1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "remoting/protocol/capture_scheduler.h"
#include <algorithm>
#include <utility>
#include "base/check_op.h"
#include "base/functional/bind.h"
#include "base/system/sys_info.h"
#include "base/time/default_tick_clock.h"
#include "base/time/time.h"
#include "remoting/proto/video.pb.h"
namespace {
// Number of samples to average the most recent capture and encode time
// over.
const int kStatisticsWindow = 3;
// The hard limit is 30fps or 33ms per recording cycle.
const int64_t kDefaultMinimumIntervalMs = 33;
// Controls how much CPU time we can use for encode and capture.
// Range of this value is between 0 to 1. 0 means using 0% of of all CPUs
// available while 1 means using 100% of all CPUs available.
const double kRecordingCpuConsumption = 0.5;
// Maximum number of captured frames in the encoding queue. Currently capturer
// implementations do not allow to keep more than 2 DesktopFrame objects.
static const int kMaxFramesInEncodingQueue = 2;
// Maximum number of unacknowledged frames. Ignored if the client doesn't
// support ACKs. This value was chosen experimentally, using synthetic
// performance tests (see ProtocolPerfTest), to maximize frame rate, while
// keeping round-trip latency low.
static const int kMaxUnacknowledgedFrames = 4;
} // namespace
namespace remoting::protocol {
// We assume that the number of available cores is constant.
CaptureScheduler::CaptureScheduler(
const base::RepeatingClosure& capture_closure)
: capture_closure_(capture_closure),
tick_clock_(base::DefaultTickClock::GetInstance()),
capture_timer_(new base::OneShotTimer()),
minimum_interval_(base::Milliseconds(kDefaultMinimumIntervalMs)),
num_of_processors_(base::SysInfo::NumberOfProcessors()),
capture_time_(kStatisticsWindow),
encode_time_(kStatisticsWindow),
num_encoding_frames_(0),
num_unacknowledged_frames_(0),
capture_pending_(false),
is_paused_(false),
next_frame_id_(0) {
DCHECK(num_of_processors_);
}
CaptureScheduler::~CaptureScheduler() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
}
void CaptureScheduler::Start() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
ScheduleNextCapture();
}
void CaptureScheduler::Pause(bool pause) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_paused_ != pause) {
is_paused_ = pause;
if (is_paused_) {
capture_timer_->Stop();
} else {
ScheduleNextCapture();
}
}
}
void CaptureScheduler::OnCaptureCompleted() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
capture_pending_ = false;
capture_time_.Record(
(tick_clock_->NowTicks() - last_capture_started_time_).InMilliseconds());
++num_encoding_frames_;
ScheduleNextCapture();
}
void CaptureScheduler::OnFrameEncoded(VideoPacket* packet) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
// Set packet_id for the outgoing packet.
packet->set_frame_id(next_frame_id_);
++next_frame_id_;
// Update internal stats.
encode_time_.Record(packet->encode_time_ms());
--num_encoding_frames_;
++num_unacknowledged_frames_;
ScheduleNextCapture();
}
void CaptureScheduler::OnFrameSent() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
ScheduleNextCapture();
}
void CaptureScheduler::ProcessVideoAck(std::unique_ptr<VideoAck> video_ack) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
--num_unacknowledged_frames_;
DCHECK_GE(num_unacknowledged_frames_, 0);
ScheduleNextCapture();
}
void CaptureScheduler::SetTickClockForTest(const base::TickClock* tick_clock) {
tick_clock_ = tick_clock;
}
void CaptureScheduler::SetTimerForTest(
std::unique_ptr<base::OneShotTimer> timer) {
capture_timer_ = std::move(timer);
}
void CaptureScheduler::SetNumOfProcessorsForTest(int num_of_processors) {
num_of_processors_ = num_of_processors;
}
void CaptureScheduler::ScheduleNextCapture() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (is_paused_ || capture_pending_ ||
num_encoding_frames_ >= kMaxFramesInEncodingQueue) {
return;
}
if (num_encoding_frames_ + num_unacknowledged_frames_ >=
kMaxUnacknowledgedFrames) {
return;
}
// Delay by an amount chosen such that if capture and encode times
// continue to follow the averages, then we'll consume the target
// fraction of CPU across all cores.
base::TimeDelta delay = std::max(
minimum_interval_,
base::Milliseconds((capture_time_.Average() + encode_time_.Average()) /
(kRecordingCpuConsumption * num_of_processors_)));
// Account for the time that has passed since the last capture.
delay = std::max(base::TimeDelta(), delay - (tick_clock_->NowTicks() -
last_capture_started_time_));
capture_timer_->Start(FROM_HERE, delay,
base::BindOnce(&CaptureScheduler::CaptureNextFrame,
base::Unretained(this)));
}
void CaptureScheduler::CaptureNextFrame() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(!is_paused_);
DCHECK(!capture_pending_);
capture_pending_ = true;
last_capture_started_time_ = tick_clock_->NowTicks();
capture_closure_.Run();
}
} // namespace remoting::protocol
|