSparseData("Key0", ...); is supposed to be valid.
// Then we can just use CouldBeSparse before the WriteData.
std::map<disk_cache::Entry*, bool> sparse_entry_tracker_;
};
#define MAYBE_PRINT \
if (init_globals->print_comms_) \
std::cout
inline base::RepeatingCallback<void(int)> GetIOCallback(IOType iot) {
return init_globals->io_callbacks_[static_cast<int>(iot)];
}
std::string ToKey(uint64_t key_num) {
// Use one of the two colliding key values in 1% of executions.
if (key_num % 100 == 99)
return kCollidingKey1;
if (key_num % 100 == 98)
return kCollidingKey2;
// Otherwise, use a value based on the key id and fuzzy padding.
std::string padding(key_num & 0xFFFF, 'A');
return "Key" + padding + base::NumberToString(key_num);
}
net::RequestPriority GetRequestPriority(
disk_cache_fuzzer::RequestPriority lpm_pri) {
CHECK(net::MINIMUM_PRIORITY <= static_cast<int>(lpm_pri) &&
static_cast<int>(lpm_pri) <= net::MAXIMUM_PRIORITY);
return static_cast<net::RequestPriority>(lpm_pri);
}
net::CacheType GetCacheTypeAndPrint(
disk_cache_fuzzer::FuzzCommands::CacheType type,
disk_cache_fuzzer::FuzzCommands::CacheBackend backend) {
switch (type) {
case disk_cache_fuzzer::FuzzCommands::APP_CACHE:
MAYBE_PRINT << "Cache type = APP_CACHE." << std::endl;
return net::CacheType::APP_CACHE;
case disk_cache_fuzzer::FuzzCommands::REMOVED_MEDIA_CACHE:
// Media cache no longer in use; handle as HTTP_CACHE
MAYBE_PRINT << "Cache type = REMOVED_MEDIA_CACHE." << std::endl;
return net::CacheType::DISK_CACHE;
case disk_cache_fuzzer::FuzzCommands::SHADER_CACHE:
MAYBE_PRINT << "Cache type = SHADER_CACHE." << std::endl;
return net::CacheType::SHADER_CACHE;
case disk_cache_fuzzer::FuzzCommands::PNACL_CACHE:
// Simple cache won't handle PNACL_CACHE.
if (backend == disk_cache_fuzzer::FuzzCommands::SIMPLE) {
MAYBE_PRINT << "Cache type = DISK_CACHE." << std::endl;
return net::CacheType::DISK_CACHE;
}
MAYBE_PRINT << "Cache type = PNACL_CACHE." << std::endl;
return net::CacheType::PNACL_CACHE;
case disk_cache_fuzzer::FuzzCommands::GENERATED_BYTE_CODE_CACHE:
MAYBE_PRINT << "Cache type = GENERATED_BYTE_CODE_CACHE." << std::endl;
return net::CacheType::GENERATED_BYTE_CODE_CACHE;
case disk_cache_fuzzer::FuzzCommands::GENERATED_NATIVE_CODE_CACHE:
MAYBE_PRINT << "Cache type = GENERATED_NATIVE_CODE_CACHE." << std::endl;
return net::CacheType::GENERATED_NATIVE_CODE_CACHE;
case disk_cache_fuzzer::FuzzCommands::DISK_CACHE:
MAYBE_PRINT << "Cache type = DISK_CACHE." << std::endl;
return net::CacheType::DISK_CACHE;
}
}
void IOCallback(std::string io_type, int rv) {
MAYBE_PRINT << " [Async IO (" << io_type << ") = " << rv << "]" << std::endl;
}
/*
* Consistent hashing inspired map for fuzzer state.
* If we stored open cache entries in a hash table mapping cache_entry_id ->
* disk_cache::Entry*, then it would be highly unlikely that any subsequent
* "CloseEntry" or "WriteData" etc. command would come up with an ID that would
* correspond to a valid entry in the hash table. The optimal solution is for
* libfuzzer to generate CloseEntry commands with an ID that matches the ID of a
* previous OpenEntry command. But libfuzzer is stateless and should stay that
* way.
*
* On the other hand, if we stored entries in a vector, and on a CloseEntry
* command we took the entry at CloseEntry.id % (size of entries vector), we
* would always generate correct CloseEntries. This is good, but all
* dumb/general minimization techniques stop working, because deleting a single
* OpenEntry command changes the indexes of every entry in the vector from then
* on.
*
* So, we use something that's more stable for minimization: consistent hashing.
* Basically, when we see a CloseEntry.id, we take the entry in the table that
* has the next highest id (wrapping when there is no higher entry).
*
* This makes us resilient to deleting irrelevant OpenEntry commands. But, if we
* delete from the table on CloseEntry commands, we still screw up all the
* indexes during minimization. We'll get around this by not deleting entries
* after CloseEntry commands, but that will result in a slightly less efficient
* fuzzer, as if there are many closed entries in the table, many of the *Entry
* commands will be useless. It seems like a decent balance between generating
* useful fuzz commands and effective minimization.
