1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/disk_cache/simple/simple_index.h"
#include <algorithm>
#include <limits>
#include <string>
#include <utility>
#include "base/check_op.h"
#include "base/files/file_util.h"
#include "base/functional/bind.h"
#include "base/numerics/safe_conversions.h"
#include "base/pickle.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_tokenizer.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/task_runner.h"
#include "base/time/time.h"
#include "base/trace_event/memory_usage_estimator.h"
#include "build/build_config.h"
#include "net/base/features.h"
#include "net/base/net_errors.h"
#include "net/disk_cache/backend_cleanup_tracker.h"
#include "net/disk_cache/memory_entry_data_hints.h"
#include "net/disk_cache/simple/simple_entry_format.h"
#include "net/disk_cache/simple/simple_histogram_macros.h"
#include "net/disk_cache/simple/simple_index_delegate.h"
#include "net/disk_cache/simple/simple_index_file.h"
#include "net/disk_cache/simple/simple_synchronous_entry.h"
#include "net/disk_cache/simple/simple_util.h"
#if BUILDFLAG(IS_POSIX)
#include <sys/stat.h>
#include <sys/time.h>
#endif
namespace {
// How many milliseconds we delay writing the index to disk since the last cache
// operation has happened.
constexpr int kWriteToDiskDelayMSecs = 20000;
constexpr int kWriteToDiskOnBackgroundDelayMSecs = 100;
// Divides the cache space into this amount of parts to evict when only one part
// is left.
constexpr uint32_t kEvictionMarginDivisor = 20;
constexpr uint32_t kBytesInKb = 1024;
// This is added to the size of each entry before using the size
// to determine which entries to evict first. It's basically an
// estimate of the filesystem overhead, but it also serves to flatten
// the curve so that 1-byte entries and 2-byte entries are basically
// treated the same.
constexpr int kEstimatedEntryOverhead = 512;
// On the disk, the entry info is filled in like following:
// (upper bits)
// 26 bits: empty
// 30 bits: `entry_size_256b_chunks_`
// 6 bits: empty
// 2 bits: `in_memory_data_`
// (lower bits)
//
// | 26 bits | 30 bits | 6 bits | 2 bits |
// | (empty) | entry_size_256b_chunks_ | (empty) | in_memory_data_ |
uint64_t PackEntrySizeAndInMemoryData(uint32_t entry_size_256b_chunks,
uint8_t in_memory_data) {
return (static_cast<uint64_t>(entry_size_256b_chunks) << 8) |
static_cast<uint64_t>(in_memory_data);
}
struct EntryMetadataParams {
EntryMetadataParams(uint32_t entry_size_256b_chunks, uint8_t in_memory_data)
: entry_size_256b_chunks(entry_size_256b_chunks),
in_memory_data(in_memory_data) {}
uint32_t entry_size_256b_chunks;
uint8_t in_memory_data;
};
EntryMetadataParams UnpackEntrySizeAndInMemoryData(uint64_t tmp_entry_size) {
EntryMetadataParams params(static_cast<uint32_t>(tmp_entry_size >> 8),
static_cast<uint8_t>(tmp_entry_size & 0x03));
return params;
}
} // namespace
namespace disk_cache {
EntryMetadata::EntryMetadata()
: last_used_time_seconds_since_epoch_(0),
entry_size_256b_chunks_(0),
in_memory_data_(0) {}
EntryMetadata::EntryMetadata(base::Time last_used_time,
base::StrictNumeric<uint64_t> entry_size)
: last_used_time_seconds_since_epoch_(0),
entry_size_256b_chunks_(0),
in_memory_data_(0) {
CHECK(SetEntrySize(entry_size))
<< "Failed to create EntryMetadata due to too large entry_size: "
<< static_cast<uint64_t>(entry_size);
SetLastUsedTime(last_used_time);
}
EntryMetadata::EntryMetadata(int32_t trailer_prefetch_size,
base::StrictNumeric<uint64_t> entry_size)
: trailer_prefetch_size_(0),
entry_size_256b_chunks_(0),
in_memory_data_(0) {
CHECK(SetEntrySize(entry_size))
<< "Failed to create EntryMetadata due to too large entry_size: "
<< static_cast<uint64_t>(entry_size);
SetTrailerPrefetchSize(trailer_prefetch_size);
}
base::Time EntryMetadata::GetLastUsedTime() const {
// Preserve nullity.
