1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "skia/ext/convolver_neon.h"
#include <arm_neon.h>
namespace skia {
static SK_ALWAYS_INLINE int32x4_t
AccumRemainder(const unsigned char* pixels_left,
const ConvolutionFilter1D::Fixed* filter_values,
int r) {
int remainder[4] = {0, 0, 0, 0};
for (int i = 0; i < r; i++) {
ConvolutionFilter1D::Fixed coeff = filter_values[i];
remainder[0] += coeff * pixels_left[i * 4 + 0];
remainder[1] += coeff * pixels_left[i * 4 + 1];
remainder[2] += coeff * pixels_left[i * 4 + 2];
remainder[3] += coeff * pixels_left[i * 4 + 3];
}
return vld1q_s32(remainder);
}
// Convolves horizontally along a single row. The row data is given in
// |src_data| and continues for the num_values() of the filter.
void ConvolveHorizontally_Neon(const unsigned char* src_data,
const ConvolutionFilter1D& filter,
unsigned char* out_row,
bool /*has_alpha*/) {
// Loop over each pixel on this row in the output image.
int num_values = filter.num_values();
for (int out_x = 0; out_x < num_values; out_x++) {
// Get the filter that determines the current output pixel.
int filter_offset, filter_length;
const ConvolutionFilter1D::Fixed* filter_values =
filter.FilterForValue(out_x, &filter_offset, &filter_length);
// Compute the first pixel in this row that the filter affects. It will
// touch |filter_length| pixels (4 bytes each) after this.
const unsigned char* row_to_filter = &src_data[filter_offset * 4];
// Apply the filter to the row to get the destination pixel in |accum|.
int32x4_t accum = vdupq_n_s32(0);
for (int filter_x = 0; filter_x < (filter_length / 4); filter_x++) {
// Load 4 coefficients.
int16x4_t coeffs = vld1_s16(filter_values);
// Load 4 pixels into a q-register.
uint8x16_t pixels = vld1q_u8(row_to_filter);
// Expand to 16-bit channels split across two q-registers.
int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
// Scale each pixel (each d-register) by its filter coefficients,
// accumulating into 32-bit.
accum = vmlal_lane_s16(accum, vget_low_s16(p01_16), coeffs, 0);
accum = vmlal_lane_s16(accum, vget_high_s16(p01_16), coeffs, 1);
accum = vmlal_lane_s16(accum, vget_low_s16(p23_16), coeffs, 2);
accum = vmlal_lane_s16(accum, vget_high_s16(p23_16), coeffs, 3);
// Advance to next elements.
row_to_filter += 16;
filter_values += 4;
}
int remainder = filter_length & 3;
if (remainder) {
int remainder_offset = (filter_offset + filter_length - remainder) * 4;
accum +=
AccumRemainder(src_data + remainder_offset, filter_values, remainder);
}
// Bring this value back in range. All of the filter scaling factors
// are in fixed point with kShiftBits bits of fractional part.
int16x4_t accum16 = vqshrn_n_s32(accum, ConvolutionFilter1D::kShiftBits);
// Pack and store the new pixel.
uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16));
vst1_lane_u32(reinterpret_cast<uint32_t*>(out_row),
vreinterpret_u32_u8(accum8), 0);
out_row += 4;
}
}
// Convolves horizontally along four rows. The row data is given in
// |src_data| and continues for the num_values() of the filter.
// The algorithm is almost same as |convolve_horizontally|. Please
// refer to that function for detailed comments.
void Convolve4RowsHorizontally_Neon(const unsigned char* src_data[4],
const ConvolutionFilter1D& filter,
unsigned char* out_row[4]) {
// Output one pixel each iteration, calculating all channels (RGBA) together.
int num_values = filter.num_values();
for (int out_x = 0; out_x < num_values; out_x++) {
int filter_offset, filter_length;
const ConvolutionFilter1D::Fixed* filter_values =
filter.FilterForValue(out_x, &filter_offset, &filter_length);
// Four pixels in a column per iteration.
int32x4_t accum0 = vdupq_n_s32(0);
int32x4_t accum1 = vdupq_n_s32(0);
int32x4_t accum2 = vdupq_n_s32(0);
int32x4_t accum3 = vdupq_n_s32(0);
int start = filter_offset * 4;
// Load and accumulate with four coefficients per iteration.