*/
template <typename T>
typename std::map<uint64_t, T>::iterator GetNextValue(
typename std::map<uint64_t, T>* entries,
uint64_t val) {
auto iter = entries->lower_bound(val);
if (iter != entries->end())
return iter;
// Wrap to 0
iter = entries->lower_bound(0);
if (iter != entries->end())
return iter;
return entries->end();
}
void DiskCacheLPMFuzzer::RunTaskForTest(base::OnceClosure closure) {
if (!block_impl_) {
std::move(closure).Run();
return;
}
net::TestCompletionCallback cb;
int rv = block_impl_->RunTaskForTest(std::move(closure), cb.callback());
CHECK_EQ(cb.GetResult(rv), net::OK);
}
// Resets the cb in the map so that WriteData and other calls that work on an
// entry don't wait for its result.
void DiskCacheLPMFuzzer::OpenCacheEntryCallback(
uint64_t entry_id,
bool async,
bool set_is_sparse,
disk_cache::EntryResult result) {
// TODO(mpdenton) if this fails should we delete the entry entirely?
// Would need to mark it for deletion and delete it later, as
// IsValidEntry might be waiting for it.
EntryInfo* ei = &open_cache_entries_[entry_id];
if (async) {
int rv = result.net_error();
ei->entry_ptr = result.ReleaseEntry();
// We are responsible for setting things up.
if (set_is_sparse && ei->entry_ptr) {
sparse_entry_tracker_[ei->entry_ptr] = true;
}
if (ei->entry_ptr) {
MAYBE_PRINT << " [Async opening of cache entry for \""
<< ei->entry_ptr->GetKey() << "\" callback (rv = " << rv
<< ")]" << std::endl;
}
// Unblock any subsequent ops waiting for this --- they don't care about
// the actual return value, but use something distinctive for debugging.
ei->tcb->callback().Run(
disk_cache::EntryResult::MakeError(net::ERR_FILE_VIRUS_INFECTED));
} else {
// The operation code will pull the result out of the completion callback,
// so hand it to it.
ei->tcb->callback().Run(std::move(result));
}
}
disk_cache::EntryResult DiskCacheLPMFuzzer::WaitOnEntry(
EntryInfo* ei,
disk_cache::EntryResult result) {
CHECK(ei->tcb);
result = ei->tcb->GetResult(std::move(result));
// Reset the callback so nobody accidentally waits on a callback that never
// comes.
ei->tcb.reset();
return result;
}
bool DiskCacheLPMFuzzer::IsValidEntry(EntryInfo* ei) {
if (ei->tcb) {
// If we have a callback, we are the first to access this async-created
// entry. Wait for it, and then delete it so nobody waits on it again.
WaitOnEntry(ei);
}
// entry_ptr will be nullptr if the entry has been closed.
return ei->entry_ptr != nullptr;
}
/*
* Async implementation:
1. RunUntilIdle at the top of the loop to handle any callbacks we've been
posted from the backend thread.
2. Only the entry creation functions have important callbacks. The good thing
is backend destruction will cancel these operations. The entry creation
functions simply need to keep the entry_ptr* alive until the callback is
posted, and then need to make sure the entry_ptr is added to the map in order
to Close it in the destructor.
As for iterators, it's unclear whether closing an iterator will cancel
callbacks.
Problem: WriteData (and similar) calls will fail on the entry_id until the
callback happens. So, I should probably delay these calls or otherwise will
have very unreliable test cases. These are the options:
1. Queue up WriteData (etc.) calls in some map, such that when the OpenEntry
callback runs, the WriteData calls will all run.
2. Just sit there and wait for the entry to be ready.
#2 is probably best as it doesn't prevent any interesting cases and is much
simpler.
*/
void DiskCacheLPMFuzzer::RunCommands(
const disk_cache_fuzzer::FuzzCommands& commands) {
// Skip too long command sequences, they are counterproductive for fuzzing.
// The number was chosen empirically using the existing fuzzing corpus.
if (commands.fuzz_commands_size() > 129)
return;
uint32_t mask =
commands.has_set_mask() ? (commands.set_mask() ? 0x1 : 0xf) : 0;
net::CacheType type =
GetCacheTypeAndPrint(commands.cache_type(), commands.cache_backend());
CreateBackend(
commands.cache_backend(), mask,
commands.has_set_max_size() ? &commands.set_max_size() : nullptr, type,
commands.simple_cache_wait_for_index());
MAYBE_PRINT << "CreateBackend()" << std::endl;
{
base::Time curr_time = base::Time::Now();
saved_times_[kFirstSavedTime] = curr_time;
// MAYBE_PRINT << "Saved initial time " << curr_time << std::endl;
}
for (const disk_cache_fuzzer::FuzzCommand& command :
commands.fuzz_commands()) {
// Handle any callbacks that other threads may have posted to us in the
// meantime, so any successful async OpenEntry's (etc.) add their
// entry_ptr's to the map.
init_globals->task_environment_->RunUntilIdle();
switch (command.fuzz_command_oneof_case()) {
case disk_cache_fuzzer::FuzzCommand::kCreateEntry: {
if (!cache_)
continue;
const disk_cache_fuzzer::CreateEntry& ce = command.create_entry();
uint64_t key_id = ce.key_id();
uint64_t entry_id = ce.entry_id();
net::RequestPriority pri = GetRequestPriority(ce.pri());
bool async = ce.async();
bool is_sparse = ce.is_sparse();
if (open_cache_entries_.find(entry_id) != open_cache_entries_.end())
continue; // Don't overwrite a currently open cache entry.