if (last_used_time_seconds_since_epoch_ == 0)
return base::Time();
return base::Time::UnixEpoch() +
base::Seconds(last_used_time_seconds_since_epoch_);
}
void EntryMetadata::SetLastUsedTime(const base::Time& last_used_time) {
// Preserve nullity.
if (last_used_time.is_null()) {
last_used_time_seconds_since_epoch_ = 0;
return;
}
last_used_time_seconds_since_epoch_ = base::saturated_cast<uint32_t>(
(last_used_time - base::Time::UnixEpoch()).InSeconds());
// Avoid accidental nullity.
if (last_used_time_seconds_since_epoch_ == 0)
last_used_time_seconds_since_epoch_ = 1;
}
int32_t EntryMetadata::GetTrailerPrefetchSize() const {
return trailer_prefetch_size_;
}
void EntryMetadata::SetTrailerPrefetchSize(int32_t size) {
if (size <= 0)
return;
trailer_prefetch_size_ = size;
}
uint64_t EntryMetadata::GetEntrySize() const {
return static_cast<uint64_t>(entry_size_256b_chunks_) << 8;
}
bool EntryMetadata::SetEntrySize(base::StrictNumeric<uint64_t> entry_size) {
// This should not overflow since we limit entries to 1/8th of the cache.
uint64_t rounded_chunk = (static_cast<uint64_t>(entry_size) + 255) >> 8;
// `entry_size_256b_chunks_` is a 30 bits field. Cannot be over the max.
if (rounded_chunk >> 30) {
return false;
}
entry_size_256b_chunks_ = rounded_chunk;
return true;
}
uint8_t EntryMetadata::GetInMemoryData() const {
return in_memory_data_;
}
void EntryMetadata::SetInMemoryData(uint8_t val) {
// Memory data should only use 2 bits.
CHECK_LE(val, 3);
in_memory_data_ = val;
}
void EntryMetadata::Serialize(net::CacheType cache_type,
base::Pickle* pickle) const {
DCHECK(pickle);
// If you modify the size of the size of the pickle, be sure to update
// kOnDiskSizeBytes.
uint64_t packed_entry_info =
PackEntrySizeAndInMemoryData(entry_size_256b_chunks_, in_memory_data_);
if (cache_type == net::APP_CACHE) {
pickle->WriteInt64(trailer_prefetch_size_);
} else {
int64_t internal_last_used_time = GetLastUsedTime().ToInternalValue();
pickle->WriteInt64(internal_last_used_time);
}
pickle->WriteUInt64(packed_entry_info);
}
bool EntryMetadata::Deserialize(net::CacheType cache_type,
base::PickleIterator* it,
bool app_cache_has_trailer_prefetch_size) {
DCHECK(it);
int64_t tmp_time_or_prefetch_size;
uint64_t tmp_entry_size;
// The entry size must fit within 38 bits.
if (!it->ReadInt64(&tmp_time_or_prefetch_size) ||
!it->ReadUInt64(&tmp_entry_size) || tmp_entry_size >> 38) {
return false;
}
if (cache_type == net::APP_CACHE) {
if (app_cache_has_trailer_prefetch_size) {
int32_t trailer_prefetch_size = 0;
base::CheckedNumeric<int32_t> numeric_size(tmp_time_or_prefetch_size);
if (numeric_size.AssignIfValid(&trailer_prefetch_size)) {
SetTrailerPrefetchSize(trailer_prefetch_size);
}
}
} else {
SetLastUsedTime(base::Time::FromInternalValue(tmp_time_or_prefetch_size));
}
// tmp_entry_size actually packs entry_size_256b_chunks_ and
// in_memory_data_.
auto params = UnpackEntrySizeAndInMemoryData(tmp_entry_size);
entry_size_256b_chunks_ = params.entry_size_256b_chunks;
SetInMemoryData(params.in_memory_data);
return true;
}
SimpleIndex::SimpleIndex(
const scoped_refptr<base::SequencedTaskRunner>& task_runner,
scoped_refptr<BackendCleanupTracker> cleanup_tracker,
SimpleIndexDelegate* delegate,
net::CacheType cache_type,
std::unique_ptr<SimpleIndexFile> index_file)
: cleanup_tracker_(std::move(cleanup_tracker)),
delegate_(delegate),
cache_type_(cache_type),
index_file_(std::move(index_file)),
task_runner_(task_runner),
prioritized_caching_enabled_(base::FeatureList::IsEnabled(
net::features::kSimpleCachePrioritizedCaching)),
caching_prioritization_factor_(
net::features::kSimpleCachePrioritizedCachingPrioritizationFactor
.Get()),
caching_prioritization_period_in_seconds_(static_cast<uint64_t>(
net::features::kSimpleCachePrioritizedCachingPrioritizationPeriod
.Get()
.InSeconds())) {
// Creating the callback once so it is reused every time
// write_to_disk_timer_.Start() is called.
