1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/websockets/websocket_frame.h"
#include <stddef.h>
#include <string.h>
#include <algorithm>
#include <ostream>
#include "base/check.h"
#include "base/check_op.h"
#include "base/containers/span.h"
#include "base/containers/span_writer.h"
#include "base/numerics/safe_conversions.h"
#include "base/rand_util.h"
#include "base/strings/string_util.h"
#include "base/strings/string_view_util.h"
#include "build/build_config.h"
#include "net/base/net_errors.h"
#include "net/websockets/websocket_errors.h"
namespace net {
namespace {
// GCC (and Clang) can transparently use vector ops. Only try to do this on
// architectures where we know it works, otherwise gcc will attempt to emulate
// the vector ops, which is unlikely to be efficient.
#if defined(COMPILER_GCC) && \
(defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY))
using PackedMaskType = uint32_t __attribute__((vector_size(16)));
}
} // namespace net
// TODO(https://github.com/llvm/llvm-project/issues/119290): Until
// `std::has_unique_object_representations_v<>` works correctly for vector
// types, explicitly mark this as safe to convert to/from bytes.
namespace base {
template <>
inline constexpr bool kCanSafelyConvertToByteSpan<net::PackedMaskType> = true;
}
namespace net {
namespace {
#else
using PackedMaskType = size_t;
#endif // defined(COMPILER_GCC) &&
// (defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY))
constexpr size_t kWebSocketCloseCodeLength = 2;
constexpr uint8_t kFinalBit = 0x80;
constexpr uint8_t kReserved1Bit = 0x40;
constexpr uint8_t kReserved2Bit = 0x20;
constexpr uint8_t kReserved3Bit = 0x10;
constexpr uint8_t kOpCodeMask = 0xF;
constexpr uint8_t kMaskBit = 0x80;
constexpr uint64_t kMaxPayloadLengthWithoutExtendedLengthField = 125;
constexpr uint64_t kPayloadLengthWithTwoByteExtendedLengthField = 126;
constexpr uint64_t kPayloadLengthWithEightByteExtendedLengthField = 127;
inline void MaskWebSocketFramePayloadByBytes(
const WebSocketMaskingKey& masking_key,
size_t masking_key_offset,
const base::span<uint8_t> payload) {
uint8_t* data = payload.data();
const size_t size = payload.size();
for (size_t i = 0; i < size; ++i) {
// SAFETY: Performance sensitive. `data` is within `payload` bounds.
UNSAFE_BUFFERS(data[i]) ^=
masking_key.key[masking_key_offset++ %
WebSocketFrameHeader::kMaskingKeyLength];
}
}
} // namespace
std::unique_ptr<WebSocketFrameHeader> WebSocketFrameHeader::Clone() const {
auto ret = std::make_unique<WebSocketFrameHeader>(opcode);
ret->CopyFrom(*this);
return ret;
}
void WebSocketFrameHeader::CopyFrom(const WebSocketFrameHeader& source) {
final = source.final;
reserved1 = source.reserved1;
reserved2 = source.reserved2;
reserved3 = source.reserved3;
opcode = source.opcode;
masked = source.masked;
masking_key = source.masking_key;
payload_length = source.payload_length;
}
WebSocketFrame::WebSocketFrame(WebSocketFrameHeader::OpCode opcode)
: header(opcode) {}
WebSocketFrame::~WebSocketFrame() = default;
WebSocketFrameChunk::WebSocketFrameChunk() = default;
WebSocketFrameChunk::~WebSocketFrameChunk() = default;
size_t GetWebSocketFrameHeaderSize(const WebSocketFrameHeader& header) {
size_t extended_length_size = 0u;
if (header.payload_length > kMaxPayloadLengthWithoutExtendedLengthField &&
header.payload_length <= UINT16_MAX) {
extended_length_size = 2u;
} else if (header.payload_length > UINT16_MAX) {
extended_length_size = 8u;
}
return (WebSocketFrameHeader::kBaseHeaderSize + extended_length_size +
(header.masked ? WebSocketFrameHeader::kMaskingKeyLength : 0u));
}
int WriteWebSocketFrameHeader(const WebSocketFrameHeader& header,
const WebSocketMaskingKey* masking_key,
base::span<uint8_t> buffer) {
DCHECK((header.opcode & kOpCodeMask) == header.opcode)
<< "header.opcode must fit to kOpCodeMask.";
DCHECK(header.payload_length <= static_cast<uint64_t>(INT64_MAX))
<< "WebSocket specification doesn't allow a frame longer than "
<< "INT64_MAX (0x7FFFFFFFFFFFFFFF) bytes.";
// WebSocket frame format is as follows:
// - Common header (2 bytes)
// - Optional extended payload length
// (2 or 8 bytes, present if actual payload length is more than 125 bytes)
// - Optional masking key (4 bytes, present if MASK bit is on)
// - Actual payload (XOR masked with masking key if MASK bit is on)
//
// This function constructs frame header (the first three in the list
// above).
