1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef PPAPI_UTILITY_COMPLETION_CALLBACK_FACTORY_H_
#define PPAPI_UTILITY_COMPLETION_CALLBACK_FACTORY_H_
#include <stdint.h>
#include "ppapi/cpp/completion_callback.h"
#include "ppapi/utility/completion_callback_factory_thread_traits.h" // nogncheck http://crbug.com/1228394
/// @file
/// This file defines the API to create CompletionCallback objects that are
/// bound to member functions.
namespace pp {
// TypeUnwrapper --------------------------------------------------------------
namespace internal {
// The TypeUnwrapper converts references and const references to the
// underlying type used for storage and passing as an argument. It is for
// internal use only.
template <typename T> struct TypeUnwrapper {
typedef T StorageType;
};
template <typename T> struct TypeUnwrapper<T&> {
typedef T StorageType;
};
template <typename T> struct TypeUnwrapper<const T&> {
typedef T StorageType;
};
} // namespace internal
// ----------------------------------------------------------------------------
/// CompletionCallbackFactory<T> may be used to create CompletionCallback
/// objects that are bound to member functions.
///
/// If a factory is destroyed, then any pending callbacks will be cancelled
/// preventing any bound member functions from being called. The CancelAll()
/// method allows pending callbacks to be cancelled without destroying the
/// factory.
///
/// <strong>Note: </strong><code>CompletionCallbackFactory<T></code> isn't
/// thread safe, but it is somewhat thread-friendly when used with a
/// thread-safe traits class as the second template element. However, it
/// only guarantees safety for creating a callback from another thread, the
/// callback itself needs to execute on the same thread as the thread that
/// creates/destroys the factory. With this restriction, it is safe to create
/// the <code>CompletionCallbackFactory</code> on the main thread, create
/// callbacks from any thread and pass them to CallOnMainThread().
///
/// <strong>Example: </strong>
///
/// @code
/// class MyClass {
/// public:
/// // If an compiler warns on following using |this| in the initializer
/// // list, use PP_ALLOW_THIS_IN_INITIALIZER_LIST macro.
/// MyClass() : factory_(this) {
/// }
///
/// void OpenFile(const pp::FileRef& file) {
/// pp::CompletionCallback cc = factory_.NewCallback(&MyClass::DidOpen);
/// int32_t rv = file_io_.Open(file, PP_FileOpenFlag_Read, cc);
/// CHECK(rv == PP_OK_COMPLETIONPENDING);
/// }
///
/// private:
/// void DidOpen(int32_t result) {
/// if (result == PP_OK) {
/// // The file is open, and we can begin reading.
/// // ...
/// } else {
/// // Failed to open the file with error given by 'result'.
/// }
/// }
///
/// pp::CompletionCallbackFactory<MyClass> factory_;
/// };
/// @endcode
///
/// <strong>Passing additional parameters to your callback</strong>
///
/// As a convenience, the <code>CompletionCallbackFactory</code> can optionally
/// create a closure with up to three bound parameters that it will pass to
/// your callback function. This can be useful for passing information about
/// the request to your callback function, which is especially useful if your
/// class has multiple asynchronous callbacks pending.
///
/// For the above example, of opening a file, let's say you want to keep some
/// description associated with your request, you might implement your OpenFile
/// and DidOpen callback as follows:
///
/// @code
/// void OpenFile(const pp::FileRef& file) {
/// std::string message = "Opening file!";
/// pp::CompletionCallback cc = factory_.NewCallback(&MyClass::DidOpen,
/// message);
/// int32_t rv = file_io_.Open(file, PP_FileOpenFlag_Read, cc);
/// CHECK(rv == PP_OK_COMPLETIONPENDING);
/// }
/// void DidOpen(int32_t result, const std::string& message) {
/// // "message" will be "Opening file!".
/// ...
/// }
/// @endcode
///
/// <strong>Optional versus required callbacks</strong>
///
/// When you create an "optional" callback, the browser may return the results
/// synchronously if they are available. This can allow for higher performance
/// in some cases if data is available quickly (for example, for network loads
/// where there may be a lot of data coming quickly). In this case, the
/// callback will never be run.
