1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "skia/ext/convolver.h"
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <algorithm>
#include <array>
#include <numeric>
#include <vector>
#include "base/logging.h"
#include "base/rand_util.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkRect.h"
#include "third_party/skia/include/core/SkTypes.h"
namespace skia {
namespace {
// Fills the given filter with impulse functions for the range 0->num_entries.
void FillImpulseFilter(int num_entries, ConvolutionFilter1D* filter) {
float one = 1.0f;
for (int i = 0; i < num_entries; i++)
filter->AddFilter(i, &one, 1);
}
// Filters the given input with the impulse function, and verifies that it
// does not change.
void TestImpulseConvolution(const unsigned char* data, int width, int height) {
int byte_count = width * height * 4;
ConvolutionFilter1D filter_x;
FillImpulseFilter(width, &filter_x);
ConvolutionFilter1D filter_y;
FillImpulseFilter(height, &filter_y);
std::vector<unsigned char> output;
output.resize(byte_count);
BGRAConvolve2D(data, width * 4, true, filter_x, filter_y,
filter_x.num_values() * 4, &output[0], false);
// Output should exactly match input.
EXPECT_EQ(0, memcmp(data, &output[0], byte_count));
}
// Fills the destination filter with a box filter averaging every two pixels
// to produce the output.
void FillBoxFilter(int size, ConvolutionFilter1D* filter) {
const float box[2] = { 0.5, 0.5 };
for (int i = 0; i < size; i++)
filter->AddFilter(i * 2, box, 2);
}
} // namespace
// Tests that each pixel, when set and run through the impulse filter, does
// not change.
TEST(Convolver, Impulse) {
// We pick an "odd" size that is not likely to fit on any boundaries so that
// we can see if all the widths and paddings are handled properly.
int width = 15;
int height = 31;
int byte_count = width * height * 4;
std::vector<unsigned char> input;
input.resize(byte_count);
unsigned char* input_ptr = &input[0];
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
for (int channel = 0; channel < 3; channel++) {
memset(input_ptr, 0, byte_count);
input_ptr[(y * width + x) * 4 + channel] = 0xff;
// Always set the alpha channel or it will attempt to "fix" it for us.
input_ptr[(y * width + x) * 4 + 3] = 0xff;
TestImpulseConvolution(input_ptr, width, height);
}
}
}
}
// Tests that using a box filter to halve an image results in every square of 4
// pixels in the original get averaged to a pixel in the output.
TEST(Convolver, Halve) {
static const int kSize = 16;
int src_width = kSize;
int src_height = kSize;
int src_row_stride = src_width * 4;
int src_byte_count = src_row_stride * src_height;
std::vector<unsigned char> input;
input.resize(src_byte_count);
int dest_width = src_width / 2;
int dest_height = src_height / 2;
int dest_byte_count = dest_width * dest_height * 4;
std::vector<unsigned char> output;
output.resize(dest_byte_count);
// First fill the array with a bunch of random data.
base::RandBytes(input);
// Compute the filters.
ConvolutionFilter1D filter_x, filter_y;
FillBoxFilter(dest_width, &filter_x);
FillBoxFilter(dest_height, &filter_y);
// Do the convolution.
BGRAConvolve2D(input.data(), src_width, true, filter_x, filter_y,
filter_x.num_values() * 4, output.data(), false);
// Compute the expected results and check, allowing for a small difference
// to account for rounding errors.
for (int y = 0; y < dest_height; y++) {
for (int x = 0; x < dest_width; x++) {
for (int channel = 0; channel < 4; channel++) {
int src_offset = (y * 2 * src_row_stride + x * 2 * 4) + channel;
int value = input[src_offset] + // Top left source pixel.
input[src_offset + 4] + // Top right source pixel.
input[src_offset + src_row_stride] + // Lower left.
input[src_offset + src_row_stride + 4]; // Lower right.
value /= 4; // Average.
int difference = value - output[(y * dest_width + x) * 4 + channel];
EXPECT_TRUE(difference >= -1 || difference <= 1);
}
}
}
}
// Tests the optimization in Convolver1D::AddFilter that avoids storing
// leading/trailing zeroes.
