1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/modules/ml/webnn/ml_graph.h"
#include "base/types/expected_macros.h"
#include "services/webnn/public/mojom/webnn_graph.mojom-blink.h"
#include "third_party/blink/renderer/bindings/core/v8/script_promise_resolver.h"
#include "third_party/blink/renderer/bindings/modules/v8/v8_ml_device_type.h"
#include "third_party/blink/renderer/core/execution_context/execution_context.h"
#include "third_party/blink/renderer/core/typed_arrays/dom_array_buffer_view.h"
#include "third_party/blink/renderer/modules/ml/ml_context.h"
#include "third_party/blink/renderer/modules/ml/webnn/ml_graph_utils.h"
#include "third_party/blink/renderer/modules/ml/webnn/ml_operand.h"
#include "third_party/blink/renderer/modules/ml/webnn/ml_tensor.h"
#include "third_party/blink/renderer/platform/bindings/exception_code.h"
#include "third_party/blink/renderer/platform/bindings/exception_state.h"
#include "third_party/blink/renderer/platform/heap/collection_support/heap_hash_set.h"
#include "third_party/blink/renderer/platform/heap/persistent.h"
#include "third_party/blink/renderer/platform/wtf/text/string_builder.h"
namespace blink {
namespace {
#define THROW_AND_RETURN_IF_ERROR(func, msg) \
RETURN_IF_ERROR(func, [&exception_state](const String& error) { \
exception_state.ThrowTypeError(msg + error); \
return; \
});
template <typename T>
void AppendVectorOfNumbers(const std::vector<T>& vector,
StringBuilder& builder) {
String delimiter = "";
for (const T& value : vector) {
builder.Append(delimiter);
builder.AppendNumber(value);
delimiter = ", ";
}
}
base::expected<void, String> ValidateNamedMLTensors(
const MLContext* context,
const MLNamedTensors& named_tensors,
const MLGraph::NamedOperandDescriptors& expected_named_descriptors) {
if (named_tensors.size() !=
base::checked_cast<wtf_size_t>(expected_named_descriptors.size())) {
return base::unexpected(String::Format(
"The number (%u) of MLTensor(s) doesn't match the "
"expectation (%u).",
named_tensors.size(), expected_named_descriptors.size()));
}
for (const auto& [name, tensor] : named_tensors) {
if (!expected_named_descriptors.Contains(name)) {
return base::unexpected(String::Format(
"The name \"%s\" isn't part of the graph.", name.Utf8().c_str()));
}
const auto& info = expected_named_descriptors.at(name);
if (tensor->DataType() != info->data_type()) {
return base::unexpected(String::Format(
"The data type \"%s\""
", of the MLTensor with name \"%s\" "
"doesn't match the expected data type (%s).",
tensor->dataType().AsCStr(), name.Utf8().c_str(),
V8MLOperandDataType(ToBlinkDataType(info->data_type())).AsCStr()));
}
if (tensor->Shape() != info->shape()) {
StringBuilder message;
message.Append("The shape [");
AppendVectorOfNumbers(tensor->Shape(), message);
message.Append("], of the MLTensor with name \"");
message.Append(name);
message.Append("\" doesn't match the expected shape: [");
AppendVectorOfNumbers(info->shape(), message);
message.Append("]");
return base::unexpected(message.ToString());
}
if (tensor->context() != context) {
return base::unexpected(String::Format(
"The context of MLGraph doesn't match the context of the MLTensor "
"with name \"%s\".",
name.Utf8().c_str()));
}
}
return base::ok();
}
base::expected<void, String> ValidateMLTensorUsage(
const MLNamedTensors& named_inputs,
const MLNamedTensors& named_outputs) {
// Validate that output tensors are unique.
