1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
|
/*
* Copyright 2020 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "pc/sctp_data_channel.h"
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include "absl/functional/any_invocable.h"
#include "api/data_channel_interface.h"
#include "api/make_ref_counted.h"
#include "api/priority.h"
#include "api/rtc_error.h"
#include "api/scoped_refptr.h"
#include "api/sequence_checker.h"
#include "api/task_queue/pending_task_safety_flag.h"
#include "api/transport/data_channel_transport_interface.h"
#include "media/sctp/sctp_transport_internal.h"
#include "pc/data_channel_utils.h"
#include "pc/proxy.h"
#include "pc/sctp_utils.h"
#include "rtc_base/checks.h"
#include "rtc_base/copy_on_write_buffer.h"
#include "rtc_base/logging.h"
#include "rtc_base/ssl_stream_adapter.h"
#include "rtc_base/system/unused.h"
#include "rtc_base/thread.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/weak_ptr.h"
namespace webrtc {
namespace {
size_t kMaxQueuedReceivedDataBytes = 16 * 1024 * 1024;
std::atomic<int> g_unique_id{0};
int GenerateUniqueId() {
return ++g_unique_id;
}
// Define proxy for DataChannelInterface.
BEGIN_PROXY_MAP(DataChannel)
PROXY_PRIMARY_THREAD_DESTRUCTOR()
BYPASS_PROXY_METHOD1(void, RegisterObserver, DataChannelObserver*)
BYPASS_PROXY_METHOD0(void, UnregisterObserver)
BYPASS_PROXY_CONSTMETHOD0(std::string, label)
BYPASS_PROXY_CONSTMETHOD0(bool, reliable)
BYPASS_PROXY_CONSTMETHOD0(bool, ordered)
BYPASS_PROXY_CONSTMETHOD0(std::optional<int>, maxRetransmitsOpt)
BYPASS_PROXY_CONSTMETHOD0(std::optional<int>, maxPacketLifeTime)
BYPASS_PROXY_CONSTMETHOD0(std::string, protocol)
BYPASS_PROXY_CONSTMETHOD0(bool, negotiated)
// Can't bypass the proxy since the id may change.
PROXY_SECONDARY_CONSTMETHOD0(int, id)
BYPASS_PROXY_CONSTMETHOD0(PriorityValue, priority)
BYPASS_PROXY_CONSTMETHOD0(DataState, state)
BYPASS_PROXY_CONSTMETHOD0(RTCError, error)
PROXY_SECONDARY_CONSTMETHOD0(uint32_t, messages_sent)
PROXY_SECONDARY_CONSTMETHOD0(uint64_t, bytes_sent)
PROXY_SECONDARY_CONSTMETHOD0(uint32_t, messages_received)
PROXY_SECONDARY_CONSTMETHOD0(uint64_t, bytes_received)
PROXY_SECONDARY_CONSTMETHOD0(uint64_t, buffered_amount)
PROXY_SECONDARY_METHOD0(void, Close)
PROXY_SECONDARY_METHOD1(bool, Send, const DataBuffer&)
BYPASS_PROXY_METHOD2(void,
SendAsync,
DataBuffer,
absl::AnyInvocable<void(RTCError) &&>)
END_PROXY_MAP(DataChannel)
} // namespace
InternalDataChannelInit::InternalDataChannelInit(const DataChannelInit& base)
: DataChannelInit(base), open_handshake_role(kOpener) {
// If the channel is externally negotiated, do not send the OPEN message.
if (base.negotiated) {
open_handshake_role = kNone;
} else {
// Datachannel is externally negotiated. Ignore the id value.
// Specified in createDataChannel, WebRTC spec section 6.1 bullet 13.
id = -1;
}
// Backwards compatibility: If maxRetransmits or maxRetransmitTime
// are negative, the feature is not enabled.