///
/// When creating a new callback with the factory, there will be data allocated
/// on the heap that tracks the callback information and any bound arguments.
/// This data is freed when the callback executes. In the case of optional
/// callbacks, since the browser will never issue the callback, the internal
/// tracking data will be leaked.
///
/// Therefore, if you use optional callbacks, it's important to manually
/// issue the callback to free up this data. The typical pattern is:
///
/// @code
/// pp::CompletionCallback callback = callback_factory.NewOptionalCallback(
/// &MyClass::OnDataReady);
/// int32_t result = interface->GetData(callback);
/// if (result != PP_OK_COMPLETIONPENDING)
/// callback.Run(result);
/// @endcode
///
/// Because of this additional complexity, it's generally recommended that
/// you not use optional callbacks except when performance is more important
/// (such as loading large resources from the network). In most other cases,
/// the performance difference will not be worth the additional complexity,
/// and most functions may never actually have the ability to complete
/// synchronously.
///
/// <strong>Completion callbacks with output</strong>
///
/// For some API calls, the browser returns data to the caller via an output
/// parameter. These can be difficult to manage since the output parameter
/// must remain valid for as long as the callback is pending. Note also that
/// CancelAll (or destroying the callback factory) does <i>not</i> cancel the
/// callback from the browser's perspective, only the execution of the callback
/// in the plugin code, and the output parameter will still be written to!
/// This means that you can't use class members as output parameters without
/// risking crashes.
///
/// To make this case easier, the CompletionCallbackFactory can allocate and
/// manage the output data for you and pass it to your callback function. This
/// makes such calls more natural and less error-prone.
///
/// To create such a callback, use NewCallbackWithOutput and specify a callback
/// function that takes the output parameter as its second argument. Let's say
/// you're calling a function GetFile which asynchronously returns a
/// pp::FileRef. GetFile's signature will be <code>int32_t GetFile(const
/// CompletionCallbackWithOutput<pp::FileRef>& callback);</code> and your
/// calling code would look like this:
///
/// @code
/// void RequestFile() {
/// file_interface->GetFile(callback_factory_.NewCallbackWithOutput(
/// &MyClass::GotFile));
/// }
/// void GotFile(int32_t result, const pp::FileRef& file) {
/// if (result == PP_OK) {
/// ...use file...
/// } else {
/// ...handle error...
/// }
/// }
/// @endcode
///
/// As with regular completion callbacks, you can optionally add up to three
/// bound arguments. These are passed following the output argument.
///
/// Your callback may take the output argument as a copy (common for small
/// types like integers, a const reference (common for structures and
/// resources to avoid an extra copy), or as a non-const reference. One
/// optimization you can do if your callback function may take large arrays
/// is to accept your output argument as a non-const reference and to swap()
/// the argument with a vector of your own to store it. This means you don't
/// have to copy the buffer to consume it.
template <typename T, typename ThreadTraits = ThreadSafeThreadTraits>
class CompletionCallbackFactory {
public:
/// This constructor creates a <code>CompletionCallbackFactory</code>
/// bound to an object. If the constructor is called without an argument,
/// the default value of <code>NULL</code> is used. The user then must call
/// Initialize() to initialize the object.
///
/// param[in] object Optional parameter. An object whose member functions
/// are to be bound to CompletionCallbacks created by this
/// <code>CompletionCallbackFactory</code>. The default value of this
/// parameter is <code>NULL</code>.
explicit CompletionCallbackFactory(T* object = NULL)
: object_(object) {
// Assume that we don't need to lock since construction should be complete
// before the pointer is used on another thread.
InitBackPointer();
}
/// Destructor.
~CompletionCallbackFactory() {
// Assume that we don't need to lock since this object should not be used
// from multiple threads during destruction.
ResetBackPointer();
}
/// CancelAll() cancels all <code>CompletionCallbacks</code> allocated from
/// this factory.
void CancelAll() {
typename ThreadTraits::AutoLock lock(lock_);
ResetBackPointer();
InitBackPointer();
}
/// Initialize() binds the <code>CallbackFactory</code> to a particular
/// object. Use this when the object is not available at
/// <code>CallbackFactory</code> creation, and the <code>NULL</code> default
/// is passed to the constructor. The object may only be initialized once,
/// either by the constructor, or by a call to Initialize().