TEST(Convolver, AddFilter) {
skia::ConvolutionFilter1D filter;
const skia::ConvolutionFilter1D::Fixed* values = NULL;
int filter_offset = 0;
int filter_length = 0;
// An all-zero filter is handled correctly, all factors ignored
static const float factors1[] = { 0.0f, 0.0f, 0.0f };
filter.AddFilter(11, factors1, std::size(factors1));
ASSERT_EQ(0, filter.max_filter());
ASSERT_EQ(1, filter.num_values());
values = filter.FilterForValue(0, &filter_offset, &filter_length);
ASSERT_TRUE(values == NULL); // No values => NULL.
ASSERT_EQ(11, filter_offset); // Same as input offset.
ASSERT_EQ(0, filter_length); // But no factors since all are zeroes.
// Zeroes on the left are ignored
static const float factors2[] = { 0.0f, 1.0f, 1.0f, 1.0f, 1.0f };
filter.AddFilter(22, factors2, std::size(factors2));
ASSERT_EQ(4, filter.max_filter());
ASSERT_EQ(2, filter.num_values());
values = filter.FilterForValue(1, &filter_offset, &filter_length);
ASSERT_TRUE(values != NULL);
ASSERT_EQ(23, filter_offset); // 22 plus 1 leading zero
ASSERT_EQ(4, filter_length); // 5 - 1 leading zero
// Zeroes on the right are ignored
static const float factors3[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
filter.AddFilter(33, factors3, std::size(factors3));
ASSERT_EQ(5, filter.max_filter());
ASSERT_EQ(3, filter.num_values());
values = filter.FilterForValue(2, &filter_offset, &filter_length);
ASSERT_TRUE(values != NULL);
ASSERT_EQ(33, filter_offset); // 33, same as input due to no leading zero
ASSERT_EQ(5, filter_length); // 7 - 2 trailing zeroes
// Zeroes in leading & trailing positions
static const float factors4[] = { 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f };
filter.AddFilter(44, factors4, std::size(factors4));
ASSERT_EQ(5, filter.max_filter()); // No change from existing value.
ASSERT_EQ(4, filter.num_values());
values = filter.FilterForValue(3, &filter_offset, &filter_length);
ASSERT_TRUE(values != NULL);
ASSERT_EQ(46, filter_offset); // 44 plus 2 leading zeroes
ASSERT_EQ(3, filter_length); // 7 - (2 leading + 2 trailing) zeroes
// Zeroes surrounded by non-zero values are ignored
static const float factors5[] = { 0.0f, 0.0f,
1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f,
0.0f };
filter.AddFilter(55, factors5, std::size(factors5));
ASSERT_EQ(6, filter.max_filter());
ASSERT_EQ(5, filter.num_values());
values = filter.FilterForValue(4, &filter_offset, &filter_length);
ASSERT_TRUE(values != NULL);
ASSERT_EQ(57, filter_offset); // 55 plus 2 leading zeroes
ASSERT_EQ(6, filter_length); // 9 - (2 leading + 1 trailing) zeroes
// All-zero filters after the first one also work
static const float factors6[] = { 0.0f };
filter.AddFilter(66, factors6, std::size(factors6));
ASSERT_EQ(6, filter.max_filter());
ASSERT_EQ(6, filter.num_values());
values = filter.FilterForValue(5, &filter_offset, &filter_length);
ASSERT_TRUE(values == NULL); // filter_length == 0 => values is NULL
ASSERT_EQ(66, filter_offset); // value passed in
ASSERT_EQ(0, filter_length);
}
void VerifySIMD(unsigned int source_width,
unsigned int source_height,
unsigned int dest_width,
unsigned int dest_height) {
float filter[] = { 0.05f, -0.15f, 0.6f, 0.6f, -0.15f, 0.05f };
// Preparing convolve coefficients.
ConvolutionFilter1D x_filter, y_filter;
for (unsigned int p = 0; p < dest_width; ++p) {
unsigned int offset = source_width * p / dest_width;
EXPECT_LT(offset, source_width);
x_filter.AddFilter(offset, filter,
std::min<int>(std::size(filter), source_width - offset));
}
x_filter.PaddingForSIMD();
for (unsigned int p = 0; p < dest_height; ++p) {
unsigned int offset = source_height * p / dest_height;
y_filter.AddFilter(
offset, filter,
std::min<int>(std::size(filter), source_height - offset));
}
y_filter.PaddingForSIMD();
// Allocate input and output skia bitmap.