std::string key_str = ToKey(key_id);
created_cache_entries_[key_id] = key_str;
EntryInfo* entry_info = &open_cache_entries_[entry_id];
entry_info->tcb = std::make_unique<TestEntryResultCompletionCallback>();
disk_cache::EntryResultCallback cb =
base::BindOnce(&DiskCacheLPMFuzzer::OpenCacheEntryCallback,
base::Unretained(this), entry_id, async, is_sparse);
MAYBE_PRINT << "CreateEntry(\"" << key_str
<< "\", set_is_sparse = " << is_sparse
<< ") = " << std::flush;
disk_cache::EntryResult result =
cache_->CreateEntry(key_str, pri, std::move(cb));
if (!async || result.net_error() != net::ERR_IO_PENDING) {
result = WaitOnEntry(entry_info, std::move(result));
int rv = result.net_error();
// Ensure we mark sparsity, save entry if the callback never ran.
if (rv == net::OK) {
entry_info->entry_ptr = result.ReleaseEntry();
sparse_entry_tracker_[entry_info->entry_ptr] = is_sparse;
}
MAYBE_PRINT << rv << std::endl;
} else {
MAYBE_PRINT << "net::ERR_IO_PENDING (async)" << std::endl;
}
break;
}
case disk_cache_fuzzer::FuzzCommand::kOpenEntry: {
if (!cache_)
continue;
const disk_cache_fuzzer::OpenEntry& oe = command.open_entry();
uint64_t key_id = oe.key_id();
uint64_t entry_id = oe.entry_id();
net::RequestPriority pri = GetRequestPriority(oe.pri());
bool async = oe.async();
if (created_cache_entries_.empty())
continue;
if (open_cache_entries_.find(entry_id) != open_cache_entries_.end())
continue; // Don't overwrite a currently open cache entry.
EntryInfo* entry_info = &open_cache_entries_[entry_id];
entry_info->tcb = std::make_unique<TestEntryResultCompletionCallback>();
disk_cache::EntryResultCallback cb =
base::BindOnce(&DiskCacheLPMFuzzer::OpenCacheEntryCallback,
base::Unretained(this), entry_id, async, false);
auto key_it = GetNextValue(&created_cache_entries_, key_id);
MAYBE_PRINT << "OpenEntry(\"" << key_it->second
<< "\") = " << std::flush;
disk_cache::EntryResult result =
cache_->OpenEntry(key_it->second, pri, std::move(cb));
if (!async || result.net_error() != net::ERR_IO_PENDING) {
result = WaitOnEntry(entry_info, std::move(result));
int rv = result.net_error();
if (rv == net::OK)
entry_info->entry_ptr = result.ReleaseEntry();
MAYBE_PRINT << rv << std::endl;
} else {
MAYBE_PRINT << "net::ERR_IO_PENDING (async)" << std::endl;
}
break;
}
case disk_cache_fuzzer::FuzzCommand::kOpenOrCreateEntry: {
if (!cache_)
continue;
const disk_cache_fuzzer::OpenOrCreateEntry& ooce =
command.open_or_create_entry();
uint64_t key_id = ooce.key_id();
uint64_t entry_id = ooce.entry_id();
net::RequestPriority pri = GetRequestPriority(ooce.pri());
bool async = ooce.async();
bool is_sparse = ooce.is_sparse();
if (open_cache_entries_.find(entry_id) != open_cache_entries_.end())
continue; // Don't overwrite a currently open cache entry.
std::string key_str;
// If our proto tells us to create a new entry, create a new entry, just
// with OpenOrCreateEntry.
if (ooce.create_new()) {
// Use a possibly new key.
key_str = ToKey(key_id);
created_cache_entries_[key_id] = key_str;
} else {
if (created_cache_entries_.empty())
continue;
auto key_it = GetNextValue(&created_cache_entries_, key_id);
key_str = key_it->second;
}
// Setup for callbacks.
EntryInfo* entry_info = &open_cache_entries_[entry_id];
entry_info->tcb = std::make_unique<TestEntryResultCompletionCallback>();
disk_cache::EntryResultCallback cb =
base::BindOnce(&DiskCacheLPMFuzzer::OpenCacheEntryCallback,
base::Unretained(this), entry_id, async, is_sparse);
// Will only be set as sparse if it is created and not opened.
MAYBE_PRINT << "OpenOrCreateEntry(\"" << key_str
<< "\", set_is_sparse = " << is_sparse
<< ") = " << std::flush;
disk_cache::EntryResult result =
cache_->OpenOrCreateEntry(key_str, pri, std::move(cb));
if (!async || result.net_error() != net::ERR_IO_PENDING) {
result = WaitOnEntry(entry_info, std::move(result));
int rv = result.net_error();
bool opened = result.opened();
entry_info->entry_ptr = result.ReleaseEntry();
// Ensure we mark sparsity, even if the callback never ran.
if (rv == net::OK && !opened)
sparse_entry_tracker_[entry_info->entry_ptr] = is_sparse;
MAYBE_PRINT << rv << ", opened = " << opened << std::endl;
} else {
MAYBE_PRINT << "net::ERR_IO_PENDING (async)" << std::endl;
}
break;
}
case disk_cache_fuzzer::FuzzCommand::kCloseEntry: {
if (open_cache_entries_.empty())
continue;
auto entry_it = GetNextValue(&open_cache_entries_,
command.close_entry().entry_id());
if (!IsValidEntry(&entry_it->second))
continue;
MAYBE_PRINT << "CloseEntry(\"" << entry_it->second.entry_ptr->GetKey()
<< "\")" << std::endl;
entry_it->second.entry_ptr->Close();
// Set the entry_ptr to nullptr to ensure no one uses it anymore.