///
/// This class may not be used on any thread until initialization is complete.
///
/// @param[in] object The object whose member functions are to be bound to
/// the <code>CompletionCallback</code> created by this
/// <code>CompletionCallbackFactory</code>.
void Initialize(T* object) {
PP_DCHECK(object);
PP_DCHECK(!object_); // May only initialize once!
object_ = object;
}
/// GetObject() returns the object that was passed at initialization to
/// Intialize().
///
/// @return the object passed to the constructor or Intialize().
T* GetObject() {
return object_;
}
/// NewCallback allocates a new, single-use <code>CompletionCallback</code>.
/// The <code>CompletionCallback</code> must be run in order for the memory
/// allocated by the methods to be freed.
///
/// @param[in] method The method to be invoked upon completion of the
/// operation.
///
/// @return A <code>CompletionCallback</code>.
template <typename Method>
CompletionCallback NewCallback(Method method) {
return NewCallbackHelper(new Dispatcher0<Method>(method));
}
/// NewOptionalCallback() allocates a new, single-use
/// <code>CompletionCallback</code> that might not run if the method
/// taking it can complete synchronously. Thus, if after passing the
/// CompletionCallback to a Pepper method, the method does not return
/// PP_OK_COMPLETIONPENDING, then you should manually call the
/// CompletionCallback's Run method, or memory will be leaked.
///
/// @param[in] method The method to be invoked upon completion of the
/// operation.
///
/// @return A <code>CompletionCallback</code>.
template <typename Method>
CompletionCallback NewOptionalCallback(Method method) {
CompletionCallback cc = NewCallback(method);
cc.set_flags(cc.flags() | PP_COMPLETIONCALLBACK_FLAG_OPTIONAL);
return cc;
}
/// NewCallbackWithOutput() allocates a new, single-use
/// <code>CompletionCallback</code> where the browser will pass an additional
/// parameter containing the result of the request. The
/// <code>CompletionCallback</code> must be run in order for the memory
/// allocated by the methods to be freed.
///
/// @param[in] method The method to be invoked upon completion of the
/// operation.
///
/// @return A <code>CompletionCallback</code>.
template <typename Output>
CompletionCallbackWithOutput<
typename internal::TypeUnwrapper<Output>::StorageType>
NewCallbackWithOutput(void (T::*method)(int32_t, Output)) {
return NewCallbackWithOutputHelper(new DispatcherWithOutput0<
typename internal::TypeUnwrapper<Output>::StorageType,
void (T::*)(int32_t, Output)>(method));
}
/// NewCallback() allocates a new, single-use <code>CompletionCallback</code>.
/// The <code>CompletionCallback</code> must be run in order for the memory
/// allocated by the methods to be freed.
///
/// @param[in] method The method to be invoked upon completion of the
/// operation. Method should be of type:
/// <code>void (T::*)(int32_t result, const A& a)</code>
///
/// @param[in] a Passed to <code>method</code> when the completion callback
/// runs.
///
/// @return A <code>CompletionCallback</code>.
template <typename Method, typename A>
CompletionCallback NewCallback(Method method, const A& a) {
return NewCallbackHelper(new Dispatcher1<Method, A>(method, a));
}
/// NewOptionalCallback() allocates a new, single-use
/// <code>CompletionCallback</code> that might not run if the method
/// taking it can complete synchronously. Thus, if after passing the
/// CompletionCallback to a Pepper method, the method does not return
/// PP_OK_COMPLETIONPENDING, then you should manually call the
/// CompletionCallback's Run method, or memory will be leaked.
///
/// @param[in] method The method to be invoked upon completion of the
/// operation. Method should be of type:
/// <code>void (T::*)(int32_t result, const A& a)</code>
///
/// @param[in] a Passed to <code>method</code> when the completion callback
/// runs.
