1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef API_AUDIO_AUDIO_PROCESSING_H_
#define API_AUDIO_AUDIO_PROCESSING_H_
#include <array>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstring>
#include <memory>
#include <optional>
#include <string>
#include "absl/base/nullability.h"
#include "absl/strings/string_view.h"
#include "api/array_view.h"
#include "api/audio/audio_processing_statistics.h"
#include "api/audio/echo_control.h"
#include "api/environment/environment.h"
#include "api/ref_count.h"
#include "api/scoped_refptr.h"
#include "api/task_queue/task_queue_base.h"
#include "rtc_base/checks.h"
#include "rtc_base/system/rtc_export.h"
namespace webrtc {
class AecDump;
class AudioBuffer;
class StreamConfig;
class ProcessingConfig;
class EchoDetector;
// The Audio Processing Module (APM) provides a collection of voice processing
// components designed for real-time communications software.
//
// APM operates on two audio streams on a frame-by-frame basis. Frames of the
// primary stream, on which all processing is applied, are passed to
// `ProcessStream()`. Frames of the reverse direction stream are passed to
// `ProcessReverseStream()`. On the client-side, this will typically be the
// near-end (capture) and far-end (render) streams, respectively. APM should be
// placed in the signal chain as close to the audio hardware abstraction layer
// (HAL) as possible.
//
// On the server-side, the reverse stream will normally not be used, with
// processing occurring on each incoming stream.
//
// Component interfaces follow a similar pattern and are accessed through
// corresponding getters in APM. All components are disabled at create-time,
// with default settings that are recommended for most situations. New settings
// can be applied without enabling a component. Enabling a component triggers
// memory allocation and initialization to allow it to start processing the
// streams.
//
// Thread safety is provided with the following assumptions to reduce locking
// overhead:
// 1. The stream getters and setters are called from the same thread as
// ProcessStream(). More precisely, stream functions are never called
// concurrently with ProcessStream().
// 2. Parameter getters are never called concurrently with the corresponding
// setter.
//
// APM accepts only linear PCM audio data in chunks of ~10 ms (see
// AudioProcessing::GetFrameSize() for details) and sample rates ranging from
// 8000 Hz to 384000 Hz. The int16 interfaces use interleaved data, while the
// float interfaces use deinterleaved data.
//
// Usage example, omitting error checking:
//
// AudioProcessing::Config config;
// config.echo_canceller.enabled = true;
// config.echo_canceller.mobile_mode = false;
//
// config.gain_controller1.enabled = true;
// config.gain_controller1.mode =
// AudioProcessing::Config::GainController1::kAdaptiveAnalog;
// config.gain_controller1.analog_level_minimum = 0;
// config.gain_controller1.analog_level_maximum = 255;
//
// config.gain_controller2.enabled = true;
//
// config.high_pass_filter.enabled = true;
//
// scoped_refptr<AudioProcessing> apm =
// BuiltinAudioProcessingBuilder(config).Build(CreateEnvironment());
//
// // Start a voice call...
//
// // ... Render frame arrives bound for the audio HAL ...
// apm->ProcessReverseStream(render_frame);
//
// // ... Capture frame arrives from the audio HAL ...
// // Call required set_stream_ functions.
// apm->set_stream_delay_ms(delay_ms);
// apm->set_stream_analog_level(analog_level);
//
// apm->ProcessStream(capture_frame);
//
// // Call required stream_ functions.
// analog_level = apm->recommended_stream_analog_level();
// has_voice = apm->stream_has_voice();
//
// // Repeat render and capture processing for the duration of the call...
// // Start a new call...
// apm->Initialize();
//
// // Close the application...
// apm.reset();
//
class RTC_EXPORT AudioProcessing : public RefCountInterface {
public:
// The struct below constitutes the new parameter scheme for the audio
// processing. It is being introduced gradually and until it is fully
// introduced, it is prone to change.
// TODO(peah): Remove this comment once the new config scheme is fully rolled
// out.
