1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
/*
* Copyright 2019 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/task_queue/task_queue_test.h"
#include <cstdint>
#include <memory>
#include <utility>
#include <vector>
#include "absl/cleanup/cleanup.h"
#include "absl/strings/string_view.h"
#include "api/ref_count.h"
#include "api/task_queue/task_queue_base.h"
#include "api/task_queue/task_queue_factory.h"
#include "api/units/time_delta.h"
#include "rtc_base/event.h"
#include "rtc_base/ref_counter.h"
#include "rtc_base/time_utils.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
// Avoids a dependency to system_wrappers.
void SleepFor(TimeDelta duration) {
ScopedAllowBaseSyncPrimitivesForTesting allow;
Event event;
event.Wait(duration);
}
std::unique_ptr<TaskQueueBase, TaskQueueDeleter> CreateTaskQueue(
const std::unique_ptr<TaskQueueFactory>& factory,
absl::string_view task_queue_name,
TaskQueueFactory::Priority priority = TaskQueueFactory::Priority::NORMAL) {
return factory->CreateTaskQueue(task_queue_name, priority);
}
TEST_P(TaskQueueTest, Construct) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
auto queue = CreateTaskQueue(factory, "Construct");
EXPECT_FALSE(queue->IsCurrent());
}
TEST_P(TaskQueueTest, PostAndCheckCurrent) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
Event event;
auto queue = CreateTaskQueue(factory, "PostAndCheckCurrent");
// We're not running a task, so `queue` shouldn't be current.
// Note that because Thread also supports the TQ interface and
// TestMainImpl::Init wraps the main test thread (bugs.webrtc.org/9714), that
// means that TaskQueueBase::Current() will still return a valid value.
EXPECT_FALSE(queue->IsCurrent());
queue->PostTask([&event, &queue] {
EXPECT_TRUE(queue->IsCurrent());
event.Set();
});
EXPECT_TRUE(event.Wait(TimeDelta::Seconds(1)));
}
TEST_P(TaskQueueTest, PostCustomTask) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
Event ran;
auto queue = CreateTaskQueue(factory, "PostCustomImplementation");
class CustomTask {
public:
explicit CustomTask(Event* ran) : ran_(ran) {}
void operator()() { ran_->Set(); }
private:
Event* const ran_;
} my_task(&ran);
queue->PostTask(my_task);
EXPECT_TRUE(ran.Wait(TimeDelta::Seconds(1)));
}
TEST_P(TaskQueueTest, PostDelayedZero) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
Event event;
auto queue = CreateTaskQueue(factory, "PostDelayedZero");
queue->PostDelayedTask([&event] { event.Set(); }, TimeDelta::Zero());
EXPECT_TRUE(event.Wait(TimeDelta::Seconds(1)));
}
TEST_P(TaskQueueTest, PostFromQueue) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
Event event;
auto queue = CreateTaskQueue(factory, "PostFromQueue");
queue->PostTask(
[&event, &queue] { queue->PostTask([&event] { event.Set(); }); });
EXPECT_TRUE(event.Wait(TimeDelta::Seconds(1)));
}
TEST_P(TaskQueueTest, PostDelayed) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
Event event;
auto queue =
CreateTaskQueue(factory, "PostDelayed", TaskQueueFactory::Priority::HIGH);
int64_t start = TimeMillis();
queue->PostDelayedTask(
[&event, &queue] {
EXPECT_TRUE(queue->IsCurrent());
event.Set();
},
TimeDelta::Millis(100));
EXPECT_TRUE(event.Wait(TimeDelta::Seconds(1)));
int64_t end = TimeMillis();
// These tests are a little relaxed due to how "powerful" our test bots can
// be. Most recently we've seen windows bots fire the callback after 94-99ms,
// which is why we have a little bit of leeway backwards as well.
EXPECT_GE(end - start, 90u);
EXPECT_NEAR(end - start, 190u, 100u); // Accept 90-290.
