File: ratio_bootstrap_estimator.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (288 lines) | stat: -rw-r--r-- 10,238 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "testing/perf/confidence/ratio_bootstrap_estimator.h"

#include <limits>

#define _USE_MATH_DEFINES  // Needed to get M_SQRT1_2 on Windows.
#include <math.h>

#include <algorithm>
#include <memory>
#include <vector>

#ifdef UNSAFE_BUFFERS_BUILD
// Not used with untrusted inputs.
#pragma allow_unsafe_buffers
#endif

using std::lower_bound;
using std::min;
using std::numeric_limits;
using std::sort;
using std::unique_ptr;
using std::vector;

// Inverse normal CDF, e.g. InverseNormalCDF(0.975) ~= 1.96
// (a 95% CI will cover +/- 1.96 standard deviations from the mean).
//
// For some reason, C has erf() in its standard library, but not its inverse,
// so we have to build it ourselves (which is a bit annoying, since we only
// really want it to convert the confidence interval quantiles!). This is
// nontrivial, but fortunately, others have figured it out. This is an
// implementation of “Algorithm AS 241: The Percentage Points of the Normal
// Distribution” (Wichura), and is roughly the same as was used in GNU R
// until recently. We don't need extreme precision, so we've only used the
// version that is accurate to about seven decimal digits (the other one
// is pretty much the same, just with even more constants).
double RatioBootstrapEstimator::InverseNormalCDF(double p) {
  double q = p - 0.5;
  if (fabs(q) < 0.425) {
    const double a0 = 3.3871327179e0;
    const double a1 = 5.0434271938e1;
    const double a2 = 1.5929113202e2;
    const double a3 = 5.9109374720e1;
    const double b1 = 1.7895169469e1;
    const double b2 = 7.8757757664e1;
    const double b3 = 6.7187563600e1;

    double r = 0.180625 - q * q;
    return q * (((a3 * r + a2) * r + a1) * r + a0) /
           (((b3 * r + b2) * r + b1) * r + 1.0);
  } else {
    double r = (q < 0) ? p : 1.0 - p;
    if (r < 0.0) {
      return numeric_limits<double>::quiet_NaN();
    }
    r = sqrt(-log(r));
    double ret;
    if (r < 5.0) {
      const double c0 = 1.4234372777e0;
      const double c1 = 2.7568153900e0;
      const double c2 = 1.3067284816e0;
      const double c3 = 1.7023821103e-1;
      const double d1 = 7.3700164250e-1;
      const double d2 = 1.2021132975e-1;

      r -= 1.6;
      ret = (((c3 * r + c2) * r + c1) * r + c0) / ((d2 * r + d1) * r + 1.0);
    } else {
      const double e0 = 6.6579051150e0;
      const double e1 = 3.0812263860e0;
      const double e2 = 4.2868294337e-1;
      const double e3 = 1.7337203997e-2;
      const double f1 = 2.4197894225e-1;
      const double f2 = 1.2258202635e-2;

      r -= 5.0;
      ret = (((e3 * r + e2) * r + e1) * r + e0) / ((f2 * r + f1) * r + 1.0);
    }
    return (q < 0) ? -ret : ret;
  }
}

namespace {

// Normal (Gaussian) CDF, e.g. NormCRF(1.96) ~= 0.975
// (+/- 1.96 standard deviations would cover a 95% CI).
double NormalCDF(double q) {
  return 0.5 * erfc(-q * M_SQRT1_2);
}

// Compute percentiles of the bootstrap distribution (the inverse of G).
// We estimate G by Ĝ, the bootstrap estimate of G (text above eq. 2.9
// in the paper). Note that unlike bcajack, we interpolate between values
// to get slightly better accuracy.
double ComputeBCa(const double* estimates,
                  size_t num_estimates,
                  double alpha,
                  double z0,
                  double a) {
  double z_alpha = RatioBootstrapEstimator::InverseNormalCDF(alpha);

  // Eq. (2.2); the basic BCa formula.
  double q = NormalCDF(z0 + (z0 + z_alpha) / (1 - a * (z0 + z_alpha)));

  double index = q * (num_estimates - 1);
  int base_index = index;
  if (base_index == static_cast<int>(num_estimates - 1)) {
    // The edge of the CDF; note that R would warn in this case.
    return estimates[base_index];
  }
  double frac = index - base_index;
  return estimates[base_index] +
         frac * (estimates[base_index + 1] - estimates[base_index]);
}

// Calculate Ĝ (the fraction of estimates that are less than search-value).
double FindCDF(const double* estimates,
               size_t num_estimates,
               double search_val) {
  // Find first x where x >= search_val.
  auto it = lower_bound(estimates, estimates + num_estimates, search_val);
  if (it == estimates + num_estimates) {
    // All values are less than search_val.
    // Note that R warns in this case.
    return 1.0;
  }

  unsigned index = std::distance(estimates, it);
  if (index == 0) {
    // All values are >= search_val.
    // Note that R warns in this case.
    return 0.0;
  }

  // TODO(sesse): Consider whether we should interpolate here, like in
  // compute_bca().
  return index / double(num_estimates);
}