size_t header_size = GetWebSocketFrameHeaderSize(header);
if (header_size > buffer.size()) {
return ERR_INVALID_ARGUMENT;
}
base::SpanWriter writer(buffer);
uint8_t first_byte = 0u;
first_byte |= header.final ? kFinalBit : 0u;
first_byte |= header.reserved1 ? kReserved1Bit : 0u;
first_byte |= header.reserved2 ? kReserved2Bit : 0u;
first_byte |= header.reserved3 ? kReserved3Bit : 0u;
first_byte |= header.opcode & kOpCodeMask;
writer.WriteU8BigEndian(first_byte);
int extended_length_size = 0;
uint8_t second_byte = 0u;
second_byte |= header.masked ? kMaskBit : 0u;
if (header.payload_length <= kMaxPayloadLengthWithoutExtendedLengthField) {
second_byte |= header.payload_length;
} else if (header.payload_length <= UINT16_MAX) {
second_byte |= kPayloadLengthWithTwoByteExtendedLengthField;
extended_length_size = 2;
} else {
second_byte |= kPayloadLengthWithEightByteExtendedLengthField;
extended_length_size = 8;
}
writer.WriteU8BigEndian(second_byte);
// Writes "extended payload length" field.
if (extended_length_size == 2) {
writer.WriteU16BigEndian(static_cast<uint16_t>(header.payload_length));
} else if (extended_length_size == 8) {
writer.WriteU64BigEndian(header.payload_length);
}
// Writes "masking key" field, if needed.
if (header.masked) {
DCHECK(masking_key);
writer.Write(masking_key->key);
} else {
DCHECK(!masking_key);
}
// Verify we wrote the expected number of bytes.
DCHECK_EQ(header_size, writer.num_written());
return header_size;
}
WebSocketMaskingKey GenerateWebSocketMaskingKey() {
// Masking keys should be generated from a cryptographically secure random
// number generator, which means web application authors should not be able
// to guess the next value of masking key.
WebSocketMaskingKey masking_key;
base::RandBytes(masking_key.key);
return masking_key;
}
void MaskWebSocketFramePayload(const WebSocketMaskingKey& masking_key,
uint64_t frame_offset,
base::span<uint8_t> data) {
static constexpr size_t kMaskingKeyLength =
WebSocketFrameHeader::kMaskingKeyLength;
// Most of the masking is done in chunks of sizeof(PackedMaskType), except for
// the beginning and the end of the buffer which may be unaligned.
// PackedMaskType must be a multiple of kMaskingKeyLength in size.