entry_it->second.entry_ptr = nullptr;
break;
}
case disk_cache_fuzzer::FuzzCommand::kDoomEntry: {
if (open_cache_entries_.empty())
continue;
auto entry_it =
GetNextValue(&open_cache_entries_, command.doom_entry().entry_id());
if (!IsValidEntry(&entry_it->second))
continue;
MAYBE_PRINT << "DoomEntry(\"" << entry_it->second.entry_ptr->GetKey()
<< "\")" << std::endl;
entry_it->second.entry_ptr->Doom();
break;
}
case disk_cache_fuzzer::FuzzCommand::kWriteData: {
if (open_cache_entries_.empty())
continue;
const disk_cache_fuzzer::WriteData& wd = command.write_data();
auto entry_it = GetNextValue(&open_cache_entries_, wd.entry_id());
if (!IsValidEntry(&entry_it->second))
continue;
int index = 0; // if it's sparse, these non-sparse aware streams must
// read from stream 0 according to the spec.
// Implementations might have weaker constraints.
if (!sparse_entry_tracker_[entry_it->second.entry_ptr])
index = wd.index() % kNumStreams;
uint32_t offset = wd.offset() % kMaxEntrySize;
size_t size = wd.size() % kMaxEntrySize;
bool async = wd.async();
net::TestCompletionCallback tcb;
net::CompletionOnceCallback cb =
!async ? tcb.callback() : GetIOCallback(IOType::WriteData);
MAYBE_PRINT << "WriteData(\"" << entry_it->second.entry_ptr->GetKey()
<< "\", index = " << index << ", offset = " << offset
<< ", size = " << size << ", truncate = " << wd.truncate()
<< ")" << std::flush;
int rv = entry_it->second.entry_ptr->WriteData(
index, offset, init_globals->buffer_.get(), size, std::move(cb),
wd.truncate());
if (!async)
rv = tcb.GetResult(rv);
MAYBE_PRINT << " = " << rv << std::endl;
break;
}
case disk_cache_fuzzer::FuzzCommand::kReadData: {
if (open_cache_entries_.empty())
continue;
const disk_cache_fuzzer::ReadData& wd = command.read_data();
auto entry_it = GetNextValue(&open_cache_entries_, wd.entry_id());
if (!IsValidEntry(&entry_it->second))
continue;
int index = 0; // if it's sparse, these non-sparse aware streams must
// read from stream 0 according to the spec.
// Implementations might weaker constraints?
if (!sparse_entry_tracker_[entry_it->second.entry_ptr])
index = wd.index() % kNumStreams;
uint32_t offset = wd.offset() % kMaxEntrySize;
size_t size = wd.size() % kMaxEntrySize;
bool async = wd.async();
auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(size);
net::TestCompletionCallback tcb;
net::CompletionOnceCallback cb =
!async ? tcb.callback() : GetIOCallback(IOType::ReadData);
MAYBE_PRINT << "ReadData(\"" << entry_it->second.entry_ptr->GetKey()
<< "\", index = " << index << ", offset = " << offset
<< ", size = " << size << ")" << std::flush;
int rv = entry_it->second.entry_ptr->ReadData(
index, offset, buffer.get(), size, std::move(cb));
if (!async)
rv = tcb.GetResult(rv);
MAYBE_PRINT << " = " << rv << std::endl;
break;
}
case disk_cache_fuzzer::FuzzCommand::kWriteSparseData: {
if (open_cache_entries_.empty())
continue;
const disk_cache_fuzzer::WriteSparseData& wsd =
command.write_sparse_data();
auto entry_it = GetNextValue(&open_cache_entries_, wsd.entry_id());
if (!IsValidEntry(&entry_it->second) ||
!sparse_entry_tracker_[entry_it->second.entry_ptr])
continue;
uint64_t offset = wsd.offset();
if (wsd.cap_offset())
offset %= kMaxEntrySize;
size_t size = wsd.size() % kMaxEntrySize;
bool async = wsd.async();
net::TestCompletionCallback tcb;
net::CompletionOnceCallback cb =
!async ? tcb.callback() : GetIOCallback(IOType::WriteSparseData);
MAYBE_PRINT << "WriteSparseData(\""
<< entry_it->second.entry_ptr->GetKey()
<< "\", offset = " << offset << ", size = " << size << ")"
<< std::flush;
int rv = entry_it->second.entry_ptr->WriteSparseData(
offset, init_globals->buffer_.get(), size, std::move(cb));
if (!async)
rv = tcb.GetResult(rv);
MAYBE_PRINT << " = " << rv << std::endl;
break;
}
case disk_cache_fuzzer::FuzzCommand::kReadSparseData: {
if (open_cache_entries_.empty())
continue;
const disk_cache_fuzzer::ReadSparseData& rsd =
command.read_sparse_data();
auto entry_it = GetNextValue(&open_cache_entries_, rsd.entry_id());
if (!IsValidEntry(&entry_it->second) ||
!sparse_entry_tracker_[entry_it->second.entry_ptr])
continue;
uint64_t offset = rsd.offset();
if (rsd.cap_offset())
offset %= kMaxEntrySize;
size_t size = rsd.size() % kMaxEntrySize;
bool async = rsd.async();
auto buffer = base::MakeRefCounted<net::IOBufferWithSize>(size);
