File: disk_data_allocator_test.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (400 lines) | stat: -rw-r--r-- 14,970 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/390223051): Remove C-library calls to fix the errors.
#pragma allow_unsafe_libc_calls
#endif

#include "third_party/blink/renderer/platform/disk_data_allocator.h"

#include <cstring>
#include <memory>
#include <string>
#include <utility>
#include <vector>

#include "base/files/file.h"
#include "base/files/file_util.h"
#include "base/rand_util.h"
#include "base/test/scoped_feature_list.h"
#include "base/test/task_environment.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/blink/public/common/features.h"
#include "third_party/blink/renderer/platform/disk_data_allocator_test_utils.h"
#include "third_party/blink/renderer/platform/disk_data_metadata.h"

using ThreadPoolExecutionMode =
    base::test::TaskEnvironment::ThreadPoolExecutionMode;

namespace blink {

class DiskDataAllocatorTest : public ::testing::Test {
 public:
  explicit DiskDataAllocatorTest(
      ThreadPoolExecutionMode thread_pool_execution_mode =
          ThreadPoolExecutionMode::DEFAULT)
      : task_environment_(base::test::TaskEnvironment::TimeSource::MOCK_TIME,
                          thread_pool_execution_mode) {}

  static std::vector<std::unique_ptr<DiskDataMetadata>>
  Allocate(InMemoryDataAllocator* allocator, size_t size, size_t count) {
    std::string random_data = base::RandBytesAsString(size);

    std::vector<std::unique_ptr<DiskDataMetadata>> all_metadata;
    for (size_t i = 0; i < count; i++) {
      auto reserved_chunk = allocator->TryReserveChunk(random_data.size());
      auto metadata = allocator->Write(std::move(reserved_chunk),
                                       base::as_byte_span(random_data));
      EXPECT_TRUE(metadata);
      EXPECT_EQ(metadata->start_offset(), static_cast<int64_t>(i * size));
      all_metadata.push_back(std::move(metadata));
    }
    return all_metadata;
  }

 protected:
  void SetUp() override {
    // On some platforms, initialization takes time, though it happens when
    // base::ThreadTicks is used. To prevent flakiness depending on test
    // execution ordering, force initialization.
    if (base::ThreadTicks::IsSupported())
      base::ThreadTicks::WaitUntilInitialized();
  }

  base::test::TaskEnvironment task_environment_;
};

TEST_F(DiskDataAllocatorTest, ReserveChunk) {
  InMemoryDataAllocator allocator;

  auto reserved_chunk_1 = allocator.TryReserveChunk(100);
  auto metadata_1 = reserved_chunk_1->Take();
  EXPECT_EQ(0, metadata_1->start_offset());

  auto reserved_chunk_2 = allocator.TryReserveChunk(100);
  auto metadata_2 = reserved_chunk_2->Take();
  EXPECT_EQ(100, metadata_2->start_offset());

  // Reserved chunk can be released via |Discard()|
  allocator.Discard(std::move(metadata_2));
  // Second chunk is reused.
  auto reserved_chunk_3 = allocator.TryReserveChunk(100);
  auto metadata_3 = reserved_chunk_3->Take();
  EXPECT_EQ(100, metadata_3->start_offset());

  // If a ReservedChunk is destructed with DiskDataMetadata, the chunk is
  // released automatically.
  auto reserved_chunk_4 = allocator.TryReserveChunk(300);
  reserved_chunk_4 = nullptr;
  auto reserved_chunk_5 = allocator.TryReserveChunk(100);
  auto metadata_5 = reserved_chunk_5->Take();
  EXPECT_EQ(200, metadata_5->start_offset());
}

TEST_F(DiskDataAllocatorTest, ReadWrite) {
  InMemoryDataAllocator allocator;

  constexpr size_t kSize = 1000;
  std::string random_data = base::RandBytesAsString(kSize);
  auto reserved_chunk = allocator.TryReserveChunk(kSize);
  ASSERT_TRUE(reserved_chunk);
  auto metadata = allocator.Write(std::move(reserved_chunk),
                                  base::as_byte_span(random_data));
  EXPECT_TRUE(metadata);
  EXPECT_EQ(kSize, metadata->size());

  auto read_data = std::vector<char>(kSize);
  allocator.Read(*metadata, base::as_writable_bytes(base::span(read_data)));