write_to_disk_cb_ = base::BindRepeating(&SimpleIndex::WriteToDisk,
weak_ptr_factory_.GetWeakPtr(),
INDEX_WRITE_REASON_IDLE);
}
SimpleIndex::~SimpleIndex() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Fail all callbacks waiting for the index to come up.
for (auto& callback : to_run_when_initialized_) {
std::move(callback).Run(net::ERR_ABORTED);
}
}
void SimpleIndex::Initialize(base::Time cache_mtime) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
#if BUILDFLAG(IS_ANDROID)
if (app_status_listener_getter_) {
base::android::ApplicationStatusListener* listener =
app_status_listener_getter_.Run();
if (listener) {
listener->SetCallback(
base::BindRepeating(&SimpleIndex::OnApplicationStateChange,
weak_ptr_factory_.GetWeakPtr()));
}
// Not using the fallback on purpose here --- if the getter is set, we may
// be in a process where the base::android::ApplicationStatusListener::New
// impl is unavailable.
// (See https://crbug.com/881572)
} else if (base::android::IsJavaAvailable()) {
owned_app_status_listener_ = base::android::ApplicationStatusListener::New(
base::BindRepeating(&SimpleIndex::OnApplicationStateChange,
weak_ptr_factory_.GetWeakPtr()));
}
#endif
auto load_result = std::make_unique<SimpleIndexLoadResult>();
auto* load_result_ptr = load_result.get();
index_file_->LoadIndexEntries(
cache_mtime,
base::BindOnce(&SimpleIndex::MergeInitializingSet,
weak_ptr_factory_.GetWeakPtr(), std::move(load_result)),
load_result_ptr);
}
void SimpleIndex::SetMaxSize(uint64_t max_bytes) {
// Zero size means use the default.
if (max_bytes) {
max_size_ = max_bytes;
high_watermark_ = max_size_ - max_size_ / kEvictionMarginDivisor;
low_watermark_ = max_size_ - 2 * (max_size_ / kEvictionMarginDivisor);
}
}
void SimpleIndex::ExecuteWhenReady(net::CompletionOnceCallback task) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (initialized_)
task_runner_->PostTask(FROM_HERE, base::BindOnce(std::move(task), net::OK));
else
to_run_when_initialized_.push_back(std::move(task));
}
std::unique_ptr<SimpleIndex::HashList> SimpleIndex::GetEntriesBetween(
base::Time initial_time,
base::Time end_time) {
DCHECK_EQ(true, initialized_);
// The net::APP_CACHE mode does not track access times. Assert that external
// consumers are not relying on access time ranges.
DCHECK(cache_type_ != net::APP_CACHE ||
(initial_time.is_null() && end_time.is_null()));
if (!initial_time.is_null())
initial_time -= EntryMetadata::GetLowerEpsilonForTimeComparisons();
if (end_time.is_null())
end_time = base::Time::Max();
else
end_time += EntryMetadata::GetUpperEpsilonForTimeComparisons();
DCHECK(end_time >= initial_time);
auto ret_hashes = std::make_unique<HashList>();
for (const auto& entry : entries_set_) {
const EntryMetadata& metadata = entry.second;
base::Time entry_time = metadata.GetLastUsedTime();
if (initial_time <= entry_time && entry_time < end_time)
ret_hashes->push_back(entry.first);
}
return ret_hashes;
}
std::unique_ptr<SimpleIndex::HashList> SimpleIndex::GetAllHashes() {
return GetEntriesBetween(base::Time(), base::Time());
}
int32_t SimpleIndex::GetEntryCount() const {
// TODO(pasko): return a meaningful initial estimate before initialized.
