1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with FFmpeg; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/**
* @file
* Perlin Noise generator, based on code from:
* https://adrianb.io/2014/08/09/perlinnoise.html
*
* Original article from Ken Perlin:
* http://mrl.nyu.edu/~perlin/paper445.pdf
*/
#include <math.h>
#include "libavutil/lfg.h"
#include "libavutil/random_seed.h"
#include "perlin.h"
static inline int inc(int num, int period)
{
num++;
if (period > 0)
num %= period;
return num;
}
static inline double grad(int hash, double x, double y, double z)
{
// Take the hashed value and take the first 4 bits of it (15 == 0b1111)
int h = hash & 15;
// If the most significant bit (MSB) of the hash is 0 then set u = x. Otherwise y.
double u = h < 8 /* 0b1000 */ ? x : y;
double v;
// In Ken Perlin's original implementation this was another
// conditional operator (?:), then expanded for readability.
if (h < 4 /* 0b0100 */)
// If the first and second significant bits are 0 set v = y
v = y;
// If the first and second significant bits are 1 set v = x
else if (h == 12 /* 0b1100 */ || h == 14 /* 0b1110 */)
v = x;
else
// If the first and second significant bits are not equal (0/1, 1/0) set v = z
v = z;
// Use the last 2 bits to decide if u and v are positive or negative. Then return their addition.
return ((h&1) == 0 ? u : -u)+((h&2) == 0 ? v : -v);
}
static inline double fade(double t)
{
// Fade function as defined by Ken Perlin. This eases coordinate values
// so that they will "ease" towards integral values. This ends up smoothing
// the final output.
// use Horner method to compute: 6t^5 - 15t^4 + 10t^3
return t * t * t * (t * (t * 6 - 15) + 10);
}
static double lerp(double a, double b, double x)
{
return a + x * (b - a);
}
// Hash lookup table as defined by Ken Perlin. This is a randomly
// arranged array of all numbers from 0-255 inclusive.
static uint8_t ken_permutations[] = {
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225,
140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148,
247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32,
57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175,
74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122,
60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54,
65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169,
200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64,
52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212,
207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213,
119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104,
218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241,
81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157,
184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93,
222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
};
int ff_perlin_init(FFPerlin *perlin, double period, int octaves, double persistence,
enum FFPerlinRandomMode random_mode, unsigned int random_seed)
{
int i;
perlin->period = period;
perlin->octaves = octaves;
perlin->persistence = persistence;
perlin->random_mode = random_mode;
perlin->random_seed = random_seed;
if (perlin->random_mode == FF_PERLIN_RANDOM_MODE_KEN) {
for (i = 0; i < 512; i++) {
perlin->permutations[i] = ken_permutations[i % 256];
}
} else {
AVLFG lfg;
uint8_t random_permutations[256];
if (perlin->random_mode == FF_PERLIN_RANDOM_MODE_RANDOM)
perlin->random_seed = av_get_random_seed();
av_lfg_init(&lfg, perlin->random_seed);
for (i = 0; i < 256; i++) {
random_permutations[i] = i;
}
for (i = 0; i < 256; i++) {
unsigned int random_idx = av_lfg_get(&lfg) % (256-i);
uint8_t random_val = random_permutations[random_idx];
random_permutations[random_idx] = random_permutations[255-i];
perlin->permutations[i] = perlin->permutations[i+256] = random_val;
}
}
return 0;
}
static double perlin_get(FFPerlin *perlin, double x, double y, double z)
{
int xi, yi, zi;
double xf, yf, zf;
double u, v, w;
const uint8_t *p = perlin->permutations;
double period = perlin->period;
int aaa, aba, aab, abb, baa, bba, bab, bbb;
double x1, x2, y1, y2;
if (perlin->period > 0) {
// If we have any period on, change the coordinates to their "local" repetitions
x = fmod(x, perlin->period);
y = fmod(y, perlin->period);
z = fmod(z, perlin->period);
}
// Calculate the "unit cube" that the point asked will be located in
// The left bound is ( |_x_|,|_y_|,|_z_| ) and the right bound is that
// plus 1. Next we calculate the location (from 0.0 to 1.0) in that cube.
xi = (int)x & 255;
yi = (int)y & 255;
zi = (int)z & 255;
xf = x - (int)x;
yf = y - (int)y;
zf = z - (int)z;
// We also fade the location to smooth the result.
u = fade(xf);
v = fade(yf);
w = fade(zf);
aaa = p[p[p[ xi ] + yi ] + zi ];
aba = p[p[p[ xi ] + inc(yi, period)] + zi ];
aab = p[p[p[ xi ] + yi ] + inc(zi, period)];
abb = p[p[p[ xi ] + inc(yi, period)] + inc(zi, period)];
baa = p[p[p[inc(xi, period)] + yi ] + zi ];
bba = p[p[p[inc(xi, period)] + inc(yi, period)] + zi ];
bab = p[p[p[inc(xi, period)] + yi ] + inc(zi, period)];
bbb = p[p[p[inc(xi, period)] + inc(yi, period)] + inc(zi, period)];
// The gradient function calculates the dot product between a pseudorandom
// gradient vector and the vector from the input coordinate to the 8
// surrounding points in its unit cube.
// This is all then lerped together as a sort of weighted average based on the faded (u,v,w)
// values we made earlier.
x1 = lerp(grad(aaa, xf , yf , zf),
grad(baa, xf-1, yf , zf),
u);
x2 = lerp(grad(aba, xf , yf-1, zf),
grad(bba, xf-1, yf-1, zf),
u);
y1 = lerp(x1, x2, v);
x1 = lerp(grad(aab, xf , yf , zf-1),
grad(bab, xf-1, yf , zf-1),
u);
x2 = lerp(grad(abb, xf , yf-1, zf-1),
grad(bbb, xf-1, yf-1, zf-1),
u);
y2 = lerp(x1, x2, v);
// For convenience we bound it to 0 - 1 (theoretical min/max before is -1 - 1)
return (lerp(y1, y2, w) + 1) / 2;
}
double ff_perlin_get(FFPerlin *perlin, double x, double y, double z)
{
double total = 0;
double frequency = 1;
double amplitude = 1;
double max_value = 0; // Used for normalizing result to 0.0 - 1.0
for (int i = 0; i < perlin->octaves; i++) {
total += perlin_get(perlin, x * frequency, y * frequency, z * frequency) * amplitude;
max_value += amplitude;
amplitude *= perlin->persistence;
frequency *= 2;
}
return total / max_value;
}
|