//
// The parameters and behavior of the audio processing module are controlled
// by changing the default values in the AudioProcessing::Config struct.
// The config is applied by passing the struct to the ApplyConfig method.
//
// This config is intended to be used during setup, and to enable/disable
// top-level processing effects. Use during processing may cause undesired
// submodule resets, affecting the audio quality. Use the RuntimeSetting
// construct for runtime configuration.
struct RTC_EXPORT Config {
// Sets the properties of the audio processing pipeline.
struct RTC_EXPORT Pipeline {
// Ways to downmix a multi-channel track to mono.
enum class DownmixMethod {
kAverageChannels, // Average across channels.
kUseFirstChannel // Use the first channel.
};
// Maximum allowed processing rate used internally. May only be set to
// 32000 or 48000 and any differing values will be treated as 48000.
int maximum_internal_processing_rate = 48000;
// Allow multi-channel processing of render audio.
bool multi_channel_render = false;
// Allow multi-channel processing of capture audio when AEC3 is active
// or a custom AEC is injected..
bool multi_channel_capture = false;
// Indicates how to downmix multi-channel capture audio to mono (when
// needed).
DownmixMethod capture_downmix_method = DownmixMethod::kAverageChannels;
} pipeline;
// Enabled the pre-amplifier. It amplifies the capture signal
// before any other processing is done.
// TODO(webrtc:5298): Deprecate and use the pre-gain functionality in
// capture_level_adjustment instead.
struct PreAmplifier {
bool enabled = false;
float fixed_gain_factor = 1.0f;
} pre_amplifier;
// Functionality for general level adjustment in the capture pipeline. This
// should not be used together with the legacy PreAmplifier functionality.
struct CaptureLevelAdjustment {
bool operator==(const CaptureLevelAdjustment& rhs) const;
bool operator!=(const CaptureLevelAdjustment& rhs) const {
return !(*this == rhs);
}
bool enabled = false;
// The `pre_gain_factor` scales the signal before any processing is done.
float pre_gain_factor = 1.0f;
// The `post_gain_factor` scales the signal after all processing is done.
float post_gain_factor = 1.0f;
struct AnalogMicGainEmulation {
bool operator==(const AnalogMicGainEmulation& rhs) const;
bool operator!=(const AnalogMicGainEmulation& rhs) const {
return !(*this == rhs);
}
bool enabled = false;
// Initial analog gain level to use for the emulated analog gain. Must
// be in the range [0...255].
int initial_level = 255;
} analog_mic_gain_emulation;
} capture_level_adjustment;
struct HighPassFilter {
bool enabled = false;
bool apply_in_full_band = true;
} high_pass_filter;
struct EchoCanceller {
bool enabled = false;
bool mobile_mode = false;
bool export_linear_aec_output = false;
// Enforce the highpass filter to be on (has no effect for the mobile
// mode).
bool enforce_high_pass_filtering = true;
} echo_canceller;
// Enables background noise suppression.
struct NoiseSuppression {
bool enabled = false;
enum Level { kLow, kModerate, kHigh, kVeryHigh };
Level level = kModerate;
bool analyze_linear_aec_output_when_available = false;
} noise_suppression;
// TODO(bugs.webrtc.org/357281131): Deprecated. Stop using and remove.
// Enables transient suppression.
struct TransientSuppression {
bool enabled = false;
} transient_suppression;
// Enables automatic gain control (AGC) functionality.
// The automatic gain control (AGC) component brings the signal to an
// appropriate range. This is done by applying a digital gain directly and,
// in the analog mode, prescribing an analog gain to be applied at the audio
// HAL.
// Recommended to be enabled on the client-side.
struct RTC_EXPORT GainController1 {
bool operator==(const GainController1& rhs) const;
bool operator!=(const GainController1& rhs) const {
return !(*this == rhs);
}
bool enabled = false;
enum Mode {
// Adaptive mode intended for use if an analog volume control is
// available on the capture device. It will require the user to provide
// coupling between the OS mixer controls and AGC through the
// stream_analog_level() functions.
