1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
// Copyright (c) 2017, Apple Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-3-clause license that can be
// found in LICENSE.txt or at https://opensource.org/licenses/BSD-3-Clause
syntax = "proto3";
option optimize_for = LITE_RUNTIME;
import public "DataStructures.proto";
package CoreML.Specification;
// Kernel Definitions
// ------------------
/*
* A linear kernel.
*
* This function has the following formula:
*
* .. math::
* K(\boldsymbol{x}, \boldsymbol{x'}) = \boldsymbol{x}^T \boldsymbol{x'}
*/
message LinearKernel {}
/*
* A Gaussian radial basis function (RBF) kernel.
*
* This function has the following formula:
*
* .. math::
* K(\boldsymbol{x}, \boldsymbol{x'}) = \
* \exp(-\gamma || \boldsymbol{x} - \boldsymbol{x'} ||^2 )
*
*/
message RBFKernel {
double gamma = 1;
}
/*
* A polynomial kernel.
*
* This function has the following formula:
*
* .. math::
* K(\boldsymbol{x}, \boldsymbol{x'}) = \
* (\gamma \boldsymbol{x}^T \boldsymbol{x'} + c)^{degree}
*/
message PolyKernel {
int32 degree = 1;
double c = 2;
double gamma = 3;
}
/*
* A sigmoid kernel.
*
* This function has the following formula:
*
* .. math::
* K(\boldsymbol{x}, \boldsymbol{x'}) = \
* \tanh(\gamma \boldsymbol{x}^T \boldsymbol{x'} + c)
*/
message SigmoidKernel {
double gamma = 1;
double c = 2;
}
/*
* A kernel.
*/
message Kernel {
oneof kernel {
LinearKernel linearKernel = 1;
RBFKernel rbfKernel = 2;
PolyKernel polyKernel = 3;
SigmoidKernel sigmoidKernel = 4;
}
}
// Support Vector Definitions
// --------------------------
/*
* A sparse node.
*/
message SparseNode {
int32 index = 1; // 1-based indexes, like libsvm
double value = 2;
}
/*
* A sparse vector.
*/
message SparseVector {
repeated SparseNode nodes = 1;
}
/*
* One or more sparse support vectors.
*/
message SparseSupportVectors {
repeated SparseVector vectors = 1;
}
/*
* A dense vector.
*/
message DenseVector {
repeated double values = 1;
}
/*
* One or more dense support vectors.
*/
message DenseSupportVectors {
repeated DenseVector vectors = 1;
}
/*
* One or more coefficients.
*/
message Coefficients {
repeated double alpha = 1;
}
/*
* A support vector regressor.
*/
message SupportVectorRegressor {
Kernel kernel = 1;
// Support vectors, either sparse or dense format
oneof supportVectors {
SparseSupportVectors sparseSupportVectors = 2;
DenseSupportVectors denseSupportVectors = 3;
}
// Coefficients, one for each support vector
Coefficients coefficients = 4;
double rho = 5;
}
/*
* A support vector classifier
*/
message SupportVectorClassifier {
Kernel kernel = 1;
/*
* The number of support vectors for each class.
*/
repeated int32 numberOfSupportVectorsPerClass = 2;
/*
* The support vectors, in either sparse or dense format.
*/
oneof supportVectors {
SparseSupportVectors sparseSupportVectors = 3;
DenseSupportVectors denseSupportVectors = 4;
}
/*
* The coefficients, essentially a two dimensional array of
* size: (numberOfClasses-1) by (total number of support vectors)
*/
repeated Coefficients coefficients = 5;
/*
* Constants for decision function,
* with K*(K-1) / 2 elements,
* where K is the number of classes.
*/
repeated double rho = 6;
/*
* Pairwise probability information for A vs B classifier.
* Total of K*(K-1)/2 elements where K is the number of classes.
* These fields are optional,
* and only required if you want probabilities or multi class predictions.
*/
repeated double probA = 7;
repeated double probB = 8;
/*
* Class label mapping.
*/
oneof ClassLabels {
StringVector stringClassLabels = 100;
Int64Vector int64ClassLabels = 101;
}
}
|