net::TestCompletionCallback tcb;
net::CompletionOnceCallback cb =
!async ? tcb.callback() : GetIOCallback(IOType::ReadSparseData);
MAYBE_PRINT << "ReadSparseData(\""
<< entry_it->second.entry_ptr->GetKey()
<< "\", offset = " << offset << ", size = " << size << ")"
<< std::flush;
int rv = entry_it->second.entry_ptr->ReadSparseData(
offset, buffer.get(), size, std::move(cb));
if (!async)
rv = tcb.GetResult(rv);
MAYBE_PRINT << " = " << rv << std::endl;
break;
}
case disk_cache_fuzzer::FuzzCommand::kDoomAllEntries: {
if (!cache_)
continue;
bool async = command.doom_all_entries().async();
net::TestCompletionCallback tcb;
net::CompletionOnceCallback cb =
!async ? tcb.callback() : GetIOCallback(IOType::DoomAllEntries);
MAYBE_PRINT << "DoomAllEntries()" << std::flush;
int rv = cache_->DoomAllEntries(std::move(cb));
if (!async)
rv = tcb.GetResult(rv);
MAYBE_PRINT << " = " << rv << std::endl;
break;
}
case disk_cache_fuzzer::FuzzCommand::kFlushQueueForTest: {
// Blockfile-cache specific method.
if (!block_impl_)
return;
net::TestCompletionCallback cb;
MAYBE_PRINT << "FlushQueueForTest()" << std::endl;
int rv = block_impl_->FlushQueueForTest(cb.callback());
CHECK_EQ(cb.GetResult(rv), net::OK);
break;
}
case disk_cache_fuzzer::FuzzCommand::kCreateIterator: {
if (!cache_)
continue;
uint64_t it_id = command.create_iterator().it_id();
MAYBE_PRINT << "CreateIterator(), id = " << it_id << std::endl;
open_iterators_[it_id] = cache_->CreateIterator();
break;
}
case disk_cache_fuzzer::FuzzCommand::kIteratorOpenNextEntry: {
const disk_cache_fuzzer::IteratorOpenNextEntry& ione =
command.iterator_open_next_entry();
uint64_t it_id = ione.it_id();
uint64_t entry_id = ione.entry_id();
bool async = ione.async();
if (open_iterators_.empty())
continue;
if (open_cache_entries_.find(entry_id) != open_cache_entries_.end())
continue; // Don't overwrite a currently
// open cache entry.
auto iterator_it = GetNextValue(&open_iterators_, it_id);
EntryInfo* entry_info = &open_cache_entries_[entry_id];
entry_info->tcb = std::make_unique<TestEntryResultCompletionCallback>();
disk_cache::EntryResultCallback cb =
base::BindOnce(&DiskCacheLPMFuzzer::OpenCacheEntryCallback,
base::Unretained(this), entry_id, async, false);
MAYBE_PRINT << "Iterator(" << ione.it_id()
<< ").OpenNextEntry() = " << std::flush;
disk_cache::EntryResult result =
iterator_it->second->OpenNextEntry(std::move(cb));
if (!async || result.net_error() != net::ERR_IO_PENDING) {
result = WaitOnEntry(entry_info, std::move(result));
int rv = result.net_error();
entry_info->entry_ptr = result.ReleaseEntry();
// Print return value, and key if applicable.
if (!entry_info->entry_ptr) {
MAYBE_PRINT << rv << std::endl;
} else {
MAYBE_PRINT << rv << ", key = " << entry_info->entry_ptr->GetKey()
<< std::endl;
}
} else {
MAYBE_PRINT << "net::ERR_IO_PENDING (async)" << std::endl;
}
break;
}
case disk_cache_fuzzer::FuzzCommand::kFastForwardBy: {
base::TimeDelta to_wait =
base::Milliseconds(command.fast_forward_by().capped_num_millis() %
kMaxNumMillisToWait);
MAYBE_PRINT << "FastForwardBy(" << to_wait << ")" << std::endl;
init_globals->task_environment_->FastForwardBy(to_wait);
base::Time curr_time = base::Time::Now();
saved_times_[command.fast_forward_by().time_id()] = curr_time;
// MAYBE_PRINT << "Saved time " << curr_time << std::endl;
break;
}
case disk_cache_fuzzer::FuzzCommand::kDoomEntriesSince: {
if (!cache_)
continue;
// App cache does not keep track of LRU timestamps so this method cannot
// be used.
if (type == net::APP_CACHE)
continue;
if (saved_times_.empty())
continue;
const disk_cache_fuzzer::DoomEntriesSince& des =
command.doom_entries_since();
auto time_it = GetNextValue(&saved_times_, des.time_id());
bool async = des.async();
net::TestCompletionCallback tcb;
net::CompletionOnceCallback cb =
!async ? tcb.callback() : GetIOCallback(IOType::DoomEntriesSince);
MAYBE_PRINT << "DoomEntriesSince(" << time_it->second << ")"
<< std::flush;
int rv = cache_->DoomEntriesSince(time_it->second, std::move(cb));
if (!async)
rv = tcb.GetResult(rv);
MAYBE_PRINT << " = " << rv << std::endl;
break;
}
case disk_cache_fuzzer::FuzzCommand::kDoomEntriesBetween: {
if (!cache_)
continue;
// App cache does not keep track of LRU timestamps so this method cannot
// be used.