// It consists of an analog gain prescription for the audio device and a
// digital compression stage.
kAdaptiveAnalog,
// Adaptive mode intended for situations in which an analog volume
// control is unavailable. It operates in a similar fashion to the
// adaptive analog mode, but with scaling instead applied in the digital
// domain. As with the analog mode, it additionally uses a digital
// compression stage.
kAdaptiveDigital,
// Fixed mode which enables only the digital compression stage also used
// by the two adaptive modes.
// It is distinguished from the adaptive modes by considering only a
// short time-window of the input signal. It applies a fixed gain
// through most of the input level range, and compresses (gradually
// reduces gain with increasing level) the input signal at higher
// levels. This mode is preferred on embedded devices where the capture
// signal level is predictable, so that a known gain can be applied.
kFixedDigital
};
Mode mode = kAdaptiveAnalog;
// Sets the target peak level (or envelope) of the AGC in dBFs (decibels
// from digital full-scale). The convention is to use positive values. For
// instance, passing in a value of 3 corresponds to -3 dBFs, or a target
// level 3 dB below full-scale. Limited to [0, 31].
int target_level_dbfs = 3;
// Sets the maximum gain the digital compression stage may apply, in dB. A
// higher number corresponds to greater compression, while a value of 0
// will leave the signal uncompressed. Limited to [0, 90].
// For updates after APM setup, use a RuntimeSetting instead.
int compression_gain_db = 9;
// When enabled, the compression stage will hard limit the signal to the
// target level. Otherwise, the signal will be compressed but not limited
// above the target level.
bool enable_limiter = true;
// Enables the analog gain controller functionality.
struct AnalogGainController {
bool enabled = true;
// TODO(bugs.webrtc.org/7494): Deprecated. Stop using and remove.
int startup_min_volume = 0;
// Lowest analog microphone level that will be applied in response to
// clipping.
int clipped_level_min = 70;
// If true, an adaptive digital gain is applied.
bool enable_digital_adaptive = true;
// Amount the microphone level is lowered with every clipping event.
// Limited to (0, 255].
int clipped_level_step = 15;
// Proportion of clipped samples required to declare a clipping event.
// Limited to (0.f, 1.f).
float clipped_ratio_threshold = 0.1f;
// Time in frames to wait after a clipping event before checking again.
// Limited to values higher than 0.
int clipped_wait_frames = 300;
// Enables clipping prediction functionality.
struct ClippingPredictor {
bool enabled = false;
enum Mode {
// Clipping event prediction mode with fixed step estimation.
kClippingEventPrediction,
// Clipped peak estimation mode with adaptive step estimation.
kAdaptiveStepClippingPeakPrediction,
// Clipped peak estimation mode with fixed step estimation.
kFixedStepClippingPeakPrediction,
};
Mode mode = kClippingEventPrediction;
// Number of frames in the sliding analysis window.
int window_length = 5;
// Number of frames in the sliding reference window.
int reference_window_length = 5;
// Reference window delay (unit: number of frames).
int reference_window_delay = 5;
// Clipping prediction threshold (dBFS).
float clipping_threshold = -1.0f;
// Crest factor drop threshold (dB).
float crest_factor_margin = 3.0f;
// If true, the recommended clipped level step is used to modify the
// analog gain. Otherwise, the predictor runs without affecting the
// analog gain.
bool use_predicted_step = true;
} clipping_predictor;
} analog_gain_controller;
} gain_controller1;
// Parameters for AGC2, an Automatic Gain Control (AGC) sub-module which
// replaces the AGC sub-module parametrized by `gain_controller1`.
// AGC2 brings the captured audio signal to the desired level by combining
// three different controllers (namely, input volume controller, adapative
// digital controller and fixed digital controller) and a limiter.