///
/// @return A <code>CompletionCallback</code>.
template <typename Method, typename A>
CompletionCallback NewOptionalCallback(Method method, const A& a) {
CompletionCallback cc = NewCallback(method, a);
cc.set_flags(cc.flags() | PP_COMPLETIONCALLBACK_FLAG_OPTIONAL);
return cc;
}
/// NewCallbackWithOutput() allocates a new, single-use
/// <code>CompletionCallback</code> where the browser will pass an additional
/// parameter containing the result of the request. The
/// <code>CompletionCallback</code> must be run in order for the memory
/// allocated by the methods to be freed.
///
/// @param[in] method The method to be invoked upon completion of the
/// operation.
///
/// @param[in] a Passed to <code>method</code> when the completion callback
/// runs.
///
/// @return A <code>CompletionCallback</code>.
template <typename Output, typename A>
CompletionCallbackWithOutput<
typename internal::TypeUnwrapper<Output>::StorageType>
NewCallbackWithOutput(void (T::*method)(int32_t, Output, A),
const A& a) {
return NewCallbackWithOutputHelper(new DispatcherWithOutput1<
typename internal::TypeUnwrapper<Output>::StorageType,
void (T::*)(int32_t, Output, A),
typename internal::TypeUnwrapper<A>::StorageType>(method, a));
}
/// NewCallback() allocates a new, single-use
/// <code>CompletionCallback</code>.
/// The <code>CompletionCallback</code> must be run in order for the memory
/// allocated by the methods to be freed.
///
/// @param method The method taking the callback. Method should be of type:
/// <code>void (T::*)(int32_t result, const A& a, const B& b)</code>
///
/// @param[in] a Passed to <code>method</code> when the completion callback
/// runs.
///
/// @param[in] b Passed to <code>method</code> when the completion callback
/// runs.
///
/// @return A <code>CompletionCallback</code>.
template <typename Method, typename A, typename B>
CompletionCallback NewCallback(Method method, const A& a, const B& b) {
return NewCallbackHelper(new Dispatcher2<Method, A, B>(method, a, b));
}
/// NewOptionalCallback() allocates a new, single-use
/// <code>CompletionCallback</code> that might not run if the method
/// taking it can complete synchronously. Thus, if after passing the
/// CompletionCallback to a Pepper method, the method does not return
/// PP_OK_COMPLETIONPENDING, then you should manually call the
/// CompletionCallback's Run method, or memory will be leaked.
///
/// @param[in] method The method taking the callback. Method should be of
/// type:
/// <code>void (T::*)(int32_t result, const A& a, const B& b)</code>
///
/// @param[in] a Passed to <code>method</code> when the completion callback
/// runs.
///
/// @param[in] b Passed to <code>method</code> when the completion callback
/// runs.
///
/// @return A <code>CompletionCallback</code>.
template <typename Method, typename A, typename B>
CompletionCallback NewOptionalCallback(Method method, const A& a,
const B& b) {
CompletionCallback cc = NewCallback(method, a, b);
cc.set_flags(cc.flags() | PP_COMPLETIONCALLBACK_FLAG_OPTIONAL);
return cc;
}
/// NewCallbackWithOutput() allocates a new, single-use
/// <code>CompletionCallback</code> where the browser will pass an additional
/// parameter containing the result of the request. The
/// <code>CompletionCallback</code> must be run in order for the memory
/// allocated by the methods to be freed.
///
/// @param[in] method The method to be invoked upon completion of the
/// operation.
///
/// @param[in] a Passed to <code>method</code> when the completion callback
/// runs.
///
/// @param[in] b Passed to <code>method</code> when the completion callback
/// runs.
///
/// @return A <code>CompletionCallback</code>.
template <typename Output, typename A, typename B>
CompletionCallbackWithOutput<
typename internal::TypeUnwrapper<Output>::StorageType>
NewCallbackWithOutput(void (T::*method)(int32_t, Output, A, B),
const A& a,
const B& b) {
return NewCallbackWithOutputHelper(new DispatcherWithOutput2<
typename internal::TypeUnwrapper<Output>::StorageType,
void (T::*)(int32_t, Output, A, B),
typename internal::TypeUnwrapper<A>::StorageType,
typename internal::TypeUnwrapper<B>::StorageType>(method, a, b));
}
/// NewCallback() allocates a new, single-use
/// <code>CompletionCallback</code>.