return entries_set_.size();
}
uint64_t SimpleIndex::GetCacheSize() const {
DCHECK(initialized_);
return cache_size_;
}
uint64_t SimpleIndex::GetCacheSizeBetween(base::Time initial_time,
base::Time end_time) const {
DCHECK_EQ(true, initialized_);
if (!initial_time.is_null())
initial_time -= EntryMetadata::GetLowerEpsilonForTimeComparisons();
if (end_time.is_null())
end_time = base::Time::Max();
else
end_time += EntryMetadata::GetUpperEpsilonForTimeComparisons();
DCHECK(end_time >= initial_time);
uint64_t size = 0;
for (const auto& entry : entries_set_) {
const EntryMetadata& metadata = entry.second;
base::Time entry_time = metadata.GetLastUsedTime();
if (initial_time <= entry_time && entry_time < end_time)
size += metadata.GetEntrySize();
}
return size;
}
base::Time SimpleIndex::GetLastUsedTime(uint64_t entry_hash) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK_NE(cache_type_, net::APP_CACHE);
auto it = entries_set_.find(entry_hash);
if (it == entries_set_.end())
return base::Time();
return it->second.GetLastUsedTime();
}
void SimpleIndex::SetLastUsedTimeForTest(uint64_t entry_hash,
const base::Time last_used) {
auto it = entries_set_.find(entry_hash);
CHECK(it != entries_set_.end());
it->second.SetLastUsedTime(last_used);
}
bool SimpleIndex::HasPendingWrite() const {
return write_to_disk_timer_.IsRunning();
}
void SimpleIndex::Insert(uint64_t entry_hash) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Upon insert we don't know yet the size of the entry.
// It will be updated later when the SimpleEntryImpl finishes opening or
// creating the new entry, and then UpdateEntrySize will be called.
bool inserted = false;
if (cache_type_ == net::APP_CACHE) {
inserted =
InsertInEntrySet(entry_hash, EntryMetadata(-1, 0u), &entries_set_);
} else {
inserted = InsertInEntrySet(
entry_hash, EntryMetadata(base::Time::Now(), 0u), &entries_set_);
}
if (!initialized_)
removed_entries_.erase(entry_hash);
if (inserted)
PostponeWritingToDisk();
}
void SimpleIndex::Remove(uint64_t entry_hash) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
bool need_write = false;
auto it = entries_set_.find(entry_hash);
if (it != entries_set_.end()) {
UpdateEntryIteratorSize(&it, 0u);
entries_set_.erase(it);
need_write = true;
}
if (!initialized_)
removed_entries_.insert(entry_hash);
if (need_write)
PostponeWritingToDisk();
}
bool SimpleIndex::Has(uint64_t hash) const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// If not initialized, always return true, forcing it to go to the disk.
return !initialized_ || entries_set_.count(hash) > 0;
}
uint8_t SimpleIndex::GetEntryInMemoryData(uint64_t entry_hash) const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
auto it = entries_set_.find(entry_hash);
if (it == entries_set_.end())
return 0;
return it->second.GetInMemoryData();
}
void SimpleIndex::SetEntryInMemoryData(uint64_t entry_hash, uint8_t value) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
auto it = entries_set_.find(entry_hash);
if (it == entries_set_.end())
return;
return it->second.SetInMemoryData(value);
}
bool SimpleIndex::UseIfExists(uint64_t entry_hash) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Always update the last used time, even if it is during initialization.
// It will be merged later.
auto it = entries_set_.find(entry_hash);
if (it == entries_set_.end())
// If not initialized, always return true, forcing it to go to the disk.
return !initialized_;
// We do not need to track access times in APP_CACHE mode.
if (cache_type_ == net::APP_CACHE)
return true;
it->second.SetLastUsedTime(base::Time::Now());
PostponeWritingToDisk();
return true;
}
void SimpleIndex::StartEvictionIfNeeded() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (eviction_in_progress_ || cache_size_ <= high_watermark_)
return;
// Take all live key hashes from the index and sort them by time.
eviction_in_progress_ = true;
eviction_start_time_ = base::TimeTicks::Now();
const bool use_size_heuristic =
(cache_type_ != net::GENERATED_BYTE_CODE_CACHE &&
cache_type_ != net::GENERATED_WEBUI_BYTE_CODE_CACHE);
// Flatten for sorting.
std::vector<std::pair<uint64_t, const EntrySet::value_type*>> entries;
entries.reserve(entries_set_.size());
uint32_t now = (base::Time::Now() - base::Time::UnixEpoch()).InSeconds();
for (EntrySet::const_iterator i = entries_set_.begin();
i != entries_set_.end(); ++i) {
const uint64_t time_since_last_used = now - i->second.RawTimeForSorting();
uint64_t sort_value = time_since_last_used;
// See crbug.com/736437 for context.