// TODO(bugs.webrtc.org:7494): Name `GainController` when AGC1 removed.
struct RTC_EXPORT GainController2 {
bool operator==(const GainController2& rhs) const;
bool operator!=(const GainController2& rhs) const {
return !(*this == rhs);
}
// AGC2 must be created if and only if `enabled` is true.
bool enabled = false;
// Parameters for the input volume controller, which adjusts the input
// volume applied when the audio is captured (e.g., microphone volume on
// a soundcard, input volume on HAL).
struct InputVolumeController {
bool operator==(const InputVolumeController& rhs) const;
bool operator!=(const InputVolumeController& rhs) const {
return !(*this == rhs);
}
bool enabled = false;
} input_volume_controller;
// Parameters for the adaptive digital controller, which adjusts and
// applies a digital gain after echo cancellation and after noise
// suppression.
struct RTC_EXPORT AdaptiveDigital {
bool operator==(const AdaptiveDigital& rhs) const;
bool operator!=(const AdaptiveDigital& rhs) const {
return !(*this == rhs);
}
bool enabled = false;
float headroom_db = 5.0f;
float max_gain_db = 50.0f;
float initial_gain_db = 15.0f;
float max_gain_change_db_per_second = 6.0f;
float max_output_noise_level_dbfs = -50.0f;
} adaptive_digital;
// Parameters for the fixed digital controller, which applies a fixed
// digital gain after the adaptive digital controller and before the
// limiter.
struct FixedDigital {
// By setting `gain_db` to a value greater than zero, the limiter can be
// turned into a compressor that first applies a fixed gain.
float gain_db = 0.0f;
} fixed_digital;
} gain_controller2;
std::string ToString() const;
};
// Specifies the properties of a setting to be passed to AudioProcessing at
// runtime.
class RuntimeSetting {
public:
enum class Type {
kNotSpecified,
kCapturePreGain,
kCaptureCompressionGain,
kCaptureFixedPostGain,
kPlayoutVolumeChange,
kCustomRenderProcessingRuntimeSetting,
kPlayoutAudioDeviceChange,
kCapturePostGain,
kCaptureOutputUsed
};
// Play-out audio device properties.
struct PlayoutAudioDeviceInfo {
int id; // Identifies the audio device.
int max_volume; // Maximum play-out volume.
};
RuntimeSetting() : type_(Type::kNotSpecified), value_(0.0f) {}
~RuntimeSetting() = default;
static RuntimeSetting CreateCapturePreGain(float gain) {
return {Type::kCapturePreGain, gain};
}
static RuntimeSetting CreateCapturePostGain(float gain) {
return {Type::kCapturePostGain, gain};
}
// Corresponds to Config::GainController1::compression_gain_db, but for
// runtime configuration.
static RuntimeSetting CreateCompressionGainDb(int gain_db) {
RTC_DCHECK_GE(gain_db, 0);
RTC_DCHECK_LE(gain_db, 90);
return {Type::kCaptureCompressionGain, static_cast<float>(gain_db)};
}
// Corresponds to Config::GainController2::fixed_digital::gain_db, but for
// runtime configuration.
static RuntimeSetting CreateCaptureFixedPostGain(float gain_db) {
RTC_DCHECK_GE(gain_db, 0.0f);
RTC_DCHECK_LE(gain_db, 90.0f);
return {Type::kCaptureFixedPostGain, gain_db};
}
// Creates a runtime setting to notify play-out (aka render) audio device
// changes.
static RuntimeSetting CreatePlayoutAudioDeviceChange(
PlayoutAudioDeviceInfo audio_device) {
return {Type::kPlayoutAudioDeviceChange, audio_device};
}
// Creates a runtime setting to notify play-out (aka render) volume changes.