}
TEST_P(TaskQueueTest, PostMultipleDelayed) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
auto queue = CreateTaskQueue(factory, "PostMultipleDelayed");
std::vector<Event> events(100);
for (int i = 0; i < 100; ++i) {
Event* event = &events[i];
queue->PostDelayedTask(
[event, &queue] {
EXPECT_TRUE(queue->IsCurrent());
event->Set();
},
TimeDelta::Millis(i));
}
for (Event& e : events)
EXPECT_TRUE(e.Wait(TimeDelta::Seconds(1)));
}
TEST_P(TaskQueueTest, PostDelayedAfterDestruct) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
Event run;
Event deleted;
auto queue = CreateTaskQueue(factory, "PostDelayedAfterDestruct");
absl::Cleanup cleanup = [&deleted] { deleted.Set(); };
queue->PostDelayedTask([&run, cleanup = std::move(cleanup)] { run.Set(); },
TimeDelta::Millis(100));
// Destroy the queue.
queue = nullptr;
// Task might outlive the TaskQueue, but still should be deleted.
EXPECT_TRUE(deleted.Wait(TimeDelta::Seconds(1)));
EXPECT_FALSE(run.Wait(TimeDelta::Zero())); // and should not run.
}
TEST_P(TaskQueueTest, PostDelayedHighPrecisionAfterDestruct) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
Event run;
Event deleted;
auto queue =
CreateTaskQueue(factory, "PostDelayedHighPrecisionAfterDestruct");
absl::Cleanup cleanup = [&deleted] { deleted.Set(); };
queue->PostDelayedHighPrecisionTask(
[&run, cleanup = std::move(cleanup)] { run.Set(); },
TimeDelta::Millis(100));
// Destroy the queue.
queue = nullptr;
// Task might outlive the TaskQueue, but still should be deleted.
EXPECT_TRUE(deleted.Wait(TimeDelta::Seconds(1)));
EXPECT_FALSE(run.Wait(TimeDelta::Zero())); // and should not run.
}
TEST_P(TaskQueueTest, PostedUnexecutedClosureDestroyedOnTaskQueue) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
auto queue =
CreateTaskQueue(factory, "PostedUnexecutedClosureDestroyedOnTaskQueue");
TaskQueueBase* queue_ptr = queue.get();
queue->PostTask([] { SleepFor(TimeDelta::Millis(100)); });
// Give the task queue a chance to start executing the first lambda.
SleepFor(TimeDelta::Millis(10));
Event finished;
// Then ensure the next lambda (which is likely not executing yet) is
// destroyed in the task queue context when the queue is deleted.
auto cleanup = absl::Cleanup([queue_ptr, &finished] {
EXPECT_EQ(queue_ptr, TaskQueueBase::Current());
finished.Set();
});
queue->PostTask([cleanup = std::move(cleanup)] {});
queue = nullptr;
finished.Wait(TimeDelta::Seconds(1));
}
TEST_P(TaskQueueTest, PostedClosureDestroyedOnTaskQueue) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
auto queue = CreateTaskQueue(factory, "PostedClosureDestroyedOnTaskQueue");
TaskQueueBase* queue_ptr = queue.get();
Event finished;
auto cleanup = absl::Cleanup([queue_ptr, &finished] {
EXPECT_EQ(queue_ptr, TaskQueueBase::Current());
finished.Set();
});
// The cleanup task may or may not have had time to execute when the task
// queue is destroyed. Regardless, the task should be destroyed on the
// queue.
queue->PostTask([cleanup = std::move(cleanup)] {});
queue = nullptr;
finished.Wait(TimeDelta::Seconds(1));
}
TEST_P(TaskQueueTest, PostedExecutedClosureDestroyedOnTaskQueue) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
auto queue =
CreateTaskQueue(factory, "PostedExecutedClosureDestroyedOnTaskQueue");
TaskQueueBase* queue_ptr = queue.get();
// Ensure an executed lambda is destroyed on the task queue.
Event finished;
queue->PostTask([cleanup = absl::Cleanup([queue_ptr, &finished] {
EXPECT_EQ(queue_ptr, TaskQueueBase::Current());
finished.Set();
})] {});
finished.Wait(TimeDelta::Seconds(1));
}
TEST_P(TaskQueueTest, PostAndReuse) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
Event event;
auto post_queue = CreateTaskQueue(factory, "PostQueue");
auto reply_queue = CreateTaskQueue(factory, "ReplyQueue");
int call_count = 0;
class ReusedTask {
public:
ReusedTask(int* counter, TaskQueueBase* reply_queue, Event* event)
: counter_(*counter), reply_queue_(reply_queue), event_(*event) {
EXPECT_EQ(counter_, 0);
}
ReusedTask(ReusedTask&&) = default;
ReusedTask& operator=(ReusedTask&&) = delete;
void operator()() && {
if (++counter_ == 1) {
reply_queue_->PostTask(std::move(*this));
// At this point, the object is in the moved-from state.