//
// Will not overflow since we're multiplying two 32-bit values and storing
// them in a 64-bit variable.
if (use_size_heuristic) {
sort_value *= i->second.GetEntrySize() + kEstimatedEntryOverhead;
// When prioritized caching is enabled, we want to evict entries that are
// not prioritized before entries that are prioritized. So we divide the
// sort value by the `caching_prioritization_factor`.
if (prioritized_caching_enabled_ &&
time_since_last_used < caching_prioritization_period_in_seconds_ &&
(i->second.GetInMemoryData() & HINT_HIGH_PRIORITY) ==
HINT_HIGH_PRIORITY) {
sort_value /= caching_prioritization_factor_;
}
}
// Subtract so we don't need a custom comparator.
entries.emplace_back(std::numeric_limits<uint64_t>::max() - sort_value,
&*i);
}
uint64_t evicted_so_far_size = 0;
const uint64_t amount_to_evict = cache_size_ - low_watermark_;
std::vector<uint64_t> entry_hashes;
std::sort(entries.begin(), entries.end());
for (const auto& score_metadata_pair : entries) {
if (evicted_so_far_size >= amount_to_evict)
break;
evicted_so_far_size += score_metadata_pair.second->second.GetEntrySize();
entry_hashes.push_back(score_metadata_pair.second->first);
}
SIMPLE_CACHE_UMA(COUNTS_1M,
"Eviction.EntryCount", cache_type_, entry_hashes.size());
SIMPLE_CACHE_UMA(TIMES,
"Eviction.TimeToSelectEntries", cache_type_,
base::TimeTicks::Now() - eviction_start_time_);
delegate_->DoomEntries(&entry_hashes,
base::BindOnce(&SimpleIndex::EvictionDone,
weak_ptr_factory_.GetWeakPtr()));
}
int32_t SimpleIndex::GetTrailerPrefetchSize(uint64_t entry_hash) const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK_EQ(cache_type_, net::APP_CACHE);
auto it = entries_set_.find(entry_hash);
if (it == entries_set_.end())
return -1;
return it->second.GetTrailerPrefetchSize();
}
void SimpleIndex::SetTrailerPrefetchSize(uint64_t entry_hash, int32_t size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK_EQ(cache_type_, net::APP_CACHE);
auto it = entries_set_.find(entry_hash);
if (it == entries_set_.end())
return;
int32_t original_size = it->second.GetTrailerPrefetchSize();
it->second.SetTrailerPrefetchSize(size);
if (original_size != it->second.GetTrailerPrefetchSize())
PostponeWritingToDisk();
}
bool SimpleIndex::UpdateEntrySize(uint64_t entry_hash,
base::StrictNumeric<uint32_t> entry_size) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
auto it = entries_set_.find(entry_hash);
if (it == entries_set_.end())
return false;
// Update the entry size. If there was no change, then there is nothing
// else to do here.
if (!UpdateEntryIteratorSize(&it, entry_size))
return true;
PostponeWritingToDisk();
StartEvictionIfNeeded();
return true;
}
void SimpleIndex::EvictionDone(int result) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Ignore the result of eviction. We did our best.
eviction_in_progress_ = false;
SIMPLE_CACHE_UMA(TIMES,
"Eviction.TimeToDone", cache_type_,
base::TimeTicks::Now() - eviction_start_time_);
}
// static
bool SimpleIndex::InsertInEntrySet(
uint64_t entry_hash,
const disk_cache::EntryMetadata& entry_metadata,
EntrySet* entry_set) {
DCHECK(entry_set);
auto result = entry_set->emplace(entry_hash, entry_metadata);
return result.second;
}
void SimpleIndex::InsertEntryForTesting(uint64_t entry_hash,
const EntryMetadata& entry_metadata) {
DCHECK(entries_set_.find(entry_hash) == entries_set_.end());
if (InsertInEntrySet(entry_hash, entry_metadata, &entries_set_))
cache_size_ += entry_metadata.GetEntrySize();
}
void SimpleIndex::PostponeWritingToDisk() {
if (!initialized_)
return;
const int delay = app_on_background_ ? kWriteToDiskOnBackgroundDelayMSecs
: kWriteToDiskDelayMSecs;
// If the timer is already active, Start() will just Reset it, postponing it.
write_to_disk_timer_.Start(FROM_HERE, base::Milliseconds(delay),
write_to_disk_cb_);
}
bool SimpleIndex::UpdateEntryIteratorSize(
EntrySet::iterator* it,
base::StrictNumeric<uint32_t> entry_size) {
// Update the total cache size with the new entry size.