// `volume` is the unnormalized volume, the maximum of which
static RuntimeSetting CreatePlayoutVolumeChange(int volume) {
return {Type::kPlayoutVolumeChange, volume};
}
static RuntimeSetting CreateCustomRenderSetting(float payload) {
return {Type::kCustomRenderProcessingRuntimeSetting, payload};
}
static RuntimeSetting CreateCaptureOutputUsedSetting(
bool capture_output_used) {
return {Type::kCaptureOutputUsed, capture_output_used};
}
Type type() const { return type_; }
// Getters do not return a value but instead modify the argument to protect
// from implicit casting.
void GetFloat(float* value) const {
RTC_DCHECK(value);
*value = value_.float_value;
}
void GetInt(int* value) const {
RTC_DCHECK(value);
*value = value_.int_value;
}
void GetBool(bool* value) const {
RTC_DCHECK(value);
*value = value_.bool_value;
}
void GetPlayoutAudioDeviceInfo(PlayoutAudioDeviceInfo* value) const {
RTC_DCHECK(value);
*value = value_.playout_audio_device_info;
}
private:
RuntimeSetting(Type id, float value) : type_(id), value_(value) {}
RuntimeSetting(Type id, int value) : type_(id), value_(value) {}
RuntimeSetting(Type id, PlayoutAudioDeviceInfo value)
: type_(id), value_(value) {}
Type type_;
union U {
U() {}
U(int value) : int_value(value) {}
U(float value) : float_value(value) {}
U(PlayoutAudioDeviceInfo value) : playout_audio_device_info(value) {}
float float_value;
int int_value;
bool bool_value;
PlayoutAudioDeviceInfo playout_audio_device_info;
} value_;
};
~AudioProcessing() override {}
// Initializes internal states, while retaining all user settings. This
// should be called before beginning to process a new audio stream. However,
// it is not necessary to call before processing the first stream after
// creation.
//
// It is also not necessary to call if the audio parameters (sample
// rate and number of channels) have changed. Passing updated parameters
// directly to `ProcessStream()` and `ProcessReverseStream()` is permissible.
// If the parameters are known at init-time though, they may be provided.
// TODO(webrtc:5298): Change to return void.
virtual int Initialize() = 0;
// The int16 interfaces require:
// - only `NativeRate`s be used
// - that the input, output and reverse rates must match
// - that `processing_config.output_stream()` matches
// `processing_config.input_stream()`.
//
// The float interfaces accept arbitrary rates and support differing input and
// output layouts, but the output must have either one channel or the same
// number of channels as the input.
virtual int Initialize(const ProcessingConfig& processing_config) = 0;
// TODO(peah): This method is a temporary solution used to take control
// over the parameters in the audio processing module and is likely to change.
virtual void ApplyConfig(const Config& config) = 0;
// TODO(ajm): Only intended for internal use. Make private and friend the
// necessary classes?
virtual int proc_sample_rate_hz() const = 0;
virtual int proc_split_sample_rate_hz() const = 0;
virtual size_t num_input_channels() const = 0;
virtual size_t num_proc_channels() const = 0;
virtual size_t num_output_channels() const = 0;
virtual size_t num_reverse_channels() const = 0;
// Set to true when the output of AudioProcessing will be muted or in some
// other way not used. Ideally, the captured audio would still be processed,
// but some components may change behavior based on this information.
// Default false. This method takes a lock. To achieve this in a lock-less
// manner the PostRuntimeSetting can instead be used.
virtual void set_output_will_be_muted(bool muted) = 0;
// Enqueues a runtime setting.
virtual void SetRuntimeSetting(RuntimeSetting setting) = 0;
// Enqueues a runtime setting. Returns a bool indicating whether the
// enqueueing was successfull.
virtual bool PostRuntimeSetting(RuntimeSetting setting) = 0;
// Accepts and produces a ~10 ms frame of interleaved 16 bit integer audio as
// specified in `input_config` and `output_config`. `src` and `dest` may use
// the same memory, if desired.
virtual int ProcessStream(const int16_t* const src,
const StreamConfig& input_config,
const StreamConfig& output_config,
int16_t* const dest) = 0;
// Accepts deinterleaved float audio with the range [-1, 1]. Each element of
// `src` points to a channel buffer, arranged according to `input_stream`. At
// output, the channels will be arranged according to `output_stream` in
// `dest`.
