1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This is a simple application that stress-tests the crash recovery of the disk
// cache. The main application starts a copy of itself on a loop, checking the
// exit code of the child process. When the child dies in an unexpected way,
// the main application quits.
// The child application has two threads: one to exercise the cache in an
// infinite loop, and another one to asynchronously kill the process.
// A regular build should never crash.
// To test that the disk cache doesn't generate critical errors with regular
// application level crashes, edit stress_support.h.
#include <algorithm>
#include <string>
#include <string_view>
#include <vector>
#include "base/at_exit.h"
#include "base/command_line.h"
#include "base/debug/debugger.h"
#include "base/files/file_path.h"
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/message_loop/message_pump_type.h"
#include "base/path_service.h"
#include "base/process/launch.h"
#include "base/process/process.h"
#include "base/run_loop.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/task/single_thread_task_executor.h"
#include "base/task/single_thread_task_runner.h"
#include "base/task/thread_pool/thread_pool_instance.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/base/test_completion_callback.h"
#include "net/disk_cache/backend_cleanup_tracker.h"
#include "net/disk_cache/blockfile/backend_impl.h"
#include "net/disk_cache/blockfile/stress_support.h"
#include "net/disk_cache/disk_cache.h"
#include "net/disk_cache/disk_cache_test_util.h"
#if BUILDFLAG(IS_WIN)
#include "base/logging_win.h"
#endif
using base::Time;
const int kError = -1;
const int kExpectedCrash = 100;
// Starts a new process.
int RunSlave(int iteration) {
base::FilePath exe;
base::PathService::Get(base::FILE_EXE, &exe);
base::CommandLine cmdline(exe);
cmdline.AppendArg(base::NumberToString(iteration));
base::Process process = base::LaunchProcess(cmdline, base::LaunchOptions());
if (!process.IsValid()) {
printf("Unable to run test\n");
return kError;
}
int exit_code;
if (!process.WaitForExit(&exit_code)) {
printf("Unable to get return code\n");
return kError;
}
return exit_code;
}
// Main loop for the master process.
int MasterCode() {
for (int i = 0; i < 100000; i++) {
int ret = RunSlave(i);
if (kExpectedCrash != ret)
return ret;
}
printf("More than enough...\n");
return 0;
}
// -----------------------------------------------------------------------
std::string GenerateStressKey() {
char key[20 * 1024];
size_t size = 50 + rand() % 20000;
auto key_span = base::as_writable_byte_span(key);
CacheTestFillBuffer(key_span.first(size), true);
key_span[size - 1] = '\0';
return std::string(key);
}
// kNumKeys is meant to be enough to have about 3x or 4x iterations before
// the process crashes.
#ifdef NDEBUG
const int kNumKeys = 4000;
#else
const int kNumKeys = 1200;
#endif
const int kNumEntries = 30;
const int kBufferSize = 2000;
const int kReadSize = 20;
// Things that an entry can be doing.
enum Operation { NONE, OPEN, CREATE, READ, WRITE, DOOM };
// This class encapsulates a cache entry and the operations performed on that
// entry. An entry is opened or created as needed, the current content is then
// verified and then something is written to the entry. At that point, the
// |state_| becomes NONE again, waiting for another write, unless the entry is
// closed or deleted.
class EntryWrapper {
public:
EntryWrapper() {
buffer_ = base::MakeRefCounted<net::IOBufferWithSize>(kBufferSize);
std::ranges::fill(buffer_->span(), 'k');
}
Operation state() const { return state_; }
void DoOpen(int key);
private:
void OnOpenDone(int key, disk_cache::EntryResult result);
void DoRead();
void OnReadDone(int result);
void DoWrite();
void OnWriteDone(int size, int result);
void DoDelete(const std::string& key);
void OnDeleteDone(int result);
void DoIdle();
disk_cache::Entry* entry_ = nullptr;
Operation state_ = NONE;
scoped_refptr<net::IOBuffer> buffer_;
};
// The data that the main thread is working on.
struct Data {
Data() = default;
int pendig_operations = 0; // Counter of simultaneous operations.
int writes = 0; // How many writes since this iteration started.
int iteration = 0; // The iteration (number of crashes).