SkBitmap source, result_c, result_sse;
source.allocN32Pixels(source_width, source_height);
result_c.allocN32Pixels(dest_width, dest_height);
result_sse.allocN32Pixels(dest_width, dest_height);
// Randomize source bitmap for testing.
unsigned char* src_ptr = static_cast<unsigned char*>(source.getPixels());
for (int y = 0; y < source.height(); y++) {
for (unsigned int x = 0; x < source.rowBytes(); x++)
src_ptr[x] = rand() % 255;
src_ptr += source.rowBytes();
}
// Test both cases with different has_alpha.
for (int alpha = 0; alpha < 2; alpha++) {
// Convolve using C code.
base::TimeTicks resize_start;
base::TimeDelta delta_c, delta_sse;
unsigned char* r1 = static_cast<unsigned char*>(result_c.getPixels());
unsigned char* r2 = static_cast<unsigned char*>(result_sse.getPixels());
resize_start = base::TimeTicks::Now();
BGRAConvolve2D(static_cast<const uint8_t*>(source.getPixels()),
static_cast<int>(source.rowBytes()), (alpha != 0), x_filter,
y_filter, static_cast<int>(result_c.rowBytes()), r1, false);
delta_c = base::TimeTicks::Now() - resize_start;
resize_start = base::TimeTicks::Now();
// Convolve using SSE2 code
BGRAConvolve2D(static_cast<const uint8_t*>(source.getPixels()),
static_cast<int>(source.rowBytes()), (alpha != 0), x_filter,
y_filter, static_cast<int>(result_sse.rowBytes()), r2, true);
delta_sse = base::TimeTicks::Now() - resize_start;
// Unfortunately I could not enable the performance check now.
// Most bots use debug version, and there are great difference between
// the code generation for intrinsic, etc. In release version speed
// difference was 150%-200% depend on alpha channel presence;
// while in debug version speed difference was 96%-120%.
// TODO(jiesun): optimize further until we could enable this for
// debug version too.
// EXPECT_LE(delta_sse, delta_c);
int64_t c_us = delta_c.InMicroseconds();
int64_t sse_us = delta_sse.InMicroseconds();
VLOG(1) << "from:" << source_width << "x" << source_height
<< " to:" << dest_width << "x" << dest_height
<< (alpha ? " with alpha" : " w/o alpha");
VLOG(1) << "c:" << c_us << " sse:" << sse_us;
VLOG(1) << "ratio:" << static_cast<float>(c_us) / sse_us;
// Comparing result.
for (unsigned int i = 0; i < dest_height; i++) {
EXPECT_FALSE(memcmp(r1, r2, dest_width * 4)); // RGBA always
r1 += result_c.rowBytes();
r2 += result_sse.rowBytes();
}
}
}
TEST(Convolver, VerifySIMDEdgeCases) {
srand(static_cast<unsigned int>(time(0)));
// Loop over all possible (small) image sizes
for (unsigned int width = 1; width < 20; width++) {
for (unsigned int height = 1; height < 20; height++) {
VerifySIMD(width, height, 8, 8);
VerifySIMD(8, 8, width, height);
}
}
}
// Verify that lage upscales/downscales produce the same result
// with and without SIMD.
TEST(Convolver, VerifySIMDPrecision) {
auto source_sizes = std::to_array<std::array<int, 2>>({
{1920, 1080},
{1377, 523},
{325, 241},
});
auto dest_sizes =
std::to_array<std::array<int, 2>>({{1280, 1024}, {177, 123}});
srand(static_cast<unsigned int>(time(0)));
// Loop over some specific source and destination dimensions.
for (unsigned int i = 0; i < std::size(source_sizes); ++i) {
unsigned int source_width = source_sizes[i][0];
unsigned int source_height = source_sizes[i][1];
for (unsigned int j = 0; j < std::size(dest_sizes); ++j) {
unsigned int dest_width = dest_sizes[j][0];
unsigned int dest_height = dest_sizes[j][1];
VerifySIMD(source_width, source_height, dest_width, dest_height);
}
}
}
TEST(Convolver, SeparableSingleConvolution) {
static const int kImgWidth = 1024;
static const int kImgHeight = 1024;
static const int kChannelCount = 3;
static const int kStrideSlack = 22;
ConvolutionFilter1D filter;
const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f };
filter.AddFilter(0, box, 5);
// Allocate a source image and set to 0.