for (int filter_x = 0; filter_x < (filter_length / 4); filter_x++) {
// Load 4 coefficients.
int16x4_t coeffs = vld1_s16(filter_values);
auto iteration = [=](const uint8_t* src) {
// c.f. ConvolveHorizontally_Neon() above.
uint8x16_t pixels = vld1q_u8(src);
int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
int16x8_t p23_16 =
vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
int32x4_t accum = vdupq_n_s32(0);
accum = vmlal_lane_s16(accum, vget_low_s16(p01_16), coeffs, 0);
accum = vmlal_lane_s16(accum, vget_high_s16(p01_16), coeffs, 1);
accum = vmlal_lane_s16(accum, vget_low_s16(p23_16), coeffs, 2);
accum = vmlal_lane_s16(accum, vget_high_s16(p23_16), coeffs, 3);
return accum;
};
accum0 += iteration(src_data[0] + start);
accum1 += iteration(src_data[1] + start);
accum2 += iteration(src_data[2] + start);
accum3 += iteration(src_data[3] + start);
start += 16;
filter_values += 4;
}
int remainder = filter_length & 3;
if (remainder) {
int remainder_offset = (filter_offset + filter_length - remainder) * 4;
accum0 += AccumRemainder(src_data[0] + remainder_offset, filter_values,
remainder);
accum1 += AccumRemainder(src_data[1] + remainder_offset, filter_values,
remainder);
accum2 += AccumRemainder(src_data[2] + remainder_offset, filter_values,
remainder);
accum3 += AccumRemainder(src_data[3] + remainder_offset, filter_values,
remainder);
}
auto pack_result = [](int32x4_t accum) {
int16x4_t accum16 = vqshrn_n_s32(accum, ConvolutionFilter1D::kShiftBits);
return vqmovun_s16(vcombine_s16(accum16, accum16));
};
uint8x8_t res0 = pack_result(accum0);
uint8x8_t res1 = pack_result(accum1);
uint8x8_t res2 = pack_result(accum2);
uint8x8_t res3 = pack_result(accum3);
vst1_lane_u32(reinterpret_cast<uint32_t*>(out_row[0]),
vreinterpret_u32_u8(res0), 0);
vst1_lane_u32(reinterpret_cast<uint32_t*>(out_row[1]),
vreinterpret_u32_u8(res1), 0);
vst1_lane_u32(reinterpret_cast<uint32_t*>(out_row[2]),
vreinterpret_u32_u8(res2), 0);
vst1_lane_u32(reinterpret_cast<uint32_t*>(out_row[3]),
vreinterpret_u32_u8(res3), 0);
out_row[0] += 4;
out_row[1] += 4;
out_row[2] += 4;
out_row[3] += 4;
}
}
// Does vertical convolution to produce one output row. The filter values and
// length are given in the first two parameters. These are applied to each
// of the rows pointed to in the |source_data_rows| array, with each row
// being |pixel_width| wide.
//
// The output must have room for |pixel_width * 4| bytes.
void ConvolveVertically_Neon(const ConvolutionFilter1D::Fixed* filter_values,
int filter_length,
unsigned char* const* source_data_rows,
int pixel_width,
unsigned char* out_row,
bool has_alpha) {
int width = pixel_width & ~3;
// Output four pixels per iteration (16 bytes).
for (int out_x = 0; out_x < width; out_x += 4) {
// Accumulated result for each pixel. 32 bits per RGBA channel.
int32x4_t accum0 = vdupq_n_s32(0);
int32x4_t accum1 = vdupq_n_s32(0);
int32x4_t accum2 = vdupq_n_s32(0);
int32x4_t accum3 = vdupq_n_s32(0);
// Convolve with one filter coefficient per iteration.
for (int filter_y = 0; filter_y < filter_length; filter_y++) {
// Load four pixels (16 bytes) together.
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
uint8x16_t src8 = vld1q_u8(&source_data_rows[filter_y][out_x << 2]);
int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
accum0 =
vmlal_n_s16(accum0, vget_low_s16(src16_01), filter_values[filter_y]);
accum1 =
vmlal_n_s16(accum1, vget_high_s16(src16_01), filter_values[filter_y]);
accum2 =
vmlal_n_s16(accum2, vget_low_s16(src16_23), filter_values[filter_y]);
accum3 =
vmlal_n_s16(accum3, vget_high_s16(src16_23), filter_values[filter_y]);
}
// Shift right for fixed point implementation.