// Values are clamped to a 16bit range.
if (maxRetransmits) {
if (*maxRetransmits < 0) {
RTC_LOG(LS_ERROR)
<< "Accepting maxRetransmits < 0 for backwards compatibility";
maxRetransmits = std::nullopt;
} else if (*maxRetransmits > std::numeric_limits<uint16_t>::max()) {
maxRetransmits = std::numeric_limits<uint16_t>::max();
}
}
if (maxRetransmitTime) {
if (*maxRetransmitTime < 0) {
RTC_LOG(LS_ERROR)
<< "Accepting maxRetransmitTime < 0 for backwards compatibility";
maxRetransmitTime = std::nullopt;
} else if (*maxRetransmitTime > std::numeric_limits<uint16_t>::max()) {
maxRetransmitTime = std::numeric_limits<uint16_t>::max();
}
}
}
bool InternalDataChannelInit::IsValid() const {
if (id < -1)
return false;
if (maxRetransmits.has_value() && maxRetransmits.value() < 0)
return false;
if (maxRetransmitTime.has_value() && maxRetransmitTime.value() < 0)
return false;
// Only one of these can be set.
if (maxRetransmits.has_value() && maxRetransmitTime.has_value())
return false;
return true;
}
std::optional<StreamId> SctpSidAllocator::AllocateSid(SSLRole role) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
int potential_sid = (role == SSL_CLIENT) ? 0 : 1;
while (potential_sid <= static_cast<int>(kMaxSctpSid)) {
StreamId sid(potential_sid);
if (used_sids_.insert(sid).second)
return sid;
potential_sid += 2;
}
RTC_LOG(LS_ERROR) << "SCTP sid allocation pool exhausted.";
return std::nullopt;
}
bool SctpSidAllocator::ReserveSid(StreamId sid) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
return used_sids_.insert(sid).second;
}
void SctpSidAllocator::ReleaseSid(StreamId sid) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
used_sids_.erase(sid);
}
// A DataChannelObserver implementation that offers backwards compatibility with
// implementations that aren't yet ready to be called back on the network
// thread. This implementation posts events to the signaling thread where
// events are delivered.
// In the class, and together with the `SctpDataChannel` implementation, there's
// special handling for the `state()` property whereby if that property is
// queried on the channel object while inside an event callback, we return
// the state that was active at the time the event was issued. This is to avoid
// a problem with calling the `state()` getter on the proxy, which would do
// a blocking call to the network thread, effectively flushing operations on
// the network thread that could cause the state to change and eventually return
// a misleading or arguably, wrong, state value to the callback implementation.
// As a future improvement to the ObserverAdapter, we could do the same for
// other properties that need to be read on the network thread. Eventually
// all implementations should expect to be called on the network thread though
// and the ObserverAdapter no longer be necessary.
class SctpDataChannel::ObserverAdapter : public DataChannelObserver {
public:
explicit ObserverAdapter(
SctpDataChannel* channel,
scoped_refptr<PendingTaskSafetyFlag> signaling_safety)
: channel_(channel), signaling_safety_(std::move(signaling_safety)) {}
bool IsInsideCallback() const {
RTC_DCHECK_RUN_ON(signaling_thread());
return cached_getters_ != nullptr;
}
DataChannelInterface::DataState cached_state() const {
RTC_DCHECK_RUN_ON(signaling_thread());
RTC_DCHECK(IsInsideCallback());
return cached_getters_->state();
}
RTCError cached_error() const {
RTC_DCHECK_RUN_ON(signaling_thread());
RTC_DCHECK(IsInsideCallback());
return cached_getters_->error();
}
void SetDelegate(DataChannelObserver* delegate) {
RTC_DCHECK_RUN_ON(signaling_thread());
delegate_ = delegate;
safety_.reset(PendingTaskSafetyFlag::CreateDetached());
}
static void DeleteOnSignalingThread(
std::unique_ptr<ObserverAdapter> observer) {
auto* signaling_thread = observer->signaling_thread();
if (!signaling_thread->IsCurrent())
signaling_thread->PostTask([observer = std::move(observer)]() {});
}
private:
class CachedGetters {
public:
explicit CachedGetters(ObserverAdapter* adapter)
: adapter_(adapter),
cached_state_(adapter_->channel_->state()),
cached_error_(adapter_->channel_->error()) {
RTC_DCHECK_RUN_ON(adapter->network_thread());
}
~CachedGetters() {
