1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include <algorithm>
#include <cmath>
#include <vector>
#include "base/check_op.h"
#include "base/notreached.h"
#include "skia/ext/recursive_gaussian_convolution.h"
namespace skia {
namespace {
// Takes the value produced by accumulating element-wise product of image with
// a kernel and brings it back into range.
// All of the filter scaling factors are in fixed point with kShiftBits bits of
// fractional part.
template<bool take_absolute>
inline unsigned char FloatTo8(float f) {
int a = static_cast<int>(f + 0.5f);
if (take_absolute)
a = std::abs(a);
else if (a < 0)
return 0;
if (a < 256)
return a;
return 255;
}
template<RecursiveFilter::Order order>
inline float ForwardFilter(float in_n_1,
float in_n,
float in_n1,
const std::vector<float>& w,
int n,
const float* b) {
switch (order) {
case RecursiveFilter::FUNCTION:
return b[0] * in_n + b[1] * w[n-1] + b[2] * w[n-2] + b[3] * w[n-3];
case RecursiveFilter::FIRST_DERIVATIVE:
return b[0] * 0.5f * (in_n1 - in_n_1) +
b[1] * w[n-1] + b[2] * w[n-2] + b[3] * w[n-3];
case RecursiveFilter::SECOND_DERIVATIVE:
return b[0] * (in_n - in_n_1) +
b[1] * w[n-1] + b[2] * w[n-2] + b[3] * w[n-3];
}
NOTREACHED();
}
template<RecursiveFilter::Order order>
inline float BackwardFilter(const std::vector<float>& out,
int n,
float w_n,
float w_n1,
const float* b) {
switch (order) {
case RecursiveFilter::FUNCTION:
case RecursiveFilter::FIRST_DERIVATIVE:
return b[0] * w_n +
b[1] * out[n + 1] + b[2] * out[n + 2] + b[3] * out[n + 3];
case RecursiveFilter::SECOND_DERIVATIVE:
return b[0] * (w_n1 - w_n) +
b[1] * out[n + 1] + b[2] * out[n + 2] + b[3] * out[n + 3];
}
NOTREACHED();
}
template<RecursiveFilter::Order order, bool absolute_values>
unsigned char SingleChannelRecursiveFilter(
const unsigned char* const source_data,
int source_pixel_stride,
int source_row_stride,
int row_width,
int row_count,
unsigned char* const output,
int output_pixel_stride,
int output_row_stride,
const float* b) {
const int intermediate_buffer_size = row_width + 6;
std::vector<float> w(intermediate_buffer_size);
const unsigned char* in = source_data;
unsigned char* out = output;
unsigned char max_output = 0;
for (int r = 0; r < row_count;
++r, in += source_row_stride, out += output_row_stride) {
// Compute forward filter.
// First initialize start of the w (temporary) vector.
if (order == RecursiveFilter::FUNCTION)
w[0] = w[1] = w[2] = in[0];
else
w[0] = w[1] = w[2] = 0.0f;
// Note that special-casing of w[3] is needed because of derivatives.
w[3] = ForwardFilter<order>(
in[0], in[0], in[source_pixel_stride], w, 3, b);
int n = 4;
int c = 1;
int byte_index = source_pixel_stride;
for (; c < row_width - 1; ++c, ++n, byte_index += source_pixel_stride) {
w[n] = ForwardFilter<order>(in[byte_index - source_pixel_stride],
in[byte_index],
in[byte_index + source_pixel_stride],
w, n, b);
}
// The value of w corresponding to the last image pixel needs to be computed
// separately, again because of derivatives.
w[n] = ForwardFilter<order>(in[byte_index - source_pixel_stride],
in[byte_index],
in[byte_index],
w, n, b);
// Now three trailing bytes set to the same value as current w[n].
w[n + 1] = w[n];
w[n + 2] = w[n];
w[n + 3] = w[n];
// Now apply the back filter.