disk_cache::BackendImpl* cache = nullptr;
std::array<std::string, kNumKeys> keys;
std::array<EntryWrapper, kNumEntries> entries;
};
Data* g_data = nullptr;
void EntryWrapper::DoOpen(int key) {
DCHECK_EQ(state_, NONE);
if (entry_)
return DoRead();
state_ = OPEN;
disk_cache::EntryResult result = g_data->cache->OpenEntry(
g_data->keys[key], net::HIGHEST,
base::BindOnce(&EntryWrapper::OnOpenDone, base::Unretained(this), key));
if (result.net_error() != net::ERR_IO_PENDING)
OnOpenDone(key, std::move(result));
}
void EntryWrapper::OnOpenDone(int key, disk_cache::EntryResult result) {
if (result.net_error() == net::OK) {
entry_ = result.ReleaseEntry();
return DoRead();
}
CHECK_EQ(state_, OPEN);
state_ = CREATE;
result = g_data->cache->CreateEntry(
g_data->keys[key], net::HIGHEST,
base::BindOnce(&EntryWrapper::OnOpenDone, base::Unretained(this), key));
if (result.net_error() != net::ERR_IO_PENDING)
OnOpenDone(key, std::move(result));
}
void EntryWrapper::DoRead() {
int current_size = entry_->GetDataSize(0);
if (!current_size)
return DoWrite();
state_ = READ;
std::ranges::fill(buffer_->first(kReadSize), 'k');
int rv = entry_->ReadData(
0, 0, buffer_.get(), kReadSize,
base::BindOnce(&EntryWrapper::OnReadDone, base::Unretained(this)));
if (rv != net::ERR_IO_PENDING)
OnReadDone(rv);
}
void EntryWrapper::OnReadDone(int result) {
DCHECK_EQ(state_, READ);
CHECK_EQ(result, kReadSize);
CHECK(buffer_->first(7) == base::byte_span_from_cstring("Write: "));
DoWrite();
}
void EntryWrapper::DoWrite() {
bool truncate = (rand() % 2 == 0);
int size = kBufferSize - (rand() % 20) * kBufferSize / 20;
state_ = WRITE;
std::string payload = base::StringPrintf(
"Write: %d iter: %d, size: %d, truncate: %d ", g_data->writes,
g_data->iteration, size, truncate ? 1 : 0);
buffer_->span().copy_prefix_from(base::as_byte_span(payload).first(
std::min(payload.size(), static_cast<size_t>(kBufferSize))));
int rv = entry_->WriteData(
0, 0, buffer_.get(), size,
base::BindOnce(&EntryWrapper::OnWriteDone, base::Unretained(this), size),
truncate);
if (rv != net::ERR_IO_PENDING)
OnWriteDone(size, rv);
}
void EntryWrapper::OnWriteDone(int size, int result) {
DCHECK_EQ(state_, WRITE);
CHECK_EQ(size, result);
if (!(g_data->writes++ % 100))
printf("Entries: %d \r", g_data->writes);
int random = rand() % 100;
std::string key = entry_->GetKey();
if (random > 90)
return DoDelete(key); // 10% delete then close.
if (random > 60) { // 20% close.
entry_->Close();
entry_ = nullptr;
}
if (random > 80)
return DoDelete(key); // 10% close then delete.
DoIdle(); // 60% do another write later.
}
void EntryWrapper::DoDelete(const std::string& key) {
state_ = DOOM;
int rv = g_data->cache->DoomEntry(
key, net::HIGHEST,
base::BindOnce(&EntryWrapper::OnDeleteDone, base::Unretained(this)));
if (rv != net::ERR_IO_PENDING)
OnDeleteDone(rv);
}
void EntryWrapper::OnDeleteDone(int result) {
DCHECK_EQ(state_, DOOM);
if (entry_) {
entry_->Close();
entry_ = nullptr;
}
DoIdle();
}
void LoopTask();
void EntryWrapper::DoIdle() {
state_ = NONE;
g_data->pendig_operations--;
DCHECK(g_data->pendig_operations);
base::SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, base::BindOnce(&LoopTask));
}
// The task that keeps the main thread busy. Whenever an entry becomes idle this
// task is executed again.
void LoopTask() {
if (g_data->pendig_operations >= kNumEntries)
return;
int slot = rand() % kNumEntries;
if (g_data->entries[slot].state() == NONE) {
// Each slot will have some keys assigned to it so that the same entry will
// not be open by two slots, which means that the state is well known at
// all times.
int keys_per_entry = kNumKeys / kNumEntries;
int key = rand() % keys_per_entry + keys_per_entry * slot;
g_data->pendig_operations++;
g_data->entries[slot].DoOpen(key);
}
base::SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, base::BindOnce(&LoopTask));
}
// This thread will loop forever, adding and removing entries from the cache.