if (!was_dropped_) {
RTC_DCHECK_RUN_ON(adapter_->signaling_thread());
RTC_DCHECK_EQ(adapter_->cached_getters_, this);
adapter_->cached_getters_ = nullptr;
}
}
bool PrepareForCallback() {
RTC_DCHECK_RUN_ON(adapter_->signaling_thread());
RTC_DCHECK(was_dropped_);
was_dropped_ = false;
adapter_->cached_getters_ = this;
return adapter_->delegate_ && adapter_->signaling_safety_->alive();
}
RTCError error() { return cached_error_; }
DataChannelInterface::DataState state() { return cached_state_; }
private:
ObserverAdapter* const adapter_;
bool was_dropped_ = true;
const DataChannelInterface::DataState cached_state_;
const RTCError cached_error_;
};
void OnStateChange() override {
RTC_DCHECK_RUN_ON(network_thread());
signaling_thread()->PostTask(
SafeTask(safety_.flag(),
[this, cached_state = std::make_unique<CachedGetters>(this)] {
RTC_DCHECK_RUN_ON(signaling_thread());
if (cached_state->PrepareForCallback())
delegate_->OnStateChange();
}));
}
void OnMessage(const DataBuffer& buffer) override {
RTC_DCHECK_RUN_ON(network_thread());
signaling_thread()->PostTask(SafeTask(
safety_.flag(), [this, buffer = buffer,
cached_state = std::make_unique<CachedGetters>(this)] {
RTC_DCHECK_RUN_ON(signaling_thread());
if (cached_state->PrepareForCallback())
delegate_->OnMessage(buffer);
}));
}
void OnBufferedAmountChange(uint64_t sent_data_size) override {
RTC_DCHECK_RUN_ON(network_thread());
signaling_thread()->PostTask(SafeTask(
safety_.flag(), [this, sent_data_size,
cached_state = std::make_unique<CachedGetters>(this)] {
RTC_DCHECK_RUN_ON(signaling_thread());
if (cached_state->PrepareForCallback())
delegate_->OnBufferedAmountChange(sent_data_size);
}));
}
bool IsOkToCallOnTheNetworkThread() override { return true; }
Thread* signaling_thread() const { return signaling_thread_; }
Thread* network_thread() const { return channel_->network_thread_; }
DataChannelObserver* delegate_ RTC_GUARDED_BY(signaling_thread()) = nullptr;
SctpDataChannel* const channel_;
// Make sure to keep our own signaling_thread_ pointer to avoid dereferencing
// `channel_` in the `RTC_DCHECK_RUN_ON` checks on the signaling thread.
Thread* const signaling_thread_{channel_->signaling_thread_};
ScopedTaskSafety safety_;
scoped_refptr<PendingTaskSafetyFlag> signaling_safety_;
CachedGetters* cached_getters_ RTC_GUARDED_BY(signaling_thread()) = nullptr;
};
// static
scoped_refptr<SctpDataChannel> SctpDataChannel::Create(
WeakPtr<SctpDataChannelControllerInterface> controller,
const std::string& label,
bool connected_to_transport,
const InternalDataChannelInit& config,
Thread* signaling_thread,
Thread* network_thread) {
RTC_DCHECK(config.IsValid());
return make_ref_counted<SctpDataChannel>(config, std::move(controller), label,
connected_to_transport,
signaling_thread, network_thread);
}
// static
scoped_refptr<DataChannelInterface> SctpDataChannel::CreateProxy(
scoped_refptr<SctpDataChannel> channel,
scoped_refptr<PendingTaskSafetyFlag> signaling_safety) {
// Copy thread params to local variables before `std::move()`.
auto* signaling_thread = channel->signaling_thread_;
auto* network_thread = channel->network_thread_;
channel->observer_adapter_ = std::make_unique<ObserverAdapter>(
channel.get(), std::move(signaling_safety));
return DataChannelProxy::Create(signaling_thread, network_thread,
std::move(channel));
}
SctpDataChannel::SctpDataChannel(
const InternalDataChannelInit& config,
WeakPtr<SctpDataChannelControllerInterface> controller,
const std::string& label,
bool connected_to_transport,
Thread* signaling_thread,
Thread* network_thread)
: signaling_thread_(signaling_thread),
network_thread_(network_thread),
id_n_(config.id == -1 ? std::nullopt : std::make_optional(config.id)),
internal_id_(GenerateUniqueId()),
label_(label),
protocol_(config.protocol),
max_retransmit_time_(config.maxRetransmitTime),
max_retransmits_(config.maxRetransmits),
priority_(config.priority),
negotiated_(config.negotiated),
ordered_(config.ordered),
observer_(nullptr),
controller_(std::move(controller)) {
RTC_DCHECK_RUN_ON(network_thread_);
// Since we constructed on the network thread we can't (yet) check the
// `controller_` pointer since doing so will trigger a thread check.