if (type == net::APP_CACHE)
continue;
if (saved_times_.empty())
continue;
const disk_cache_fuzzer::DoomEntriesBetween& deb =
command.doom_entries_between();
auto time_it1 = GetNextValue(&saved_times_, deb.time_id1());
auto time_it2 = GetNextValue(&saved_times_, deb.time_id2());
base::Time time1 = time_it1->second;
base::Time time2 = time_it2->second;
if (time1 > time2)
std::swap(time1, time2);
bool async = deb.async();
net::TestCompletionCallback tcb;
net::CompletionOnceCallback cb =
!async ? tcb.callback() : GetIOCallback(IOType::DoomEntriesBetween);
MAYBE_PRINT << "DoomEntriesBetween(" << time1 << ", " << time2 << ")"
<< std::flush;
int rv = cache_->DoomEntriesBetween(time1, time2, std::move(cb));
if (!async)
rv = tcb.GetResult(rv);
MAYBE_PRINT << " = " << rv << std::endl;
break;
}
case disk_cache_fuzzer::FuzzCommand::kOnExternalCacheHit: {
if (!cache_)
continue;
if (created_cache_entries_.empty())
continue;
uint64_t key_id = command.on_external_cache_hit().key_id();
auto key_it = GetNextValue(&created_cache_entries_, key_id);
MAYBE_PRINT << "OnExternalCacheHit(\"" << key_it->second << "\")"
<< std::endl;
cache_->OnExternalCacheHit(key_it->second);
break;
}
case disk_cache_fuzzer::FuzzCommand::kTrimForTest: {
// Blockfile-cache specific method.
if (!block_impl_ || type != net::DISK_CACHE)
return;
MAYBE_PRINT << "TrimForTest()" << std::endl;
RunTaskForTest(base::BindOnce(&disk_cache::BackendImpl::TrimForTest,
base::Unretained(block_impl_),
command.trim_for_test().empty()));
break;
}
case disk_cache_fuzzer::FuzzCommand::kTrimDeletedListForTest: {
// Blockfile-cache specific method.
if (!block_impl_ || type != net::DISK_CACHE)
return;
MAYBE_PRINT << "TrimDeletedListForTest()" << std::endl;
RunTaskForTest(
base::BindOnce(&disk_cache::BackendImpl::TrimDeletedListForTest,
base::Unretained(block_impl_),
command.trim_deleted_list_for_test().empty()));
break;
}
case disk_cache_fuzzer::FuzzCommand::kGetAvailableRange: {
if (open_cache_entries_.empty())
continue;
const disk_cache_fuzzer::GetAvailableRange& gar =
command.get_available_range();
auto entry_it = GetNextValue(&open_cache_entries_, gar.entry_id());
if (!IsValidEntry(&entry_it->second) ||
!sparse_entry_tracker_[entry_it->second.entry_ptr])
continue;
disk_cache::Entry* entry = entry_it->second.entry_ptr;
uint32_t offset = gar.offset() % kMaxEntrySize;
uint32_t len = gar.len() % kMaxEntrySize;
bool async = gar.async();
auto result_checker = base::BindRepeating(
[](net::CompletionOnceCallback callback, uint32_t offset,
uint32_t len, const disk_cache::RangeResult& result) {
std::move(callback).Run(result.net_error);
if (result.net_error <= 0)
return;
// Make sure that the result is contained in what was
// requested. It doesn't have to be the same even if there was
// an exact corresponding write, since representation of ranges
// may be imprecise, and here we don't know that there was.
// No overflow thanks to % kMaxEntrySize.
net::Interval<uint32_t> requested(offset, offset + len);
uint32_t range_start, range_end;
base::CheckedNumeric<uint64_t> range_start64(result.start);
CHECK(range_start64.AssignIfValid(&range_start));
base::CheckedNumeric<uint64_t> range_end64 =
range_start + result.available_len;
CHECK(range_end64.AssignIfValid(&range_end));
net::Interval<uint32_t> gotten(range_start, range_end);
CHECK(requested.Contains(gotten));
},
GetIOCallback(IOType::GetAvailableRange), offset, len);
TestRangeResultCompletionCallback tcb;
disk_cache::RangeResultCallback cb =
!async ? tcb.callback() : result_checker;
MAYBE_PRINT << "GetAvailableRange(\"" << entry->GetKey() << "\", "
<< offset << ", " << len << ")" << std::flush;
disk_cache::RangeResult result =
entry->GetAvailableRange(offset, len, std::move(cb));
if (result.net_error != net::ERR_IO_PENDING) {
// Run the checker callback ourselves.
result_checker.Run(result);
} else if (!async) {
// In this case the callback will be run by the backend, so we don't
// need to do it manually.
result = tcb.GetResult(result);
}
// Finally, take care of printing.