  EXPECT_EQ(0, memcmp(&read_data[0], random_data.c_str(), kSize));
}

TEST_F(DiskDataAllocatorTest, ReadWriteDiscardMultiple) {
  InMemoryDataAllocator allocator;

  std::vector<std::pair<std::unique_ptr<DiskDataMetadata>, std::string>>
      data_written;

  for (int i = 0; i < 10; i++) {
    int size = base::RandInt(100, 1000);
    auto data = base::RandBytesAsString(size);
    auto reserved_chunk = allocator.TryReserveChunk(size);
    ASSERT_TRUE(reserved_chunk);
    auto metadata =
        allocator.Write(std::move(reserved_chunk), base::as_byte_span(data));
    EXPECT_TRUE(metadata);
    data_written.emplace_back(std::move(metadata), data);
  }

  base::RandomShuffle(data_written.begin(), data_written.end());

  for (const auto& p : data_written) {
    size_t size = p.first->size();
    auto read_data = std::vector<char>(size);
    allocator.Read(*p.first, base::as_writable_bytes(base::span(read_data)));

    EXPECT_EQ(0, memcmp(&read_data[0], &p.second[0], size));
  }

  base::RandomShuffle(data_written.begin(), data_written.end());

  for (auto& p : data_written) {
    auto metadata = std::move(p.first);
    allocator.Discard(std::move(metadata));
  }
}

TEST_F(DiskDataAllocatorTest, WriteEventuallyFail) {
  InMemoryDataAllocator allocator;

  constexpr size_t kSize = 1 << 18;
  std::string random_data = base::RandBytesAsString(kSize);

  static_assert(4 * kSize == InMemoryDataAllocator::kMaxSize, "");
  for (int i = 0; i < 4; i++) {
    auto reserved_chunk = allocator.TryReserveChunk(random_data.size());
    ASSERT_TRUE(reserved_chunk);
    auto metadata = allocator.Write(std::move(reserved_chunk),
                                    base::as_byte_span(random_data));
    EXPECT_TRUE(metadata);
  }
  auto reserved_chunk = allocator.TryReserveChunk(random_data.size());
  ASSERT_TRUE(reserved_chunk);
  auto metadata = allocator.Write(std::move(reserved_chunk),
                                  base::as_byte_span(random_data));
  EXPECT_FALSE(metadata);
  EXPECT_FALSE(allocator.may_write());
}

TEST_F(DiskDataAllocatorTest, CanReuseFreedChunk) {
  InMemoryDataAllocator allocator;

  constexpr size_t kSize = 1 << 10;
  std::vector<std::unique_ptr<DiskDataMetadata>> all_metadata;

  for (int i = 0; i < 10; i++) {
    std::string random_data = base::RandBytesAsString(kSize);
    auto reserved_chunk = allocator.TryReserveChunk(random_data.size());
    ASSERT_TRUE(reserved_chunk);
    auto metadata = allocator.Write(std::move(reserved_chunk),
                                    base::as_byte_span(random_data));
    EXPECT_TRUE(metadata);
    all_metadata.push_back(std::move(metadata));
  }

  auto metadata = std::move(all_metadata[4]);
  ASSERT_TRUE(metadata);
  int64_t start_offset = metadata->start_offset();
  allocator.Discard(std::move(metadata));

  std::string random_data = base::RandBytesAsString(kSize);
  auto reserved_chunk = allocator.TryReserveChunk(random_data.size());
  ASSERT_TRUE(reserved_chunk);
  auto new_metadata = allocator.Write(std::move(reserved_chunk),
                                      base::as_byte_span(random_data));
  EXPECT_TRUE(new_metadata);
  EXPECT_EQ(new_metadata->start_offset(), start_offset);
}

TEST_F(DiskDataAllocatorTest, ExactThenWorstFit) {
  InMemoryDataAllocator allocator;

  int count = 10;
  size_t size_increment = 1000;
  std::vector<std::unique_ptr<DiskDataMetadata>> all_metadata;

  size_t size = 10000;
  // Allocate a bunch of random-sized
  for (int i = 0; i < count; i++) {
    std::string random_data = base::RandBytesAsString(size);
    auto reserved_chunk = allocator.TryReserveChunk(random_data.size());
    ASSERT_TRUE(reserved_chunk);
    auto metadata = allocator.Write(std::move(reserved_chunk),
                                    base::as_byte_span(random_data));
    EXPECT_TRUE(metadata);
    all_metadata.push_back(std::move(metadata));
    size += size_increment;
  }