const int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
int src_byte_count = src_row_stride * kImgHeight;
std::vector<unsigned char> input;
const int signal_x = kImgWidth / 2;
const int signal_y = kImgHeight / 2;
input.resize(src_byte_count, 0);
// The image has a single impulse pixel in channel 1, smack in the middle.
const int non_zero_pixel_index =
signal_y * src_row_stride + signal_x * kChannelCount + 1;
input[non_zero_pixel_index] = 255;
// Destination will be a single channel image with stide matching width.
const int dest_row_stride = kImgWidth;
const int dest_byte_count = dest_row_stride * kImgHeight;
std::vector<unsigned char> output;
output.resize(dest_byte_count);
// Apply convolution in X.
SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount,
filter, SkISize::Make(kImgWidth, kImgHeight),
&output[0], dest_row_stride, 0, 1, false);
for (int x = signal_x - 2; x <= signal_x + 2; ++x)
EXPECT_GT(output[signal_y * dest_row_stride + x], 0);
EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 3], 0);
EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 3], 0);
// Apply convolution in Y.
SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount,
filter, SkISize::Make(kImgWidth, kImgHeight),
&output[0], dest_row_stride, 0, 1, false);
for (int y = signal_y - 2; y <= signal_y + 2; ++y)
EXPECT_GT(output[y * dest_row_stride + signal_x], 0);
EXPECT_EQ(output[(signal_y - 3) * dest_row_stride + signal_x], 0);
EXPECT_EQ(output[(signal_y + 3) * dest_row_stride + signal_x], 0);
EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 1], 0);
EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 1], 0);
// The main point of calling this is to invoke the routine on input without
// padding.
std::vector<unsigned char> output2;
output2.resize(dest_byte_count);
SingleChannelConvolveX1D(&output[0], dest_row_stride, 0, 1,
filter, SkISize::Make(kImgWidth, kImgHeight),
&output2[0], dest_row_stride, 0, 1, false);
// This should be a result of 2D convolution.
for (int x = signal_x - 2; x <= signal_x + 2; ++x) {
for (int y = signal_y - 2; y <= signal_y + 2; ++y)
EXPECT_GT(output2[y * dest_row_stride + x], 0);
}
EXPECT_EQ(output2[0], 0);
EXPECT_EQ(output2[dest_row_stride - 1], 0);
EXPECT_EQ(output2[dest_byte_count - 1], 0);
}
TEST(Convolver, SeparableSingleConvolutionEdges) {
// The purpose of this test is to check if the implementation treats correctly
// edges of the image.
static const int kImgWidth = 600;
static const int kImgHeight = 800;
static const int kChannelCount = 3;
static const int kStrideSlack = 22;
static const int kChannel = 1;
ConvolutionFilter1D filter;
const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f };
filter.AddFilter(0, box, 5);
// Allocate a source image and set to 0.
int src_row_stride = kImgWidth * kChannelCount + kStrideSlack;
int src_byte_count = src_row_stride * kImgHeight;
std::vector<unsigned char> input(src_byte_count);
// Draw a frame around the image.
for (int i = 0; i < src_byte_count; ++i) {
int row = i / src_row_stride;
int col = i % src_row_stride / kChannelCount;
int channel = i % src_row_stride % kChannelCount;
if (channel != kChannel || col > kImgWidth) {
input[i] = 255;
} else if (row == 0 || col == 0 ||
col == kImgWidth - 1 || row == kImgHeight - 1) {
input[i] = 100;
} else if (row == 1 || col == 1 ||
col == kImgWidth - 2 || row == kImgHeight - 2) {
input[i] = 200;
} else {
input[i] = 0;
}
}
// Destination will be a single channel image with stide matching width.
int dest_row_stride = kImgWidth;
int dest_byte_count = dest_row_stride * kImgHeight;
std::vector<unsigned char> output;
output.resize(dest_byte_count);
// Apply convolution in X.
SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount,
filter, SkISize::Make(kImgWidth, kImgHeight),
&output[0], dest_row_stride, 0, 1, false);
// Sadly, comparison is not as simple as retaining all values.
int invalid_values = 0;
const unsigned char first_value = output[0];
EXPECT_NEAR(first_value, 100, 1);
for (int i = 0; i < dest_row_stride; ++i) {
if (output[i] != first_value)
++invalid_values;
}
EXPECT_EQ(0, invalid_values);
int test_row = 22;
EXPECT_NEAR(output[test_row * dest_row_stride], 100, 1);
EXPECT_NEAR(output[test_row * dest_row_stride + 1], 80, 1);
EXPECT_NEAR(output[test_row * dest_row_stride + 2], 60, 1);
EXPECT_NEAR(output[test_row * dest_row_stride + 3], 40, 1);
EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 1], 100, 1);
EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 2], 80, 1);
EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 3], 60, 1);
EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 4], 40, 1);
SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount,
filter, SkISize::Make(kImgWidth, kImgHeight),
&output[0], dest_row_stride, 0, 1, false);
int test_column = 42;
EXPECT_NEAR(output[test_column], 100, 1);
EXPECT_NEAR(output[test_column + dest_row_stride], 80, 1);
EXPECT_NEAR(output[test_column + dest_row_stride * 2], 60, 1);
EXPECT_NEAR(output[test_column + dest_row_stride * 3], 40, 1);
EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 1)], 100, 1);
EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 2)], 80, 1);
EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 3)], 60, 1);
EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 4)], 40, 1);
}
TEST(Convolver, SetUpGaussianConvolutionFilter) {
ConvolutionFilter1D smoothing_filter;
ConvolutionFilter1D gradient_filter;
SetUpGaussianConvolutionKernel(&smoothing_filter, 4.5f, false);
SetUpGaussianConvolutionKernel(&gradient_filter, 3.0f, true);
int specified_filter_length;
int filter_offset;
int filter_length;
const ConvolutionFilter1D::Fixed* smoothing_kernel =
smoothing_filter.GetSingleFilter(
&specified_filter_length, &filter_offset, &filter_length);
EXPECT_TRUE(smoothing_kernel);
std::vector<float> fp_smoothing_kernel(filter_length);
std::transform(smoothing_kernel,
smoothing_kernel + filter_length,
fp_smoothing_kernel.begin(),
ConvolutionFilter1D::FixedToFloat);
// Should sum-up to 1 (nearly), and all values whould be in ]0, 1[.
EXPECT_NEAR(std::accumulate(
fp_smoothing_kernel.begin(), fp_smoothing_kernel.end(), 0.0f),
1.0f, 0.01f);
EXPECT_GT(*std::min_element(fp_smoothing_kernel.begin(),
fp_smoothing_kernel.end()), 0.0f);
EXPECT_LT(*std::max_element(fp_smoothing_kernel.begin(),
fp_smoothing_kernel.end()), 1.0f);
const ConvolutionFilter1D::Fixed* gradient_kernel =
gradient_filter.GetSingleFilter(
&specified_filter_length, &filter_offset, &filter_length);
EXPECT_TRUE(gradient_kernel);
std::vector<float> fp_gradient_kernel(filter_length);
std::transform(gradient_kernel,
gradient_kernel + filter_length,
fp_gradient_kernel.begin(),
ConvolutionFilter1D::FixedToFloat);
// Should sum-up to 0, and all values whould be in ]-1.5, 1.5[.
EXPECT_NEAR(std::accumulate(
fp_gradient_kernel.begin(), fp_gradient_kernel.end(), 0.0f),
0.0f, 0.01f);
EXPECT_GT(*std::min_element(fp_gradient_kernel.begin(),
fp_gradient_kernel.end()), -1.5f);
EXPECT_LT(*std::min_element(fp_gradient_kernel.begin(),
fp_gradient_kernel.end()), 0.0f);
EXPECT_LT(*std::max_element(fp_gradient_kernel.begin(),
fp_gradient_kernel.end()), 1.5f);
EXPECT_GT(*std::max_element(fp_gradient_kernel.begin(),
fp_gradient_kernel.end()), 0.0f);
}
} // namespace skia
|