/// The <code>CompletionCallback</code> must be run in order for the memory
/// allocated by the methods to be freed.
///
/// @param method The method taking the callback. Method should be of type:
/// <code>
/// void (T::*)(int32_t result, const A& a, const B& b, const C& c)
/// </code>
///
/// @param[in] a Passed to <code>method</code> when the completion callback
/// runs.
///
/// @param[in] b Passed to <code>method</code> when the completion callback
/// runs.
///
/// @param[in] c Passed to <code>method</code> when the completion callback
/// runs.
///
/// @return A <code>CompletionCallback</code>.
template <typename Method, typename A, typename B, typename C>
CompletionCallback NewCallback(Method method, const A& a, const B& b,
const C& c) {
return NewCallbackHelper(new Dispatcher3<Method, A, B, C>(method, a, b, c));
}
/// NewOptionalCallback() allocates a new, single-use
/// <code>CompletionCallback</code> that might not run if the method
/// taking it can complete synchronously. Thus, if after passing the
/// CompletionCallback to a Pepper method, the method does not return
/// PP_OK_COMPLETIONPENDING, then you should manually call the
/// CompletionCallback's Run method, or memory will be leaked.
///
/// @param[in] method The method taking the callback. Method should be of
/// type:
/// <code>
/// void (T::*)(int32_t result, const A& a, const B& b, const C& c)
/// </code>
///
/// @param[in] a Passed to <code>method</code> when the completion callback
/// runs.
///
/// @param[in] b Passed to <code>method</code> when the completion callback
/// runs.
///
/// @param[in] c Passed to <code>method</code> when the completion callback
/// runs.
///
/// @return A <code>CompletionCallback</code>.
template <typename Method, typename A, typename B, typename C>
CompletionCallback NewOptionalCallback(Method method, const A& a,
const B& b, const C& c) {
CompletionCallback cc = NewCallback(method, a, b, c);
cc.set_flags(cc.flags() | PP_COMPLETIONCALLBACK_FLAG_OPTIONAL);
return cc;
}
/// NewCallbackWithOutput() allocates a new, single-use
/// <code>CompletionCallback</code> where the browser will pass an additional
/// parameter containing the result of the request. The
/// <code>CompletionCallback</code> must be run in order for the memory
/// allocated by the methods to be freed.
///
/// @param method The method to be run.
///
/// @param[in] a Passed to <code>method</code> when the completion callback
/// runs.
///
/// @param[in] b Passed to <code>method</code> when the completion callback
/// runs.
///
/// @param[in] c Passed to <code>method</code> when the completion callback
/// runs.
///
/// @return A <code>CompletionCallback</code>.
template <typename Output, typename A, typename B, typename C>
CompletionCallbackWithOutput<
typename internal::TypeUnwrapper<Output>::StorageType>
NewCallbackWithOutput(void (T::*method)(int32_t, Output, A, B, C),
const A& a,
const B& b,
const C& c) {
return NewCallbackWithOutputHelper(new DispatcherWithOutput3<
typename internal::TypeUnwrapper<Output>::StorageType,
void (T::*)(int32_t, Output, A, B, C),
typename internal::TypeUnwrapper<A>::StorageType,
typename internal::TypeUnwrapper<B>::StorageType,
typename internal::TypeUnwrapper<C>::StorageType>(method, a, b, c));
}
private:
class BackPointer {
public:
typedef CompletionCallbackFactory<T, ThreadTraits> FactoryType;
explicit BackPointer(FactoryType* factory)
: factory_(factory) {
}
void AddRef() {
ref_.AddRef();
}
void Release() {
if (ref_.Release() == 0)
delete this;
}
void DropFactory() {
factory_ = NULL;
}
T* GetObject() {
return factory_ ? factory_->GetObject() : NULL;
}
private:
typename ThreadTraits::RefCount ref_;
FactoryType* factory_;
};
template <typename Dispatcher>
class CallbackData {
public:
// Takes ownership of the given dispatcher pointer.