  auto& hole_metadata = all_metadata[4];
  size_t hole_size = hole_metadata->size();
  int64_t hole_offset = hole_metadata->start_offset();
  allocator.Discard(std::move(hole_metadata));

  auto& larger_hole_metadata = all_metadata[9];
  int64_t larger_hole_offset = larger_hole_metadata->start_offset();
  allocator.Discard(std::move(larger_hole_metadata));

  std::string random_data = base::RandBytesAsString(hole_size);
  auto reserved_chunk = allocator.TryReserveChunk(random_data.size());
  ASSERT_TRUE(reserved_chunk);
  auto metadata = allocator.Write(std::move(reserved_chunk),
                                  base::as_byte_span(random_data));
  EXPECT_TRUE(metadata);
  // Exact fit.
  EXPECT_EQ(metadata->start_offset(), hole_offset);
  allocator.Discard(std::move(metadata));

  // -1 to check that this is not best fit.
  random_data = base::RandBytesAsString(hole_size - 1);
  reserved_chunk = allocator.TryReserveChunk(random_data.size());
  ASSERT_TRUE(reserved_chunk);
  metadata = allocator.Write(std::move(reserved_chunk),
                             base::as_byte_span(random_data));
  EXPECT_TRUE(metadata);
  EXPECT_EQ(metadata->start_offset(), larger_hole_offset);
}

TEST_F(DiskDataAllocatorTest, FreeChunksMerging) {
  constexpr size_t kSize = 100;

  auto allocator = std::make_unique<InMemoryDataAllocator>();
  auto chunks = Allocate(allocator.get(), kSize, 4);
  EXPECT_EQ(static_cast<int64_t>(4 * kSize), allocator->disk_footprint());
  EXPECT_EQ(0u, allocator->free_chunks_size());

  // Layout is (indices in |chunks|):
  // | 0 | 1 | 2 | 3 |
  // Discarding a higher index after a lower one triggers merging on the left.

  // Merge left.
  allocator->Discard(std::move(chunks[0]));
  EXPECT_EQ(1u, allocator->FreeChunks().size());
  allocator->Discard(std::move(chunks[1]));
  EXPECT_EQ(1u, allocator->FreeChunks().size());
  EXPECT_EQ(2 * kSize, allocator->FreeChunks().begin()->second);
  allocator->Discard(std::move(chunks[2]));
  EXPECT_EQ(1u, allocator->FreeChunks().size());
  EXPECT_EQ(3 * kSize, allocator->FreeChunks().begin()->second);
  EXPECT_EQ(3 * kSize, allocator->free_chunks_size());
  allocator->Discard(std::move(chunks[3]));
  EXPECT_EQ(1u, allocator->FreeChunks().size());
  EXPECT_EQ(4 * kSize, allocator->FreeChunks().begin()->second);
  EXPECT_EQ(static_cast<int64_t>(4 * kSize), allocator->disk_footprint());

  allocator = std::make_unique<InMemoryDataAllocator>();
  chunks = Allocate(allocator.get(), kSize, 4);

  // Merge right.
  allocator->Discard(std::move(chunks[3]));
  EXPECT_EQ(1u, allocator->FreeChunks().size());
  allocator->Discard(std::move(chunks[2]));
  EXPECT_EQ(1u, allocator->FreeChunks().size());
  EXPECT_EQ(2 * kSize, allocator->FreeChunks().begin()->second);
  allocator->Discard(std::move(chunks[0]));
  EXPECT_EQ(2u, allocator->FreeChunks().size());
  EXPECT_EQ(3 * kSize, allocator->free_chunks_size());
  // Multiple merges: left, then right.
  allocator->Discard(std::move(chunks[1]));
  EXPECT_EQ(1u, allocator->FreeChunks().size());

  allocator = std::make_unique<InMemoryDataAllocator>();
  chunks = Allocate(allocator.get(), kSize, 4);

  // Left then right merging.
  allocator->Discard(std::move(chunks[0]));
  allocator->Discard(std::move(chunks[2]));
  EXPECT_EQ(2u, allocator->FreeChunks().size());
  allocator->Discard(std::move(chunks[1]));
  EXPECT_EQ(1u, allocator->FreeChunks().size());
}