if (async && result.net_error == net::ERR_IO_PENDING) {
MAYBE_PRINT << " = net::ERR_IO_PENDING (async)" << std::endl;
} else {
MAYBE_PRINT << " = " << result.net_error
<< ", start = " << result.start
<< ", available_len = " << result.available_len;
if (result.net_error < 0) {
MAYBE_PRINT << ", error to string: "
<< net::ErrorToShortString(result.net_error)
<< std::endl;
} else {
MAYBE_PRINT << std::endl;
}
}
break;
}
case disk_cache_fuzzer::FuzzCommand::kCancelSparseIo: {
if (open_cache_entries_.empty())
continue;
const disk_cache_fuzzer::CancelSparseIO& csio =
command.cancel_sparse_io();
auto entry_it = GetNextValue(&open_cache_entries_, csio.entry_id());
if (!IsValidEntry(&entry_it->second))
continue;
MAYBE_PRINT << "CancelSparseIO(\""
<< entry_it->second.entry_ptr->GetKey() << "\")"
<< std::endl;
entry_it->second.entry_ptr->CancelSparseIO();
break;
}
case disk_cache_fuzzer::FuzzCommand::kDoomKey: {
if (!cache_)
continue;
if (created_cache_entries_.empty())
continue;
const disk_cache_fuzzer::DoomKey& dk = command.doom_key();
uint64_t key_id = dk.key_id();
net::RequestPriority pri = GetRequestPriority(dk.pri());
bool async = dk.async();
auto key_it = GetNextValue(&created_cache_entries_, key_id);
net::TestCompletionCallback tcb;
net::CompletionOnceCallback cb =
!async ? tcb.callback() : GetIOCallback(IOType::DoomKey);
MAYBE_PRINT << "DoomKey(\"" << key_it->second << "\")" << std::flush;
int rv = cache_->DoomEntry(key_it->second, pri, std::move(cb));
if (!async)
rv = tcb.GetResult(rv);
MAYBE_PRINT << " = " << rv << std::endl;
break;
}
case disk_cache_fuzzer::FuzzCommand::kDestructBackend: {
// Block_impl_ will leak if we destruct the backend without closing
// previous entries.
// TODO(mpdenton) consider creating a separate fuzz target that allows
// closing the |block_impl_| and ignore leaks.
if (block_impl_ || !cache_)
continue;
const disk_cache_fuzzer::DestructBackend& db =
command.destruct_backend();
// Only sometimes actually destruct the backend.
if (!db.actually_destruct1() || !db.actually_destruct2())
continue;
MAYBE_PRINT << "~Backend(). Backend destruction." << std::endl;
cache_.reset();
break;
}
case disk_cache_fuzzer::FuzzCommand::kRecreateWithSize: {
if (!cache_) {
continue;
}
MAYBE_PRINT << "RecreateWithSize("
<< command.recreate_with_size().size() << ")" << std::endl;
ShutdownBackend();
// re-create backend with same config but (potentially) different size.
CreateBackend(commands.cache_backend(), mask,
&command.recreate_with_size(), type,
commands.simple_cache_wait_for_index());
break;
}
case disk_cache_fuzzer::FuzzCommand::kAddRealDelay: {
if (!command.add_real_delay().actually_delay())
continue;
MAYBE_PRINT << "AddRealDelay(1ms)" << std::endl;
base::PlatformThread::Sleep(base::Milliseconds(1));
break;
}
case disk_cache_fuzzer::FuzzCommand::FUZZ_COMMAND_ONEOF_NOT_SET: {
continue;
}
}
}
}
int64_t DiskCacheLPMFuzzer::ComputeMaxSize(
const disk_cache_fuzzer::SetMaxSize* maybe_max_size) {
if (!maybe_max_size) {
return 0; // tell backend to use default.
}
int64_t max_size = maybe_max_size->size();
max_size %= kMaxSizeKB;
max_size *= 1024;
MAYBE_PRINT << "ComputeMaxSize(" << max_size << ")" << std::endl;
return max_size;
}
void DiskCacheLPMFuzzer::CreateBackend(
disk_cache_fuzzer::FuzzCommands::CacheBackend cache_backend,
uint32_t mask,
const disk_cache_fuzzer::SetMaxSize* maybe_max_size,
net::CacheType type,
bool simple_cache_wait_for_index) {
scoped_refptr<disk_cache::BackendCleanupTracker> cleanup_tracker;
if (cache_backend != disk_cache_fuzzer::FuzzCommands::IN_MEMORY) {
// Make sure nothing is still messing with the directory.
int count = 0;
while (true) {
++count;
CHECK_LT(count, 1000);
base::RunLoop run_dir_ready;
cleanup_tracker = disk_cache::BackendCleanupTracker::TryCreate(
cache_path_, run_dir_ready.QuitClosure());
if (cleanup_tracker) {
break;
} else {
run_dir_ready.Run();
}
}
}
if (cache_backend == disk_cache_fuzzer::FuzzCommands::IN_MEMORY) {
MAYBE_PRINT << "Using in-memory cache." << std::endl;
auto cache = disk_cache::MemBackendImpl::CreateBackend(
ComputeMaxSize(maybe_max_size), /*net_log=*/nullptr);
mem_cache_ = cache.get();
cache_ = std::move(cache);
CHECK(cache_);
} else if (cache_backend == disk_cache_fuzzer::FuzzCommands::SIMPLE) {
MAYBE_PRINT << "Using simple cache." << std::endl;
net::TestCompletionCallback cb;
// We limit ourselves to 64 fds since OS X by default gives us 256.
