1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "audio/remix_resample.h"
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include "api/audio/audio_frame.h"
#include "common_audio/resampler/include/push_resampler.h"
#include "test/gtest.h"
namespace webrtc {
namespace voe {
namespace {
int GetFrameSize(int sample_rate_hz) {
return sample_rate_hz / 100;
}
class UtilityTest : public ::testing::Test {
protected:
UtilityTest() {
src_frame_.sample_rate_hz_ = 16000;
src_frame_.samples_per_channel_ = src_frame_.sample_rate_hz_ / 100;
src_frame_.num_channels_ = 1;
dst_frame_.CopyFrom(src_frame_);
golden_frame_.CopyFrom(src_frame_);
}
void RunResampleTest(int src_channels,
int src_sample_rate_hz,
int dst_channels,
int dst_sample_rate_hz);
PushResampler<int16_t> resampler_;
AudioFrame src_frame_;
AudioFrame dst_frame_;
AudioFrame golden_frame_;
};
// Sets the signal value to increase by `data` with every sample. Floats are
// used so non-integer values result in rounding error, but not an accumulating
// error.
void SetMonoFrame(float data, int sample_rate_hz, AudioFrame* frame) {
frame->Mute();
frame->num_channels_ = 1;
frame->sample_rate_hz_ = sample_rate_hz;
frame->samples_per_channel_ = GetFrameSize(sample_rate_hz);
int16_t* frame_data = frame->mutable_data();
for (size_t i = 0; i < frame->samples_per_channel_; i++) {
frame_data[i] = static_cast<int16_t>(data * i);
}
}
// Keep the existing sample rate.
void SetMonoFrame(float data, AudioFrame* frame) {
SetMonoFrame(data, frame->sample_rate_hz_, frame);
}
// Sets the signal value to increase by `left` and `right` with every sample in
// each channel respectively.
void SetStereoFrame(float left,
float right,
int sample_rate_hz,
AudioFrame* frame) {
frame->Mute();
frame->num_channels_ = 2;
frame->sample_rate_hz_ = sample_rate_hz;
frame->samples_per_channel_ = GetFrameSize(sample_rate_hz);
int16_t* frame_data = frame->mutable_data();
for (size_t i = 0; i < frame->samples_per_channel_; i++) {
frame_data[i * 2] = static_cast<int16_t>(left * i);
frame_data[i * 2 + 1] = static_cast<int16_t>(right * i);
}
}
// Keep the existing sample rate.
void SetStereoFrame(float left, float right, AudioFrame* frame) {
SetStereoFrame(left, right, frame->sample_rate_hz_, frame);
}
// Sets the signal value to increase by `ch1`, `ch2`, `ch3`, `ch4` with every
// sample in each channel respectively.
void SetQuadFrame(float ch1,
float ch2,
float ch3,
float ch4,
int sample_rate_hz,
AudioFrame* frame) {
frame->Mute();
frame->num_channels_ = 4;
frame->sample_rate_hz_ = sample_rate_hz;
frame->samples_per_channel_ = GetFrameSize(sample_rate_hz);
int16_t* frame_data = frame->mutable_data();
for (size_t i = 0; i < frame->samples_per_channel_; i++) {
frame_data[i * 4] = static_cast<int16_t>(ch1 * i);
frame_data[i * 4 + 1] = static_cast<int16_t>(ch2 * i);
frame_data[i * 4 + 2] = static_cast<int16_t>(ch3 * i);
frame_data[i * 4 + 3] = static_cast<int16_t>(ch4 * i);
}
}
void VerifyParams(const AudioFrame& ref_frame, const AudioFrame& test_frame) {
EXPECT_EQ(ref_frame.num_channels_, test_frame.num_channels_);
EXPECT_EQ(ref_frame.samples_per_channel_, test_frame.samples_per_channel_);
EXPECT_EQ(ref_frame.sample_rate_hz_, test_frame.sample_rate_hz_);
}
// Computes the best SNR based on the error between `ref_frame` and
// `test_frame`. It allows for up to a `max_delay` in samples between the
// signals to compensate for the resampling delay.
float ComputeSNR(const AudioFrame& ref_frame,
const AudioFrame& test_frame,
size_t max_delay) {
VerifyParams(ref_frame, test_frame);
float best_snr = 0;
size_t best_delay = 0;
for (size_t delay = 0; delay <= max_delay; delay++) {
float mse = 0;
float variance = 0;
const int16_t* ref_frame_data = ref_frame.data();
const int16_t* test_frame_data = test_frame.data();
for (size_t i = 0;
i < ref_frame.samples_per_channel_ * ref_frame.num_channels_ - delay;
i++) {
int error = ref_frame_data[i] - test_frame_data[i + delay];
mse += error * error;
variance += ref_frame_data[i] * ref_frame_data[i];
}
float snr = 100; // We assign 100 dB to the zero-error case.
if (mse > 0)
snr = 10 * std::log10(variance / mse);
if (snr > best_snr) {
best_snr = snr;
best_delay = delay;
}
}
printf("SNR=%.1f dB at delay=%zu\n", best_snr, best_delay);
return best_snr;
}
void VerifyFramesAreEqual(const AudioFrame& ref_frame,
const AudioFrame& test_frame) {
VerifyParams(ref_frame, test_frame);
const int16_t* ref_frame_data = ref_frame.data();
const int16_t* test_frame_data = test_frame.data();
for (size_t i = 0;
i < ref_frame.samples_per_channel_ * ref_frame.num_channels_; i++) {
EXPECT_EQ(ref_frame_data[i], test_frame_data[i]);
}
}
void UtilityTest::RunResampleTest(int src_channels,
int src_sample_rate_hz,
int dst_channels,
int dst_sample_rate_hz) {
PushResampler<int16_t> resampler; // Create a new one with every test.