//
// The output must have one channel or as many channels as the input. `src`
// and `dest` may use the same memory, if desired.
virtual int ProcessStream(const float* const* src,
const StreamConfig& input_config,
const StreamConfig& output_config,
float* const* dest) = 0;
// Accepts and produces a ~10 ms frame of interleaved 16 bit integer audio for
// the reverse direction audio stream as specified in `input_config` and
// `output_config`. `src` and `dest` may use the same memory, if desired.
virtual int ProcessReverseStream(const int16_t* const src,
const StreamConfig& input_config,
const StreamConfig& output_config,
int16_t* const dest) = 0;
// Accepts deinterleaved float audio with the range [-1, 1]. Each element of
// `data` points to a channel buffer, arranged according to `reverse_config`.
virtual int ProcessReverseStream(const float* const* src,
const StreamConfig& input_config,
const StreamConfig& output_config,
float* const* dest) = 0;
// Accepts deinterleaved float audio with the range [-1, 1]. Each element
// of `data` points to a channel buffer, arranged according to
// `reverse_config`.
virtual int AnalyzeReverseStream(const float* const* data,
const StreamConfig& reverse_config) = 0;
// Returns the most recently produced ~10 ms of the linear AEC output at a
// rate of 16 kHz. If there is more than one capture channel, a mono
// representation of the input is returned. Returns true/false to indicate
// whether an output returned.
virtual bool GetLinearAecOutput(
ArrayView<std::array<float, 160>> linear_output) const = 0;
// This must be called prior to ProcessStream() if and only if adaptive analog
// gain control is enabled, to pass the current analog level from the audio
// HAL. Must be within the range [0, 255].
virtual void set_stream_analog_level(int level) = 0;
// When an analog mode is set, this should be called after
// `set_stream_analog_level()` and `ProcessStream()` to obtain the recommended
// new analog level for the audio HAL. It is the user's responsibility to
// apply this level.
virtual int recommended_stream_analog_level() const = 0;
// This must be called if and only if echo processing is enabled.
//
// Sets the `delay` in ms between ProcessReverseStream() receiving a far-end
// frame and ProcessStream() receiving a near-end frame containing the
// corresponding echo. On the client-side this can be expressed as
// delay = (t_render - t_analyze) + (t_process - t_capture)
// where,
// - t_analyze is the time a frame is passed to ProcessReverseStream() and
// t_render is the time the first sample of the same frame is rendered by
// the audio hardware.
// - t_capture is the time the first sample of a frame is captured by the
// audio hardware and t_process is the time the same frame is passed to
// ProcessStream().
virtual int set_stream_delay_ms(int delay) = 0;
virtual int stream_delay_ms() const = 0;
// Call to signal that a key press occurred (true) or did not occur (false)
// with this chunk of audio.
virtual void set_stream_key_pressed(bool key_pressed) = 0;
// Creates and attaches an AecDump for recording debugging
// information.
// The `worker_queue` may not be null and must outlive the created
// AecDump instance. |max_log_size_bytes == -1| means the log size
// will be unlimited. `handle` may not be null. The AecDump takes
// responsibility for `handle` and closes it in the destructor. A
// return value of true indicates that the file has been
// sucessfully opened, while a value of false indicates that
// opening the file failed.
virtual bool CreateAndAttachAecDump(absl::string_view file_name,
int64_t max_log_size_bytes,
TaskQueueBase* absl_nonnull
worker_queue) = 0;
virtual bool CreateAndAttachAecDump(FILE* absl_nonnull handle,
int64_t max_log_size_bytes,
TaskQueueBase* absl_nonnull
worker_queue) = 0;
// TODO(webrtc:5298) Deprecated variant.