float w_n1 = w[n + 1];
int output_index = (row_width - 1) * output_pixel_stride;
for (; c >= 0; output_index -= output_pixel_stride, --c, --n) {
float w_n = BackwardFilter<order>(w, n, w[n], w_n1, b);
w_n1 = w[n];
w[n] = w_n;
out[output_index] = FloatTo8<absolute_values>(w_n);
max_output = std::max(max_output, out[output_index]);
}
}
return max_output;
}
unsigned char SingleChannelRecursiveFilter(
const unsigned char* const source_data,
int source_pixel_stride,
int source_row_stride,
int row_width,
int row_count,
unsigned char* const output,
int output_pixel_stride,
int output_row_stride,
const float* b,
RecursiveFilter::Order order,
bool absolute_values) {
if (absolute_values) {
switch (order) {
case RecursiveFilter::FUNCTION:
return SingleChannelRecursiveFilter<RecursiveFilter::FUNCTION, true>(
source_data, source_pixel_stride, source_row_stride,
row_width, row_count,
output, output_pixel_stride, output_row_stride, b);
case RecursiveFilter::FIRST_DERIVATIVE:
return SingleChannelRecursiveFilter<
RecursiveFilter::FIRST_DERIVATIVE, true>(
source_data, source_pixel_stride, source_row_stride,
row_width, row_count,
output, output_pixel_stride, output_row_stride, b);
case RecursiveFilter::SECOND_DERIVATIVE:
return SingleChannelRecursiveFilter<
RecursiveFilter::SECOND_DERIVATIVE, true>(
source_data, source_pixel_stride, source_row_stride,
row_width, row_count,
output, output_pixel_stride, output_row_stride, b);
}
} else {
switch (order) {
case RecursiveFilter::FUNCTION:
return SingleChannelRecursiveFilter<RecursiveFilter::FUNCTION, false>(
source_data, source_pixel_stride, source_row_stride,
row_width, row_count,
output, output_pixel_stride, output_row_stride, b);
case RecursiveFilter::FIRST_DERIVATIVE:
return SingleChannelRecursiveFilter<
RecursiveFilter::FIRST_DERIVATIVE, false>(
source_data, source_pixel_stride, source_row_stride,
row_width, row_count,
output, output_pixel_stride, output_row_stride, b);
case RecursiveFilter::SECOND_DERIVATIVE:
return SingleChannelRecursiveFilter<
RecursiveFilter::SECOND_DERIVATIVE, false>(
source_data, source_pixel_stride, source_row_stride,
row_width, row_count,
output, output_pixel_stride, output_row_stride, b);
}
}
NOTREACHED();
}
}
float RecursiveFilter::qFromSigma(float sigma) {
DCHECK_GE(sigma, 0.5f);
if (sigma <= 2.5f)
return 3.97156f - 4.14554f * std::sqrt(1.0f - 0.26891f * sigma);
return 0.98711f * sigma - 0.96330f;
}
void RecursiveFilter::computeCoefficients(float q, float b[4]) {
b[0] = 1.57825f + 2.44413f * q + 1.4281f * q * q + 0.422205f * q * q * q;
b[1] = 2.4413f * q + 2.85619f * q * q + 1.26661f * q * q * q;
b[2] = - 1.4281f * q * q - 1.26661f * q * q * q;
b[3] = 0.422205f * q * q * q;
// The above is exactly like in the paper. To cut down on computations,
// we can fix up these numbers a bit now.
float b_norm = 1.0f - (b[1] + b[2] + b[3]) / b[0];
b[1] /= b[0];
b[2] /= b[0];
b[3] /= b[0];
b[0] = b_norm;
}
RecursiveFilter::RecursiveFilter(float sigma, Order order)
: order_(order), q_(qFromSigma(sigma)) {
computeCoefficients(q_, b_);
}
unsigned char SingleChannelRecursiveGaussianX(const unsigned char* source_data,
int source_byte_row_stride,
int input_channel_index,
int input_channel_count,
const RecursiveFilter& filter,
const SkISize& image_size,
unsigned char* output,
int output_byte_row_stride,
int output_channel_index,
int output_channel_count,
bool absolute_values) {
return SingleChannelRecursiveFilter(source_data + input_channel_index,
input_channel_count,
source_byte_row_stride,
image_size.width(),
image_size.height(),
output + output_channel_index,
output_channel_count,
output_byte_row_stride,
filter.b(),
filter.order(),
absolute_values);
}
unsigned char SingleChannelRecursiveGaussianY(const unsigned char* source_data,
int source_byte_row_stride,
int input_channel_index,
int input_channel_count,
const RecursiveFilter& filter,
const SkISize& image_size,
unsigned char* output,
int output_byte_row_stride,
int output_channel_index,
int output_channel_count,
bool absolute_values) {
return SingleChannelRecursiveFilter(source_data + input_channel_index,
source_byte_row_stride,
input_channel_count,
image_size.height(),
image_size.width(),
output + output_channel_index,
output_byte_row_stride,
output_channel_count,
filter.b(),
filter.order(),
absolute_values);
}
} // namespace skia
|