// iteration is the current crash cycle, so the entries on the cache are marked
// to know which instance of the application wrote them.
void StressTheCache(int iteration) {
int cache_size = 0x2000000; // 32MB.
uint32_t mask = 0xfff; // 4096 entries.
base::FilePath path;
base::PathService::Get(base::DIR_TEMP, &path);
path = path.AppendASCII("cache_test_stress");
base::Thread cache_thread("CacheThread");
if (!cache_thread.StartWithOptions(
base::Thread::Options(base::MessagePumpType::IO, 0)))
return;
g_data = new Data();
g_data->iteration = iteration;
g_data->cache = new disk_cache::BackendImpl(
path, mask, /*cleanup_tracker=*/nullptr, cache_thread.task_runner().get(),
net::DISK_CACHE, nullptr);
g_data->cache->SetMaxSize(cache_size);
g_data->cache->SetFlags(disk_cache::kNoLoadProtection);
net::TestCompletionCallback cb;
g_data->cache->Init(cb.callback());
if (cb.WaitForResult() != net::OK) {
printf("Unable to initialize cache.\n");
return;
}
net::TestInt32CompletionCallback entry_count_cb;
printf("Iteration %d, initial entries: %d\n", iteration,
entry_count_cb.GetResult(
g_data->cache->GetEntryCount(entry_count_cb.callback())));
int seed = static_cast<int>(Time::Now().ToInternalValue());
srand(seed);
for (auto& key : g_data->keys)
key = GenerateStressKey();
base::SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, base::BindOnce(&LoopTask));
base::RunLoop().Run();
}
// We want to prevent the timer thread from killing the process while we are
// waiting for the debugger to attach.
bool g_crashing = false;
// RunSoon() and CrashCallback() reference each other, unfortunately.
void RunSoon(scoped_refptr<base::SingleThreadTaskRunner> task_runner);
void CrashCallback() {
// Keep trying to run.
RunSoon(base::SingleThreadTaskRunner::GetCurrentDefault());
if (g_crashing)
return;
if (rand() % 100 > 30) {
printf("sweet death...\n");
// Terminate the current process without doing normal process-exit cleanup.
base::Process::TerminateCurrentProcessImmediately(kExpectedCrash);
}
}
void RunSoon(scoped_refptr<base::SingleThreadTaskRunner> task_runner) {
const base::TimeDelta kTaskDelay = base::Seconds(10);
task_runner->PostDelayedTask(FROM_HERE, base::BindOnce(&CrashCallback),
kTaskDelay);
}
// We leak everything here :)
bool StartCrashThread() {
base::Thread* thread = new base::Thread("party_crasher");
if (!thread->Start())
return false;
RunSoon(thread->task_runner());
return true;
}
void CrashHandler(const char* file,
int line,
std::string_view str,
std::string_view stack_trace) {
g_crashing = true;
base::debug::BreakDebugger();
}
// -----------------------------------------------------------------------
#if BUILDFLAG(IS_WIN)
// {B9A153D4-31C3-48e4-9ABF-D54383F14A0D}
const GUID kStressCacheTraceProviderName = {
0xb9a153d4, 0x31c3, 0x48e4,
{ 0x9a, 0xbf, 0xd5, 0x43, 0x83, 0xf1, 0x4a, 0xd } };
#endif
int main(int argc, const char* argv[]) {
// Setup an AtExitManager so Singleton objects will be destructed.
base::AtExitManager at_exit_manager;
if (argc < 2)
return MasterCode();
logging::ScopedLogAssertHandler scoped_assert_handler(
base::BindRepeating(CrashHandler));
#if BUILDFLAG(IS_WIN)
logging::LogEventProvider::Initialize(kStressCacheTraceProviderName);
#else
base::CommandLine::Init(argc, argv);
logging::LoggingSettings settings;
settings.logging_dest =
logging::LOG_TO_SYSTEM_DEBUG_LOG | logging::LOG_TO_STDERR;
logging::InitLogging(settings);
#endif
// Some time for the memory manager to flush stuff.
base::PlatformThread::Sleep(base::Seconds(3));
base::SingleThreadTaskExecutor io_task_executor(base::MessagePumpType::IO);
base::ThreadPoolInstance::CreateAndStartWithDefaultParams("stress_cache");
int iteration = 0;
// SAFETY: We check that argc >= 2 above, so argv[1] is fine.
base::StringToInt(UNSAFE_BUFFERS(argv[1]), &iteration);
if (!StartCrashThread()) {
printf("failed to start thread\n");
return kError;
}
StressTheCache(iteration);
return 0;
}
|