HeapHashSet<Member<MLTensor>> output_tensors;
for (const auto& named_output : named_outputs) {
output_tensors.insert(named_output.second);
}
if (output_tensors.size() != named_outputs.size()) {
return base::unexpected(
"The same MLTensor cannot be used more than once as output.");
}
// Validate tensors used for input and output are unique.
for (const auto& named_input : named_inputs) {
if (output_tensors.Contains(named_input.second)) {
return base::unexpected(
"The same MLTensor cannot be used as input and output.");
}
}
return base::ok();
}
} // namespace
MLGraph::MLGraph(ExecutionContext* execution_context,
MLContext* context,
mojo::PendingAssociatedRemote<webnn::mojom::blink::WebNNGraph>
pending_graph_remote,
NamedOperandDescriptors input_constraints,
NamedOperandDescriptors output_constraints,
Vector<V8MLDeviceType> devices,
base::PassKey<MLGraphBuilder> /*pass_key*/)
: input_constraints_(std::move(input_constraints)),
output_constraints_(std::move(output_constraints)),
ml_context_(context),
remote_graph_(execution_context),
devices_(std::move(devices)) {
// Bind the end point of `WebNNGraph` mojo interface in the blink side.
remote_graph_.Bind(
std::move(pending_graph_remote),
execution_context->GetTaskRunner(TaskType::kMachineLearning));
remote_graph_.set_disconnect_handler(
WTF::BindOnce(&MLGraph::OnConnectionError, WrapWeakPersistent(this)));
}
MLGraph::~MLGraph() = default;
void MLGraph::Trace(Visitor* visitor) const {
visitor->Trace(ml_context_);
visitor->Trace(remote_graph_);
ScriptWrappable::Trace(visitor);
}
void MLGraph::destroy() {
if (remote_graph_.is_bound()) {
OnConnectionError();
}
}
Vector<V8MLDeviceType> MLGraph::devices() const {
return devices_;
}
const MLGraph::NamedOperandDescriptors& MLGraph::GetInputConstraints() const {
return input_constraints_;
}
const MLGraph::NamedOperandDescriptors& MLGraph::GetOutputConstraints() const {
return output_constraints_;
}
void MLGraph::Dispatch(webnn::ScopedTrace scoped_trace,
const MLNamedTensors& inputs,
const MLNamedTensors& outputs,
ExceptionState& exception_state) {
// Validate the MLNamedTensors.
THROW_AND_RETURN_IF_ERROR(
ValidateNamedMLTensors(Context(), inputs, input_constraints_),
"Invalid inputs: ");
THROW_AND_RETURN_IF_ERROR(
ValidateNamedMLTensors(Context(), outputs, output_constraints_),
"Invalid outputs: ");
THROW_AND_RETURN_IF_ERROR(ValidateMLTensorUsage(inputs, outputs),
"Invalid dispatch: ");
// Remote graph gets automatically unbound when the execution context
// destructs.
if (!remote_graph_.is_bound()) {
exception_state.ThrowDOMException(
DOMExceptionCode::kInvalidStateError,
"Graph has been destroyed or context is lost.");
return;
}
// The inputs and outputs were already verified in the base class so we can
// pass the tensor directly with the input and output tensors.
HashMap<String, blink::WebNNTensorToken> mojo_inputs;
for (const auto& [name, input_tensor] : inputs) {
if (!input_tensor->IsValid()) {
exception_state.ThrowDOMException(DOMExceptionCode::kInvalidStateError,
"Invalid input tensor state");
return;
}
if (input_tensor->Usage().Has(webnn::MLTensorUsageFlags::kGraphConstant)) {
exception_state.ThrowTypeError("Invalid input tensor usage");
return;
}
mojo_inputs.insert(name, input_tensor->handle());
}
HashMap<String, blink::WebNNTensorToken> mojo_outputs;
for (const auto& [name, output_tensor] : outputs) {
if (!output_tensor->IsValid()) {
exception_state.ThrowDOMException(DOMExceptionCode::kInvalidStateError,
"Invalid output tensor state");
return;
}
if (output_tensor->Usage().Has(webnn::MLTensorUsageFlags::kGraphConstant)) {
exception_state.ThrowTypeError("Invalid output tensor usage");
return;
}
mojo_outputs.insert(name, output_tensor->handle());
}
remote_graph_->Dispatch(std::move(mojo_inputs), std::move(mojo_outputs));
}
const MLContext* MLGraph::Context() const {
return ml_context_.Get();
}
void MLGraph::OnConnectionError() {
remote_graph_.reset();
}
} // namespace blink
|