// Attaches provided AecDump for recording debugging
// information. Log file and maximum file size logic is supposed to
// be handled by implementing instance of AecDump. Calling this
// method when another AecDump is attached resets the active AecDump
// with a new one. This causes the d-tor of the earlier AecDump to
// be called. The d-tor call may block until all pending logging
// tasks are completed.
virtual void AttachAecDump(std::unique_ptr<AecDump> aec_dump) = 0;
// If no AecDump is attached, this has no effect. If an AecDump is
// attached, it's destructor is called. The d-tor may block until
// all pending logging tasks are completed.
virtual void DetachAecDump() = 0;
// Get audio processing statistics.
virtual AudioProcessingStats GetStatistics() = 0;
// TODO(webrtc:5298) Deprecated variant. The `has_remote_tracks` argument
// should be set if there are active remote tracks (this would usually be true
// during a call). If there are no remote tracks some of the stats will not be
// set by AudioProcessing, because they only make sense if there is at least
// one remote track.
virtual AudioProcessingStats GetStatistics(bool has_remote_tracks) = 0;
// Returns the last applied configuration.
virtual AudioProcessing::Config GetConfig() const = 0;
enum Error {
// Fatal errors.
kNoError = 0,
kUnspecifiedError = -1,
kCreationFailedError = -2,
kUnsupportedComponentError = -3,
kUnsupportedFunctionError = -4,
kNullPointerError = -5,
kBadParameterError = -6,
kBadSampleRateError = -7,
kBadDataLengthError = -8,
kBadNumberChannelsError = -9,
kFileError = -10,
kStreamParameterNotSetError = -11,
kNotEnabledError = -12,
// Warnings are non-fatal.
// This results when a set_stream_ parameter is out of range. Processing
// will continue, but the parameter may have been truncated.
kBadStreamParameterWarning = -13
};
// Native rates supported by the integer interfaces.
enum NativeRate : int {
kSampleRate8kHz = 8000,
kSampleRate16kHz = 16000,
kSampleRate32kHz = 32000,
kSampleRate48kHz = 48000
};
static constexpr std::array kNativeSampleRatesHz = {
kSampleRate8kHz, kSampleRate16kHz, kSampleRate32kHz, kSampleRate48kHz};
static constexpr int kMaxNativeSampleRateHz = kNativeSampleRatesHz.back();
// APM processes audio in chunks of about 10 ms. See GetFrameSize() for
// details.
static constexpr int kChunkSizeMs = 10;
// Returns floor(sample_rate_hz/100): the number of samples per channel used
// as input and output to the audio processing module in calls to
// ProcessStream, ProcessReverseStream, AnalyzeReverseStream, and
// GetLinearAecOutput.
//
// This is exactly 10 ms for sample rates divisible by 100. For example:
// - 48000 Hz (480 samples per channel),
// - 44100 Hz (441 samples per channel),
// - 16000 Hz (160 samples per channel).
//
// Sample rates not divisible by 100 are received/produced in frames of
// approximately 10 ms. For example:
// - 22050 Hz (220 samples per channel, or ~9.98 ms per frame),
// - 11025 Hz (110 samples per channel, or ~9.98 ms per frame).
// These nondivisible sample rates yield lower audio quality compared to
// multiples of 100. Internal resampling to 10 ms frames causes a simulated
// clock drift effect which impacts the performance of (for example) echo
// cancellation.
static int GetFrameSize(int sample_rate_hz) { return sample_rate_hz / 100; }
};
class AudioProcessingBuilderInterface {
public:
virtual ~AudioProcessingBuilderInterface() = default;
virtual absl_nullable scoped_refptr<AudioProcessing> Build(
const Environment& env) = 0;
};
// Returns builder that returns the `audio_processing` ignoring the extra
// construction parameter `env`.
// nullptr `audio_processing` is not supported as in some scenarios that imply
// no audio processing, while in others - default builtin audio processing.
// Callers should be explicit which of these two behaviors they want.
absl_nonnull std::unique_ptr<AudioProcessingBuilderInterface>
CustomAudioProcessing(
absl_nonnull scoped_refptr<AudioProcessing> audio_processing);
// Experimental interface for a custom analysis submodule.
class CustomAudioAnalyzer {
public:
// (Re-) Initializes the submodule.
virtual void Initialize(int sample_rate_hz, int num_channels) = 0;
// Analyzes the given capture or render signal.
virtual void Analyze(const AudioBuffer* audio) = 0;
// Returns a string representation of the module state.
virtual std::string ToString() const = 0;
virtual ~CustomAudioAnalyzer() {}
};
// Interface for a custom processing submodule.