CallbackData(BackPointer* back_pointer, Dispatcher* dispatcher)
: back_pointer_(back_pointer),
dispatcher_(dispatcher) {
back_pointer_->AddRef();
}
~CallbackData() {
back_pointer_->Release();
delete dispatcher_;
}
Dispatcher* dispatcher() { return dispatcher_; }
static void Thunk(void* user_data, int32_t result) {
Self* self = static_cast<Self*>(user_data);
T* object = self->back_pointer_->GetObject();
// Please note that |object| may be NULL at this point. But we still need
// to call into Dispatcher::operator() in that case, so that it can do
// necessary cleanup.
(*self->dispatcher_)(object, result);
delete self;
}
private:
typedef CallbackData<Dispatcher> Self;
BackPointer* back_pointer_; // We own a ref to this refcounted object.
Dispatcher* dispatcher_; // We own this pointer.
// Disallow copying & assignment.
CallbackData(const CallbackData<Dispatcher>&);
CallbackData<Dispatcher>& operator=(const CallbackData<Dispatcher>&);
};
template <typename Method>
class Dispatcher0 {
public:
Dispatcher0() : method_(NULL) {}
explicit Dispatcher0(Method method) : method_(method) {
}
void operator()(T* object, int32_t result) {
if (object)
(object->*method_)(result);
}
private:
Method method_;
};
template <typename Output, typename Method>
class DispatcherWithOutput0 {
public:
typedef Output OutputType;
typedef internal::CallbackOutputTraits<Output> Traits;
DispatcherWithOutput0()
: method_(NULL),
output_() {
Traits::Initialize(&output_);
}
DispatcherWithOutput0(Method method)
: method_(method),
output_() {
Traits::Initialize(&output_);
}
void operator()(T* object, int32_t result) {
// We must call Traits::StorageToPluginArg() even if we don't need to call
// the callback anymore, otherwise we may leak resource or var references.
if (object)
(object->*method_)(result, Traits::StorageToPluginArg(output_));
else
Traits::StorageToPluginArg(output_);
}
typename Traits::StorageType* output() {
return &output_;
}
private:
Method method_;
typename Traits::StorageType output_;
};
template <typename Method, typename A>
class Dispatcher1 {
public:
Dispatcher1()
: method_(NULL),
a_() {
}
Dispatcher1(Method method, const A& a)
: method_(method),
a_(a) {
}
void operator()(T* object, int32_t result) {
if (object)
(object->*method_)(result, a_);
}
private:
Method method_;
A a_;
};
template <typename Output, typename Method, typename A>
class DispatcherWithOutput1 {
public:
typedef Output OutputType;
typedef internal::CallbackOutputTraits<Output> Traits;
DispatcherWithOutput1()
: method_(NULL),
a_(),
output_() {
Traits::Initialize(&output_);
}
DispatcherWithOutput1(Method method, const A& a)
: method_(method),
a_(a),
output_() {
Traits::Initialize(&output_);
}
void operator()(T* object, int32_t result) {
// We must call Traits::StorageToPluginArg() even if we don't need to call
// the callback anymore, otherwise we may leak resource or var references.
if (object)
(object->*method_)(result, Traits::StorageToPluginArg(output_), a_);
else
Traits::StorageToPluginArg(output_);
}
typename Traits::StorageType* output() {
return &output_;
}
private:
Method method_;
A a_;
typename Traits::StorageType output_;
};
template <typename Method, typename A, typename B>
class Dispatcher2 {
public:
Dispatcher2()
: method_(NULL),
a_(),
b_() {
}
Dispatcher2(Method method, const A& a, const B& b)
: method_(method),
a_(a),
b_(b) {
}
void operator()(T* object, int32_t result) {
if (object)
(object->*method_)(result, a_, b_);
}
private:
Method method_;
A a_;
B b_;
};
template <typename Output, typename Method, typename A, typename B>
class DispatcherWithOutput2 {
public:
typedef Output OutputType;
typedef internal::CallbackOutputTraits<Output> Traits;
DispatcherWithOutput2()
: method_(NULL),
a_(),
b_(),
output_() {
Traits::Initialize(&output_);
}
DispatcherWithOutput2(Method method, const A& a, const B& b)
: method_(method),
a_(a),
b_(b),
output_() {
Traits::Initialize(&output_);
}
void operator()(T* object, int32_t result) {
// We must call Traits::StorageToPluginArg() even if we don't need to call
// the callback anymore, otherwise we may leak resource or var references.