// (Chrome raises the number on startup, but the fuzzer doesn't).
if (!simple_file_tracker_)
simple_file_tracker_ =
std::make_unique<disk_cache::SimpleFileTracker>(kMaxFdsSimpleCache);
auto simple_backend = std::make_unique<disk_cache::SimpleBackendImpl>(
/*file_operations=*/nullptr, cache_path_, std::move(cleanup_tracker),
simple_file_tracker_.get(), ComputeMaxSize(maybe_max_size), type,
/*net_log=*/nullptr);
simple_backend->Init(cb.callback());
CHECK_EQ(cb.WaitForResult(), net::OK);
simple_cache_impl_ = simple_backend.get();
cache_ = std::move(simple_backend);
if (simple_cache_wait_for_index) {
MAYBE_PRINT << "Waiting for simple cache index to be ready..."
<< std::endl;
net::TestCompletionCallback wait_for_index_cb;
simple_cache_impl_->index()->ExecuteWhenReady(
wait_for_index_cb.callback());
int rv = wait_for_index_cb.WaitForResult();
CHECK_EQ(rv, net::OK);
}
} else {
MAYBE_PRINT << "Using blockfile cache";
std::unique_ptr<disk_cache::BackendImpl> cache;
if (mask) {
MAYBE_PRINT << ", mask = " << mask << std::endl;
cache = std::make_unique<disk_cache::BackendImpl>(
cache_path_, mask,
/* cleanup_tracker = */ std::move(cleanup_tracker),
/* runner = */ nullptr, type,
/* net_log = */ nullptr);
} else {
MAYBE_PRINT << "." << std::endl;
cache = std::make_unique<disk_cache::BackendImpl>(
cache_path_,
/* cleanup_tracker = */ std::move(cleanup_tracker),
/* runner = */ nullptr, type,
/* net_log = */ nullptr);
}
cache->SetMaxSize(ComputeMaxSize(maybe_max_size));
block_impl_ = cache.get();
cache_ = std::move(cache);
CHECK(cache_);
// TODO(mpdenton) kNoRandom or not? It does a lot of waiting for IO. May be
// good for avoiding leaks but tests a less realistic cache.
// block_impl_->SetFlags(disk_cache::kNoRandom);
// TODO(mpdenton) should I always wait here?
net::TestCompletionCallback cb;
block_impl_->Init(cb.callback());
CHECK_EQ(cb.WaitForResult(), net::OK);
}
}
void DiskCacheLPMFuzzer::CloseAllRemainingEntries() {
for (auto& entry_info : open_cache_entries_) {
disk_cache::Entry** entry_ptr = &entry_info.second.entry_ptr;
if (!*entry_ptr)
continue;
MAYBE_PRINT << "Destructor CloseEntry(\"" << (*entry_ptr)->GetKey() << "\")"
<< std::endl;
(*entry_ptr)->Close();
*entry_ptr = nullptr;
}
}
void DiskCacheLPMFuzzer::ShutdownBackend() {
// |block_impl_| leaks a lot more if we don't close entries before destructing
// the backend.
if (block_impl_) {
// TODO(mpdenton) Consider creating a fuzz target that does not wait for
// blockfile, and also does not detect leaks.
// Because the blockfile backend will leak any entries closed after its
// destruction, we need to wait for any remaining backend callbacks to
// finish. Otherwise, there will always be a race between handling callbacks
// with RunUntilIdle() and actually closing all of the remaining entries.
// And, closing entries after destructing the backend will not work and
// cause leaks.
for (auto& entry_it : open_cache_entries_) {
if (entry_it.second.tcb) {
WaitOnEntry(&entry_it.second);
}
}
// Destroy any open iterators before destructing the backend so we don't
// cause leaks. TODO(mpdenton) should maybe be documented?
// Also *must* happen after waiting for all OpenNextEntry callbacks to
// finish, because destructing the iterators may cause those callbacks to be
// cancelled, which will cause WaitOnEntry() to spin forever waiting.
// TODO(mpdenton) should also be documented?
open_iterators_.clear();
// Just in case, finish any callbacks.
init_globals->task_environment_->RunUntilIdle();
// Close all entries that haven't been closed yet.
CloseAllRemainingEntries();
// Destroy the backend.
cache_.reset();
} else {
// Here we won't bother with waiting for our OpenEntry* callbacks.
cache_.reset();
// Finish any callbacks that came in before backend destruction.
init_globals->task_environment_->RunUntilIdle();
// Close all entries that haven't been closed yet.
CloseAllRemainingEntries();
}
// Make sure any tasks triggered by the CloseEntry's have run.
init_globals->task_environment_->RunUntilIdle();
if (simple_cache_impl_)
CHECK(simple_file_tracker_->IsEmptyForTesting());
base::RunLoop().RunUntilIdle();
}
DiskCacheLPMFuzzer::~DiskCacheLPMFuzzer() {
ShutdownBackend();
DeleteCache(cache_path_);
}
DEFINE_BINARY_PROTO_FUZZER(const disk_cache_fuzzer::FuzzCommands& commands) {
{
DiskCacheLPMFuzzer disk_cache_fuzzer_instance;
disk_cache_fuzzer_instance.RunCommands(commands);
}
MAYBE_PRINT << "-----------------------" << std::endl;
}
//
|