}  // namespace

// Find the ratio estimate over all values except for the one at skip_index,
// i.e., leave-one-out. (If skip_index == -1 or similar, simply compute over
// all values.) This is used in the jackknife estimate for the acceleration.
double RatioBootstrapEstimator::EstimateRatioExcept(
    const vector<RatioBootstrapEstimator::Sample>& x,
    int skip_index) {
  double before = 0.0, after = 0.0;
  for (unsigned i = 0; i < x.size(); ++i) {
    if (static_cast<int>(i) == skip_index) {
      continue;
    }
    before += x[i].before;
    after += x[i].after;
  }
  return before / after;
}

// Similar, for the geometric mean across all the data sets.
double RatioBootstrapEstimator::EstimateGeometricMeanExcept(
    const vector<vector<RatioBootstrapEstimator::Sample>>& x,
    int skip_index) {
  double geometric_mean = 1.0;
  for (const auto& samples : x) {
    geometric_mean *= EstimateRatioExcept(samples, skip_index);
  }
  return pow(geometric_mean, 1.0 / x.size());
}

vector<RatioBootstrapEstimator::Estimate>
RatioBootstrapEstimator::ComputeRatioEstimates(
    const vector<vector<RatioBootstrapEstimator::Sample>>& data,
    unsigned num_resamples,
    double confidence_level,
    bool compute_geometric_mean) {
  if (data.empty() || num_resamples < 10 || confidence_level <= 0.0 ||
      confidence_level >= 1.0) {
    return {};
  }

  unsigned num_observations = numeric_limits<unsigned>::max();
  for (const vector<Sample>& samples : data) {
    num_observations = min<unsigned>(num_observations, samples.size());
  }

  // Allocate some memory for temporaries that we need.
  unsigned num_dimensions = data.size();
  unique_ptr<double[]> before(new double[num_dimensions]);
  unique_ptr<double[]> after(new double[num_dimensions]);
  unique_ptr<double[]> all_estimates(
      new double[(num_dimensions + compute_geometric_mean) * num_resamples]);

  // Do our bootstrap resampling. Note that we can sample independently
  // from the numerator and denumerator (which the R packages cannot do);
  // this makes sense, because they are not pairs. This allows us to sometimes
  // get slightly narrower confidence intervals.
  //
  // When computing the geometric mean, we could perhaps consider doing
  // similar independent sampling across the various data sets, but we
  // currently don't do so.
  for (unsigned i = 0; i < num_resamples; ++i) {
    for (unsigned d = 0; d < num_dimensions; ++d) {
      before[d] = 0.0;
      after[d] = 0.0;
    }
    for (unsigned j = 0; j < num_observations; ++j) {
      unsigned r1 = gen_();
      unsigned r2 = gen_();

      // NOTE: The bias from the modulo here should be insignificant.
      for (unsigned d = 0; d < num_dimensions; ++d) {
        unsigned index1 = r1 % data[d].size();
        unsigned index2 = r2 % data[d].size();
        before[d] += data[d][index1].before;
        after[d] += data[d][index2].after;
      }
    }
    double geometric_mean = 1.0;
    for (unsigned d = 0; d < num_dimensions; ++d) {
      double ratio = before[d] / after[d];
      all_estimates[d * num_resamples + i] = ratio;
      geometric_mean *= ratio;
    }
    if (compute_geometric_mean) {
      all_estimates[num_dimensions * num_resamples + i] =
          pow(geometric_mean, 1.0 / num_dimensions);
    }
  }

  // Make our point estimates.
  vector<Estimate> result;
  for (unsigned d = 0; d < num_dimensions + compute_geometric_mean; ++d) {
    bool is_geometric_mean = (d == num_dimensions);

    double* estimates = &all_estimates[d * num_resamples];

    // FindCDF() and others expect sorted data.
    sort(estimates, estimates + num_resamples);

    // Make our point estimate.
    double point_estimate = is_geometric_mean
                                ? EstimateGeometricMeanExcept(data, -1)
                                : EstimateRatioExcept(data[d], -1);

    // Compute bias correction, Eq. (2.9).
    double z0 =
        InverseNormalCDF(FindCDF(estimates, num_resamples, point_estimate));

    // Compute acceleration. This is Eq. (3.11), except that there seems
    // to be a typo; the sign seems to be flipped compared to bcajack,
    // so we correct that (see line 148 of bcajack.R). Note that bcajack
    // uses the average-of-averages instead of the point estimate,
    // which doesn't seem to match the paper, but the difference is
    // completely insigificant in practice.
    double sum_d_squared = 0.0;
    double sum_d_cubed = 0.0;
    if (is_geometric_mean) {
      // NOTE: If there are differing numbers of samples in the different
      // data series, this will be ever so slightly off, but the effect
      // should hopefully be small.
      for (unsigned i = 0; i < num_observations; ++i) {
        double dd = point_estimate - EstimateGeometricMeanExcept(data, i);
        sum_d_squared += dd * dd;
        sum_d_cubed += dd * dd * dd;
      }
    } else {
      for (unsigned i = 0; i < data[d].size(); ++i) {
        double dd = point_estimate - EstimateRatioExcept(data[d], i);
        sum_d_squared += dd * dd;
        sum_d_cubed += dd * dd * dd;
      }
    }
    double a = sum_d_cubed /
               (6.0 * sqrt(sum_d_squared * sum_d_squared * sum_d_squared));

    double alpha = 0.5 * (1 - confidence_level);

    Estimate est;
    est.point_estimate = point_estimate;
    est.lower = ComputeBCa(estimates, num_resamples, alpha, z0, a);
    est.upper = ComputeBCa(estimates, num_resamples, 1.0 - alpha, z0, a);
    result.push_back(est);
  }
  return result;
}