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK_GE(cache_size_, (*it)->second.GetEntrySize());
uint32_t original_size = (*it)->second.GetEntrySize();
// If SetEntrySize fails, we cannot update the entry iterator correctly.
if (!(*it)->second.SetEntrySize(entry_size)) {
LOG(ERROR) << "Could not set the given entry size as it is too large: "
<< static_cast<uint64_t>(entry_size);
return false;
}
cache_size_ -= original_size;
// We use GetEntrySize to get consistent rounding.
cache_size_ += (*it)->second.GetEntrySize();
// Return true if the size of the entry actually changed. Make sure to
// compare the rounded values provided by GetEntrySize().
return original_size != (*it)->second.GetEntrySize();
}
void SimpleIndex::MergeInitializingSet(
std::unique_ptr<SimpleIndexLoadResult> load_result) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
EntrySet* index_file_entries = &load_result->entries;
for (uint64_t removed_entry : removed_entries_) {
index_file_entries->erase(removed_entry);
}
removed_entries_.clear();
for (const auto& it : entries_set_) {
const uint64_t entry_hash = it.first;
std::pair<EntrySet::iterator, bool> insert_result =
index_file_entries->insert(EntrySet::value_type(entry_hash,
EntryMetadata()));
EntrySet::iterator& possibly_inserted_entry = insert_result.first;
possibly_inserted_entry->second = it.second;
}
uint64_t merged_cache_size = 0;
for (const auto& index_file_entry : *index_file_entries) {
merged_cache_size += index_file_entry.second.GetEntrySize();
}
entries_set_.swap(*index_file_entries);
cache_size_ = merged_cache_size;
initialized_ = true;
init_method_ = load_result->init_method;
// The actual IO is asynchronous, so calling WriteToDisk() shouldn't slow the
// merge down much.
if (load_result->flush_required)
WriteToDisk(INDEX_WRITE_REASON_STARTUP_MERGE);
SIMPLE_CACHE_UMA(CUSTOM_COUNTS, "IndexNumEntriesOnInit", cache_type_,
entries_set_.size(), 0, 100000, 50);
SIMPLE_CACHE_UMA(
MEMORY_KB, "CacheSizeOnInit", cache_type_,
static_cast<base::HistogramBase::Sample32>(cache_size_ / kBytesInKb));
SIMPLE_CACHE_UMA(
MEMORY_KB, "MaxCacheSizeOnInit", cache_type_,
static_cast<base::HistogramBase::Sample32>(max_size_ / kBytesInKb));
// Run all callbacks waiting for the index to come up.
for (auto& callback : to_run_when_initialized_) {
task_runner_->PostTask(FROM_HERE,
base::BindOnce(std::move(callback), net::OK));
}
to_run_when_initialized_.clear();
}
#if BUILDFLAG(IS_ANDROID)
void SimpleIndex::OnApplicationStateChange(
base::android::ApplicationState state) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// For more info about android activities, see:
// developer.android.com/training/basics/activity-lifecycle/pausing.html
if (state == base::android::APPLICATION_STATE_HAS_RUNNING_ACTIVITIES) {
app_on_background_ = false;
} else if (state ==
base::android::APPLICATION_STATE_HAS_STOPPED_ACTIVITIES) {
app_on_background_ = true;
WriteToDisk(INDEX_WRITE_REASON_ANDROID_STOPPED);
}
}
#endif
void SimpleIndex::WriteToDisk(IndexWriteToDiskReason reason) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (!initialized_)
return;
// Cancel any pending writes since we are about to write to disk now.
write_to_disk_timer_.Stop();
base::OnceClosure after_write;
if (cleanup_tracker_) {
// Make anyone synchronizing with our cleanup wait for the index to be
// written back.
after_write = base::DoNothingWithBoundArgs(cleanup_tracker_);
}
index_file_->WriteToDisk(cache_type_, reason, entries_set_, cache_size_,
std::move(after_write));
}
} // namespace disk_cache
|