TEST_F(DiskDataAllocatorTest, ProvideInvalidFile) {
  DiskDataAllocator allocator;
  EXPECT_FALSE(allocator.may_write());
  allocator.ProvideTemporaryFile(base::File());
  EXPECT_FALSE(allocator.may_write());
}

TEST_F(DiskDataAllocatorTest, ProvideValidFile) {
  base::FilePath path;
  if (!base::CreateTemporaryFile(&path))
    GTEST_SKIP() << "Cannot create temporary file.";

  int flags = base::File::FLAG_CREATE_ALWAYS | base::File::FLAG_READ |
              base::File::FLAG_WRITE | base::File::FLAG_DELETE_ON_CLOSE;
  auto file = base::File(base::FilePath(path), flags);
  if (!file.IsValid())
    GTEST_SKIP() << "Cannot create temporary file.";

  DiskDataAllocator allocator;
  EXPECT_FALSE(allocator.may_write());
  allocator.ProvideTemporaryFile(std::move(file));
  EXPECT_TRUE(allocator.may_write());

  // Test read/write with a real file.
  constexpr size_t kSize = 1000;
  std::string random_data = base::RandBytesAsString(kSize);
  auto reserved_chunk = allocator.TryReserveChunk(random_data.size());
  ASSERT_TRUE(reserved_chunk);
  auto metadata = allocator.Write(std::move(reserved_chunk),
                                  base::as_byte_span(random_data));
  if (!metadata) {
    GTEST_SKIP() << "Disk full?";
  }

  EXPECT_EQ(kSize, metadata->size());

  auto read_data = std::vector<char>(kSize);
  allocator.Read(*metadata, base::as_writable_bytes(base::span(read_data)));

  EXPECT_EQ(0, memcmp(&read_data[0], random_data.c_str(), kSize));
}

TEST_F(DiskDataAllocatorTest, WriteWithLimitedCapacity) {
  base::test::ScopedFeatureList features;
  const std::vector<base::test::FeatureRefAndParams> enabled_features = {
      {features::kCompressParkableStrings, {{"max_disk_capacity_mb", "1"}}}};
  features.InitWithFeaturesAndParameters(enabled_features, {});

  InMemoryDataAllocator allocator;

  constexpr size_t kMB = 1024 * 1024;

  {
    // If we use max capacity, another reservation should not be possible.
    auto reserved_chunk = allocator.TryReserveChunk(kMB);
    ASSERT_TRUE(reserved_chunk);
    auto reserved_chunk_failed = allocator.TryReserveChunk(1);
    ASSERT_FALSE(reserved_chunk_failed);
    // |reserved_chunk| will be released after this line.
  }

  // Tested condition:
  // | 1 (1MB - 1000) | free (500) | 3 (100) | free (400) |
  std::string random_data_1 = base::RandBytesAsString(kMB - 1000);
  auto reserved_chunk = allocator.TryReserveChunk(random_data_1.size());
  ASSERT_TRUE(reserved_chunk);
  auto metadata_1 = allocator.Write(std::move(reserved_chunk),
                                    base::as_byte_span(random_data_1));
  EXPECT_TRUE(metadata_1);

  std::string random_data_2 = base::RandBytesAsString(500);
  reserved_chunk = allocator.TryReserveChunk(random_data_2.size());
  ASSERT_TRUE(reserved_chunk);
  auto metadata_2 = allocator.Write(std::move(reserved_chunk),
                                    base::as_byte_span(random_data_2));
  EXPECT_TRUE(metadata_2);

  std::string random_data_3 = base::RandBytesAsString(100);
  reserved_chunk = allocator.TryReserveChunk(random_data_3.size());
  ASSERT_TRUE(reserved_chunk);
  auto metadata_3 = allocator.Write(std::move(reserved_chunk),
                                    base::as_byte_span(random_data_3));
  EXPECT_TRUE(metadata_3);

  allocator.Discard(std::move(metadata_2));

  // Second slot should be available.
  reserved_chunk = allocator.TryReserveChunk(450);
  ASSERT_TRUE(reserved_chunk);

  // Second slot is reserved. Now we should not find available slot.
  std::string random_data_4 = base::RandBytesAsString(450);
  auto reserved_chunk_2 = allocator.TryReserveChunk(random_data_4.size());
  ASSERT_FALSE(reserved_chunk_2);
}

}  // namespace blink