if (object)
(object->*method_)(result, Traits::StorageToPluginArg(output_), a_, b_);
else
Traits::StorageToPluginArg(output_);
}
typename Traits::StorageType* output() {
return &output_;
}
private:
Method method_;
A a_;
B b_;
typename Traits::StorageType output_;
};
template <typename Method, typename A, typename B, typename C>
class Dispatcher3 {
public:
Dispatcher3()
: method_(NULL),
a_(),
b_(),
c_() {
}
Dispatcher3(Method method, const A& a, const B& b, const C& c)
: method_(method),
a_(a),
b_(b),
c_(c) {
}
void operator()(T* object, int32_t result) {
if (object)
(object->*method_)(result, a_, b_, c_);
}
private:
Method method_;
A a_;
B b_;
C c_;
};
template <typename Output, typename Method, typename A, typename B,
typename C>
class DispatcherWithOutput3 {
public:
typedef Output OutputType;
typedef internal::CallbackOutputTraits<Output> Traits;
DispatcherWithOutput3()
: method_(NULL),
a_(),
b_(),
c_(),
output_() {
Traits::Initialize(&output_);
}
DispatcherWithOutput3(Method method, const A& a, const B& b, const C& c)
: method_(method),
a_(a),
b_(b),
c_(c),
output_() {
Traits::Initialize(&output_);
}
void operator()(T* object, int32_t result) {
// We must call Traits::StorageToPluginArg() even if we don't need to call
// the callback anymore, otherwise we may leak resource or var references.
if (object) {
(object->*method_)(result, Traits::StorageToPluginArg(output_),
a_, b_, c_);
} else {
Traits::StorageToPluginArg(output_);
}
}
typename Traits::StorageType* output() {
return &output_;
}
private:
Method method_;
A a_;
B b_;
C c_;
typename Traits::StorageType output_;
};
// Creates the back pointer object and takes a reference to it. This assumes
// either that the lock is held or that it is not needed.
void InitBackPointer() {
back_pointer_ = new BackPointer(this);
back_pointer_->AddRef();
}
// Releases our reference to the back pointer object and clears the pointer.
// This assumes either that the lock is held or that it is not needed.
void ResetBackPointer() {
back_pointer_->DropFactory();
back_pointer_->Release();
back_pointer_ = NULL;
}
// Takes ownership of the dispatcher pointer, which should be heap allocated.
template <typename Dispatcher>
CompletionCallback NewCallbackHelper(Dispatcher* dispatcher) {
typename ThreadTraits::AutoLock lock(lock_);
PP_DCHECK(object_); // Expects a non-null object!
return CompletionCallback(
&CallbackData<Dispatcher>::Thunk,
new CallbackData<Dispatcher>(back_pointer_, dispatcher));
}
// Takes ownership of the dispatcher pointer, which should be heap allocated.
template <typename Dispatcher> CompletionCallbackWithOutput<
typename internal::TypeUnwrapper<
typename Dispatcher::OutputType>::StorageType>
NewCallbackWithOutputHelper(Dispatcher* dispatcher) {
typename ThreadTraits::AutoLock lock(lock_);
PP_DCHECK(object_); // Expects a non-null object!
CallbackData<Dispatcher>* data =
new CallbackData<Dispatcher>(back_pointer_, dispatcher);
return CompletionCallbackWithOutput<typename Dispatcher::OutputType>(
&CallbackData<Dispatcher>::Thunk,
data,
data->dispatcher()->output());
}
// Disallowed:
CompletionCallbackFactory(const CompletionCallbackFactory&);
CompletionCallbackFactory& operator=(const CompletionCallbackFactory&);
// Never changed once initialized so does not need protection by the lock.
T* object_;
// Protects the back pointer.
typename ThreadTraits::Lock lock_;
// Protected by the lock. This will get reset when you do CancelAll, for
// example.
BackPointer* back_pointer_;
};
} // namespace pp
#endif // PPAPI_UTILITY_COMPLETION_CALLBACK_FACTORY_H_
|