const int16_t kSrcCh1 = 30; // Shouldn't overflow for any used sample rate.
const int16_t kSrcCh2 = 15;
const int16_t kSrcCh3 = 22;
const int16_t kSrcCh4 = 8;
const float resampling_factor =
(1.0 * src_sample_rate_hz) / dst_sample_rate_hz;
const float dst_ch1 = resampling_factor * kSrcCh1;
const float dst_ch2 = resampling_factor * kSrcCh2;
const float dst_ch3 = resampling_factor * kSrcCh3;
const float dst_ch4 = resampling_factor * kSrcCh4;
const float dst_stereo_to_mono = (dst_ch1 + dst_ch2) / 2;
const float dst_quad_to_mono = (dst_ch1 + dst_ch2 + dst_ch3 + dst_ch4) / 4;
const float dst_quad_to_stereo_ch1 = (dst_ch1 + dst_ch2) / 2;
const float dst_quad_to_stereo_ch2 = (dst_ch3 + dst_ch4) / 2;
if (src_channels == 1)
SetMonoFrame(kSrcCh1, src_sample_rate_hz, &src_frame_);
else if (src_channels == 2)
SetStereoFrame(kSrcCh1, kSrcCh2, src_sample_rate_hz, &src_frame_);
else
SetQuadFrame(kSrcCh1, kSrcCh2, kSrcCh3, kSrcCh4, src_sample_rate_hz,
&src_frame_);
if (dst_channels == 1) {
SetMonoFrame(0, dst_sample_rate_hz, &dst_frame_);
if (src_channels == 1)
SetMonoFrame(dst_ch1, dst_sample_rate_hz, &golden_frame_);
else if (src_channels == 2)
SetMonoFrame(dst_stereo_to_mono, dst_sample_rate_hz, &golden_frame_);
else
SetMonoFrame(dst_quad_to_mono, dst_sample_rate_hz, &golden_frame_);
} else {
SetStereoFrame(0, 0, dst_sample_rate_hz, &dst_frame_);
if (src_channels == 1)
SetStereoFrame(dst_ch1, dst_ch1, dst_sample_rate_hz, &golden_frame_);
else if (src_channels == 2)
SetStereoFrame(dst_ch1, dst_ch2, dst_sample_rate_hz, &golden_frame_);
else
SetStereoFrame(dst_quad_to_stereo_ch1, dst_quad_to_stereo_ch2,
dst_sample_rate_hz, &golden_frame_);
}
// The sinc resampler has a known delay, which we compute here. Multiplying by
// two gives us a crude maximum for any resampling, as the old resampler
// typically (but not always) has lower delay.
static const size_t kInputKernelDelaySamples = 16;
const size_t max_delay = static_cast<size_t>(
static_cast<double>(dst_sample_rate_hz) / src_sample_rate_hz *
kInputKernelDelaySamples * dst_channels * 2);
printf("(%d, %d Hz) -> (%d, %d Hz) ", // SNR reported on the same line later.
src_channels, src_sample_rate_hz, dst_channels, dst_sample_rate_hz);
RemixAndResample(src_frame_, &resampler, &dst_frame_);
if (src_sample_rate_hz == 96000 && dst_sample_rate_hz <= 11025) {
// The sinc resampler gives poor SNR at this extreme conversion, but we
// expect to see this rarely in practice.
EXPECT_GT(ComputeSNR(golden_frame_, dst_frame_, max_delay), 14.0f);
} else {
EXPECT_GT(ComputeSNR(golden_frame_, dst_frame_, max_delay), 46.0f);
}
}
TEST_F(UtilityTest, RemixAndResampleCopyFrameSucceeds) {
// Stereo -> stereo.
SetStereoFrame(10, 10, &src_frame_);
SetStereoFrame(0, 0, &dst_frame_);
RemixAndResample(src_frame_, &resampler_, &dst_frame_);
VerifyFramesAreEqual(src_frame_, dst_frame_);
// Mono -> mono.
SetMonoFrame(20, &src_frame_);
SetMonoFrame(0, &dst_frame_);
RemixAndResample(src_frame_, &resampler_, &dst_frame_);
VerifyFramesAreEqual(src_frame_, dst_frame_);
}
TEST_F(UtilityTest, RemixAndResampleMixingOnlySucceeds) {
// Stereo -> mono.
SetStereoFrame(0, 0, &dst_frame_);
SetMonoFrame(10, &src_frame_);
SetStereoFrame(10, 10, &golden_frame_);
RemixAndResample(src_frame_, &resampler_, &dst_frame_);
VerifyFramesAreEqual(dst_frame_, golden_frame_);
// Mono -> stereo.
SetMonoFrame(0, &dst_frame_);
SetStereoFrame(10, 20, &src_frame_);
SetMonoFrame(15, &golden_frame_);
RemixAndResample(src_frame_, &resampler_, &dst_frame_);
VerifyFramesAreEqual(golden_frame_, dst_frame_);
}
TEST_F(UtilityTest, RemixAndResampleSucceeds) {
const int kSampleRates[] = {8000, 11025, 16000, 22050,
32000, 44100, 48000, 96000};
const int kSrcChannels[] = {1, 2, 4};
const int kDstChannels[] = {1, 2};
for (int src_rate : kSampleRates) {
for (int dst_rate : kSampleRates) {
for (size_t src_channels : kSrcChannels) {
for (size_t dst_channels : kDstChannels) {
RunResampleTest(src_channels, src_rate, dst_channels, dst_rate);
}
}
}
}
}
} // namespace
} // namespace voe
} // namespace webrtc
|