PackedMaskType packed_mask_key;
static constexpr size_t kPackedMaskKeySize = sizeof(packed_mask_key);
static_assert((kPackedMaskKeySize >= kMaskingKeyLength &&
kPackedMaskKeySize % kMaskingKeyLength == 0),
"PackedMaskType size is not a multiple of mask length");
// If the buffer is too small for the vectorised version to be useful, revert
// to the byte-at-a-time implementation early.
if (data.size() <= kPackedMaskKeySize * 2) {
MaskWebSocketFramePayloadByBytes(masking_key,
frame_offset % kMaskingKeyLength, data);
return;
}
const size_t data_modulus =
reinterpret_cast<size_t>(data.data()) % kPackedMaskKeySize;
auto [before_aligned, remaining] = data.split_at(
data_modulus == 0 ? 0 : (kPackedMaskKeySize - data_modulus));
auto [aligned, after_aligned] = remaining.split_at(
remaining.size() - remaining.size() % kPackedMaskKeySize);
MaskWebSocketFramePayloadByBytes(
masking_key, frame_offset % kMaskingKeyLength, before_aligned);
// Create a version of the mask which is rotated by the appropriate offset
// for our alignment. The "trick" here is that 0 XORed with the mask will
// give the value of the mask for the appropriate byte.
std::array<uint8_t, kMaskingKeyLength> realigned_mask = {};
MaskWebSocketFramePayloadByBytes(
masking_key, (frame_offset + before_aligned.size()) % kMaskingKeyLength,
base::as_writable_byte_span(realigned_mask));
base::span<uint8_t> packed_span = base::byte_span_from_ref(packed_mask_key);
while (!packed_span.empty()) {
packed_span.copy_prefix_from(realigned_mask);
packed_span = packed_span.subspan(realigned_mask.size());
}
// The main loop.
while (!aligned.empty()) {
// This is not quite standard-compliant C++. However, the standard-compliant
// equivalent (using memcpy()) compiles to slower code using g++. In
// practice, this will work for the compilers and architectures currently
// supported by Chromium, and the tests are extremely unlikely to pass if a
// future compiler/architecture breaks it.
*reinterpret_cast<PackedMaskType*>(aligned.data()) ^= packed_mask_key;
aligned = aligned.subspan(kPackedMaskKeySize);
}
MaskWebSocketFramePayloadByBytes(
masking_key,
(frame_offset + (data.size() - after_aligned.size())) % kMaskingKeyLength,
after_aligned);
}
ParseCloseFrameResult ParseCloseFrame(base::span<const char> payload) {
const uint64_t size = static_cast<uint64_t>(payload.size());
// Payload size is 0 -> No status received
if (size == 0U) {
return ParseCloseFrameResult(kWebSocketErrorNoStatusReceived,
std::string_view());
}
// Payload size is 1 -> Protocol error (invalid size)
if (size == 1U) {
return ParseCloseFrameResult(
kWebSocketErrorProtocolError, std::string_view(),
"Received a broken close frame with an invalid size of 1 byte.");
}
// Get the status code from the first 2 bytes
const uint16_t unchecked_code =
base::U16FromBigEndian(base::as_byte_span(payload).first<2>());
// Invalid or reserved status codes
if (unchecked_code == kWebSocketErrorNoStatusReceived ||
unchecked_code == kWebSocketErrorAbnormalClosure ||
unchecked_code == kWebSocketErrorTlsHandshake) {
return ParseCloseFrameResult(kWebSocketErrorProtocolError,
std::string_view(),
"Received a broken close frame containing a "
"reserved status code.");
}
// If size is exactly 2, return the code without a reason
if (size == 2U) {
return ParseCloseFrameResult(unchecked_code, std::string_view());
}
const base::span<const char> reason_span =
payload.subspan(kWebSocketCloseCodeLength);
const auto reason = base::as_string_view(reason_span);
if (base::IsStringUTF8AllowingNoncharacters(reason)) {
return ParseCloseFrameResult(unchecked_code, reason);
}
return ParseCloseFrameResult(
kWebSocketErrorProtocolError,
std::string_view("Invalid UTF-8 in Close frame"),
"Received a broken close frame containing invalid UTF-8.");
}
} // namespace net
|