1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include <cmath>
#include "testing/gtest/include/gtest/gtest-death-test.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/pffft/src/fftpack.h"
#include "third_party/pffft/src/pffft.h"
namespace pffft {
namespace test {
namespace {
static constexpr int kFftSizes[] = {
16, 32, 64, 96, 128, 160, 192, 256, 288, 384, 5 * 96, 512,
576, 5 * 128, 800, 864, 1024, 2048, 2592, 4000, 4096, 12000, 36864};
double frand() {
return rand() / (double)RAND_MAX;
}
void PffftValidate(int fft_size, bool complex_fft) {
PFFFT_Setup* pffft_status =
pffft_new_setup(fft_size, complex_fft ? PFFFT_COMPLEX : PFFFT_REAL);
ASSERT_TRUE(pffft_status) << "FFT size (" << fft_size << ") not supported.";
int num_floats = fft_size * (complex_fft ? 2 : 1);
int num_bytes = num_floats * sizeof(float);
float* ref = static_cast<float*>(pffft_aligned_malloc(num_bytes));
float* in = static_cast<float*>(pffft_aligned_malloc(num_bytes));
float* out = static_cast<float*>(pffft_aligned_malloc(num_bytes));
float* tmp = static_cast<float*>(pffft_aligned_malloc(num_bytes));
float* tmp2 = static_cast<float*>(pffft_aligned_malloc(num_bytes));
for (int pass = 0; pass < 2; ++pass) {
SCOPED_TRACE(pass);
float ref_max = 0;
int k;
// Compute reference solution with FFTPACK.
if (pass == 0) {
float* fftpack_buff =
static_cast<float*>(malloc(2 * num_bytes + 15 * sizeof(float)));
for (k = 0; k < num_floats; ++k) {
ref[k] = in[k] = frand() * 2 - 1;
out[k] = 1e30;
}
if (!complex_fft) {
rffti(fft_size, fftpack_buff);
rfftf(fft_size, ref, fftpack_buff);
// Use our ordering for real FFTs instead of the one of fftpack.
{
float refN = ref[fft_size - 1];
for (k = fft_size - 2; k >= 1; --k)
ref[k + 1] = ref[k];
ref[1] = refN;
}
} else {
cffti(fft_size, fftpack_buff);
cfftf(fft_size, ref, fftpack_buff);
}
free(fftpack_buff);
}
for (k = 0; k < num_floats; ++k) {
ref_max = std::max(ref_max, fabs(ref[k]));
}
// Pass 0: non canonical ordering of transform coefficients.
if (pass == 0) {
// Test forward transform, with different input / output.
pffft_transform(pffft_status, in, tmp, nullptr, PFFFT_FORWARD);
memcpy(tmp2, tmp, num_bytes);
memcpy(tmp, in, num_bytes);
pffft_transform(pffft_status, tmp, tmp, nullptr, PFFFT_FORWARD);
for (k = 0; k < num_floats; ++k) {
SCOPED_TRACE(k);
EXPECT_EQ(tmp2[k], tmp[k]);
}
// Test reordering.
pffft_zreorder(pffft_status, tmp, out, PFFFT_FORWARD);
pffft_zreorder(pffft_status, out, tmp, PFFFT_BACKWARD);
for (k = 0; k < num_floats; ++k) {
SCOPED_TRACE(k);
EXPECT_EQ(tmp2[k], tmp[k]);
}
pffft_zreorder(pffft_status, tmp, out, PFFFT_FORWARD);
} else {
// Pass 1: canonical ordering of transform coefficients.
pffft_transform_ordered(pffft_status, in, tmp, nullptr, PFFFT_FORWARD);
memcpy(tmp2, tmp, num_bytes);
memcpy(tmp, in, num_bytes);
pffft_transform_ordered(pffft_status, tmp, tmp, nullptr, PFFFT_FORWARD);
for (k = 0; k < num_floats; ++k) {
SCOPED_TRACE(k);
EXPECT_EQ(tmp2[k], tmp[k]);
}
memcpy(out, tmp, num_bytes);
}
{
for (k = 0; k < num_floats; ++k) {
SCOPED_TRACE(k);
EXPECT_NEAR(ref[k], out[k], 1e-3 * ref_max) << "Forward FFT mismatch";
}
if (pass == 0) {
pffft_transform(pffft_status, tmp, out, nullptr, PFFFT_BACKWARD);
} else {
pffft_transform_ordered(pffft_status, tmp, out, nullptr,
PFFFT_BACKWARD);
}
memcpy(tmp2, out, num_bytes);
memcpy(out, tmp, num_bytes);
if (pass == 0) {
pffft_transform(pffft_status, out, out, nullptr, PFFFT_BACKWARD);
} else {
pffft_transform_ordered(pffft_status, out, out, nullptr,
PFFFT_BACKWARD);
}
for (k = 0; k < num_floats; ++k) {
assert(tmp2[k] == out[k]);
out[k] *= 1.f / fft_size;
}
for (k = 0; k < num_floats; ++k) {
SCOPED_TRACE(k);
EXPECT_NEAR(in[k], out[k], 1e-3 * ref_max) << "Reverse FFT mismatch";
}
}
// Quick test of the circular convolution in FFT domain.
{
float conv_err = 0, conv_max = 0;
pffft_zreorder(pffft_status, ref, tmp, PFFFT_FORWARD);
memset(out, 0, num_bytes);
pffft_zconvolve_accumulate(pffft_status, ref, ref, out, 1.0);
pffft_zreorder(pffft_status, out, tmp2, PFFFT_FORWARD);
for (k = 0; k < num_floats; k += 2) {
float ar = tmp[k], ai = tmp[k + 1];
if (complex_fft || k > 0) {
tmp[k] = ar * ar - ai * ai;
tmp[k + 1] = 2 * ar * ai;
} else {
tmp[0] = ar * ar;
tmp[1] = ai * ai;
}
}
for (k = 0; k < num_floats; ++k) {
float d = fabs(tmp[k] - tmp2[k]), e = fabs(tmp[k]);
if (d > conv_err)
conv_err = d;
if (e > conv_max)
conv_max = e;
}
EXPECT_LT(conv_err, 1e-5 * conv_max) << "zconvolve error";
}
}
pffft_destroy_setup(pffft_status);
pffft_aligned_free(ref);
pffft_aligned_free(in);
pffft_aligned_free(out);
pffft_aligned_free(tmp);
pffft_aligned_free(tmp2);
}
} // namespace
TEST(PffftTest, ValidateReal) {
for (int fft_size : kFftSizes) {
SCOPED_TRACE(fft_size);
if (fft_size == 16) {
continue;
}
PffftValidate(fft_size, /*complex_fft=*/false);
}
}
TEST(PffftTest, ValidateComplex) {
for (int fft_size : kFftSizes) {
SCOPED_TRACE(fft_size);
PffftValidate(fft_size, /*complex_fft=*/true);
}
}
} // namespace test
} // namespace pffft
|