// Packing 32 bits |accum| to 16 bits per channel (unsigned saturation).
int16x4_t accum16_0 = vqshrn_n_s32(accum0, ConvolutionFilter1D::kShiftBits);
int16x4_t accum16_1 = vqshrn_n_s32(accum1, ConvolutionFilter1D::kShiftBits);
int16x4_t accum16_2 = vqshrn_n_s32(accum2, ConvolutionFilter1D::kShiftBits);
int16x4_t accum16_3 = vqshrn_n_s32(accum3, ConvolutionFilter1D::kShiftBits);
// [16] a1 b1 g1 r1 a0 b0 g0 r0
int16x8_t accum16_low = vcombine_s16(accum16_0, accum16_1);
// [16] a3 b3 g3 r3 a2 b2 g2 r2
int16x8_t accum16_high = vcombine_s16(accum16_2, accum16_3);
// Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
uint8x16_t accum8 =
vcombine_u8(vqmovun_s16(accum16_low), vqmovun_s16(accum16_high));
if (has_alpha) {
// Compute the max(ri, gi, bi) for each pixel.
// [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
uint8x16_t a =
vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
// [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
b = vmaxq_u8(a, b); // Max of r and g and b.
// [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
// Make sure the value of alpha channel is always larger than maximum
// value of color channels.
accum8 = vmaxq_u8(b, accum8);
} else {
// Set value of alpha channels to 0xFF.
accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) |
vdupq_n_u32(0xFF000000));
}
// Store the convolution result (16 bytes) and advance the pixel pointers.
vst1q_u8(out_row, accum8);
out_row += 16;
}
// Process the leftovers when the width of the output is not divisible
// by 4, that is at most 3 pixels.
int remainder = pixel_width & 3;
if (remainder) {
int32x4_t accum0 = vdupq_n_s32(0);
int32x4_t accum1 = vdupq_n_s32(0);
int32x4_t accum2 = vdupq_n_s32(0);
for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
uint8x16_t src8 = vld1q_u8(&source_data_rows[filter_y][width * 4]);
int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
accum0 =
vmlal_n_s16(accum0, vget_low_s16(src16_01), filter_values[filter_y]);
accum1 =
vmlal_n_s16(accum1, vget_high_s16(src16_01), filter_values[filter_y]);
accum2 =
vmlal_n_s16(accum2, vget_low_s16(src16_23), filter_values[filter_y]);
}
int16x4_t accum16_0 = vqshrn_n_s32(accum0, ConvolutionFilter1D::kShiftBits);
int16x4_t accum16_1 = vqshrn_n_s32(accum1, ConvolutionFilter1D::kShiftBits);
int16x4_t accum16_2 = vqshrn_n_s32(accum2, ConvolutionFilter1D::kShiftBits);
int16x8_t accum16_low = vcombine_s16(accum16_0, accum16_1);
int16x8_t accum16_high = vcombine_s16(accum16_2, accum16_2);
uint8x16_t accum8 =
vcombine_u8(vqmovun_s16(accum16_low), vqmovun_s16(accum16_high));
if (has_alpha) {
// Compute the max(ri, gi, bi) for each pixel.
// [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
uint8x16_t a =
vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
// [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
b = vmaxq_u8(a, b); // Max of r and g and b.
// [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
// Make sure the value of alpha channel is always larger than maximum
// value of color channels.
accum8 = vmaxq_u8(b, accum8);
} else {
// Set value of alpha channels to 0xFF.
accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) |
vdupq_n_u32(0xFF000000));
}
switch (remainder) {
case 1:
vst1q_lane_u32(reinterpret_cast<uint32_t*>(out_row),
vreinterpretq_u32_u8(accum8), 0);
break;
case 2:
vst1_u32(reinterpret_cast<uint32_t*>(out_row),
vreinterpret_u32_u8(vget_low_u8(accum8)));
break;
case 3:
vst1_u32(reinterpret_cast<uint32_t*>(out_row),
vreinterpret_u32_u8(vget_low_u8(accum8)));
vst1q_lane_u32(reinterpret_cast<uint32_t*>(out_row + 8),
vreinterpretq_u32_u8(accum8), 2);
break;
}
}
}
} // namespace skia
|