} else {
EXPECT_EQ(counter_, 2);
EXPECT_TRUE(reply_queue_->IsCurrent());
event_.Set();
}
}
private:
int& counter_;
TaskQueueBase* const reply_queue_;
Event& event_;
};
ReusedTask task(&call_count, reply_queue.get(), &event);
post_queue->PostTask(std::move(task));
EXPECT_TRUE(event.Wait(TimeDelta::Seconds(1)));
}
TEST_P(TaskQueueTest, PostALot) {
// Waits until DecrementCount called `count` times. Thread safe.
class BlockingCounter {
public:
explicit BlockingCounter(int initial_count) : count_(initial_count) {}
void DecrementCount() {
if (count_.DecRef() == RefCountReleaseStatus::kDroppedLastRef) {
event_.Set();
}
}
bool Wait(TimeDelta give_up_after) { return event_.Wait(give_up_after); }
private:
webrtc_impl::RefCounter count_;
Event event_;
};
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
static constexpr int kTaskCount = 0xffff;
Event posting_done;
BlockingCounter all_destroyed(kTaskCount);
int tasks_executed = 0;
auto task_queue = CreateTaskQueue(factory, "PostALot");
task_queue->PostTask([&] {
// Post tasks from the queue to guarantee that the 1st task won't be
// executed before the last one is posted.
for (int i = 0; i < kTaskCount; ++i) {
absl::Cleanup cleanup = [&] { all_destroyed.DecrementCount(); };
task_queue->PostTask([&tasks_executed, cleanup = std::move(cleanup)] {
++tasks_executed;
});
}
posting_done.Set();
});
// Before destroying the task queue wait until all child tasks are posted.
posting_done.Wait(Event::kForever);
// Destroy the task queue.
task_queue = nullptr;
// Expect all tasks are destroyed eventually. In some task queue
// implementations that might happen on a different thread after task queue is
// destroyed.
EXPECT_TRUE(all_destroyed.Wait(TimeDelta::Minutes(1)));
EXPECT_LE(tasks_executed, kTaskCount);
}
// Test posting two tasks that have shared state not protected by a
// lock. The TaskQueue should guarantee memory read-write order and
// FIFO task execution order, so the second task should always see the
// changes that were made by the first task.
//
// If the TaskQueue doesn't properly synchronize the execution of
// tasks, there will be a data race, which is undefined behavior. The
// EXPECT calls may randomly catch this, but to make the most of this
// unit test, run it under TSan or some other tool that is able to
// directly detect data races.
TEST_P(TaskQueueTest, PostTwoWithSharedUnprotectedState) {
std::unique_ptr<TaskQueueFactory> factory = GetParam()(nullptr);
struct SharedState {
// First task will set this value to 1 and second will assert it.
int state = 0;
} state;
auto queue = CreateTaskQueue(factory, "PostTwoWithSharedUnprotectedState");
Event done;
queue->PostTask([&state, &queue, &done] {
// Post tasks from queue to guarantee, that 1st task won't be
// executed before the second one will be posted.
queue->PostTask([&state] { state.state = 1; });
queue->PostTask([&state, &done] {
EXPECT_EQ(state.state, 1);
done.Set();
});
// Check, that state changing tasks didn't start yet.
EXPECT_EQ(state.state, 0);
});
EXPECT_TRUE(done.Wait(TimeDelta::Seconds(1)));
}
// TaskQueueTest is a set of tests for any implementation of the TaskQueueBase.
// Tests are instantiated next to the concrete implementation(s).
// https://github.com/google/googletest/blob/master/googletest/docs/advanced.md#creating-value-parameterized-abstract-tests
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(TaskQueueTest);
} // namespace
} // namespace webrtc
|