class CustomProcessing {
public:
// (Re-)Initializes the submodule.
virtual void Initialize(int sample_rate_hz, int num_channels) = 0;
// Processes the given capture or render signal.
virtual void Process(AudioBuffer* audio) = 0;
// Returns a string representation of the module state.
virtual std::string ToString() const = 0;
// Handles RuntimeSettings. TODO(webrtc:9262): make pure virtual
// after updating dependencies.
virtual void SetRuntimeSetting(AudioProcessing::RuntimeSetting setting);
virtual ~CustomProcessing() {}
};
class StreamConfig {
public:
// sample_rate_hz: The sampling rate of the stream.
// num_channels: The number of audio channels in the stream.
StreamConfig(int sample_rate_hz = 0,
size_t num_channels = 0) // NOLINT(runtime/explicit)
: sample_rate_hz_(sample_rate_hz),
num_channels_(num_channels),
num_frames_(calculate_frames(sample_rate_hz)) {}
void set_sample_rate_hz(int value) {
sample_rate_hz_ = value;
num_frames_ = calculate_frames(value);
}
void set_num_channels(size_t value) { num_channels_ = value; }
int sample_rate_hz() const { return sample_rate_hz_; }
// The number of channels in the stream.
size_t num_channels() const { return num_channels_; }
size_t num_frames() const { return num_frames_; }
size_t num_samples() const { return num_channels_ * num_frames_; }
bool operator==(const StreamConfig& other) const {
return sample_rate_hz_ == other.sample_rate_hz_ &&
num_channels_ == other.num_channels_;
}
bool operator!=(const StreamConfig& other) const { return !(*this == other); }
private:
static size_t calculate_frames(int sample_rate_hz) {
return static_cast<size_t>(AudioProcessing::GetFrameSize(sample_rate_hz));
}
int sample_rate_hz_;
size_t num_channels_;
size_t num_frames_;
};
class ProcessingConfig {
public:
enum StreamName {
kInputStream,
kOutputStream,
kReverseInputStream,
kReverseOutputStream,
kNumStreamNames,
};
const StreamConfig& input_stream() const {
return streams[StreamName::kInputStream];
}
const StreamConfig& output_stream() const {
return streams[StreamName::kOutputStream];
}
const StreamConfig& reverse_input_stream() const {
return streams[StreamName::kReverseInputStream];
}
const StreamConfig& reverse_output_stream() const {
return streams[StreamName::kReverseOutputStream];
}
StreamConfig& input_stream() { return streams[StreamName::kInputStream]; }
StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; }
StreamConfig& reverse_input_stream() {
return streams[StreamName::kReverseInputStream];
}
StreamConfig& reverse_output_stream() {
return streams[StreamName::kReverseOutputStream];
}
bool operator==(const ProcessingConfig& other) const {
for (int i = 0; i < StreamName::kNumStreamNames; ++i) {
if (this->streams[i] != other.streams[i]) {
return false;
}
}
return true;
}
bool operator!=(const ProcessingConfig& other) const {
return !(*this == other);
}
StreamConfig streams[StreamName::kNumStreamNames];
};
// Interface for an echo detector submodule.
class EchoDetector : public RefCountInterface {
public:
// (Re-)Initializes the submodule.
virtual void Initialize(int capture_sample_rate_hz,
int num_capture_channels,
int render_sample_rate_hz,
int num_render_channels) = 0;
// Analysis (not changing) of the first channel of the render signal.
virtual void AnalyzeRenderAudio(ArrayView<const float> render_audio) = 0;
// Analysis (not changing) of the capture signal.
virtual void AnalyzeCaptureAudio(ArrayView<const float> capture_audio) = 0;
struct Metrics {
std::optional<double> echo_likelihood;
std::optional<double> echo_likelihood_recent_max;
};
// Collect current metrics from the echo detector.
virtual Metrics GetMetrics() const = 0;
};
} // namespace webrtc
#endif // API_AUDIO_AUDIO_PROCESSING_H_
|