RTC_UNUSED(network_thread_);
RTC_DCHECK(config.IsValid());
if (connected_to_transport)
network_safety_->SetAlive();
switch (config.open_handshake_role) {
case InternalDataChannelInit::kNone: // pre-negotiated
handshake_state_ = kHandshakeReady;
break;
case InternalDataChannelInit::kOpener:
handshake_state_ = kHandshakeShouldSendOpen;
break;
case InternalDataChannelInit::kAcker:
handshake_state_ = kHandshakeShouldSendAck;
break;
}
}
SctpDataChannel::~SctpDataChannel() {
if (observer_adapter_)
ObserverAdapter::DeleteOnSignalingThread(std::move(observer_adapter_));
}
void SctpDataChannel::RegisterObserver(DataChannelObserver* observer) {
// Note: at this point, we do not know on which thread we're being called
// from since this method bypasses the proxy. On Android in particular,
// registration methods are called from unknown threads.
// Check if we should set up an observer adapter that will make sure that
// callbacks are delivered on the signaling thread rather than directly
// on the network thread.
const auto* current_thread = Thread::Current();
// TODO(webrtc:11547): Eventually all DataChannelObserver implementations
// should be called on the network thread and IsOkToCallOnTheNetworkThread().
if (!observer->IsOkToCallOnTheNetworkThread()) {
RTC_LOG(LS_WARNING) << "DataChannelObserver - adapter needed";
auto prepare_observer = [&]() {
RTC_DCHECK(observer_adapter_) << "CreateProxy hasn't been called";
observer_adapter_->SetDelegate(observer);
return observer_adapter_.get();
};
// Instantiate the adapter in the right context and then substitute the
// observer pointer the SctpDataChannel will call back on, with the adapter.
if (signaling_thread_ == current_thread) {
observer = prepare_observer();
} else {
observer = signaling_thread_->BlockingCall(std::move(prepare_observer));
}
}
// Now do the observer registration on the network thread. In the common case,
// we'll do this asynchronously via `PostTask()`. For that reason we grab
// a reference to ourselves while the task is in flight. We can't use
// `SafeTask(network_safety_, ...)` for this since we can't assume that we
// have a transport (network_safety_ represents the transport connection).
scoped_refptr<SctpDataChannel> me(this);
auto register_observer = [me = std::move(me), observer = observer] {
RTC_DCHECK_RUN_ON(me->network_thread_);
me->observer_ = observer;
me->DeliverQueuedReceivedData();
};
if (network_thread_ == current_thread) {
register_observer();
} else {
network_thread_->BlockingCall(std::move(register_observer));
}
}
void SctpDataChannel::UnregisterObserver() {
// Note: As with `RegisterObserver`, the proxy is being bypassed.
const auto* current_thread = Thread::Current();
// Callers must not be invoking the unregistration from the network thread
// (assuming a multi-threaded environment where we have a dedicated network
// thread). That would indicate non-network related work happening on the
// network thread or that unregistration is being done from within a callback
// (without unwinding the stack, which is a requirement).
// The network thread is not allowed to make blocking calls to the signaling
// thread, so that would blow up if attempted. Since we support an adapter
// for observers that are not safe to call on the network thread, we do
// need to check+free it on the signaling thread.
RTC_DCHECK(current_thread != network_thread_ ||
network_thread_ == signaling_thread_);
auto unregister_observer = [&] {
RTC_DCHECK_RUN_ON(network_thread_);
observer_ = nullptr;
};
if (current_thread == network_thread_) {
unregister_observer();
} else {
network_thread_->BlockingCall(std::move(unregister_observer));
}
auto clear_observer = [&]() {
if (observer_adapter_)
observer_adapter_->SetDelegate(nullptr);
};
if (current_thread != signaling_thread_) {
signaling_thread_->BlockingCall(std::move(clear_observer));
} else {
clear_observer();
}
}
std::string SctpDataChannel::label() const {
return label_;
}
bool SctpDataChannel::reliable() const {
// May be called on any thread.
return !max_retransmits_ && !max_retransmit_time_;
}
bool SctpDataChannel::ordered() const {
return ordered_;
}
std::optional<int> SctpDataChannel::maxPacketLifeTime() const {
return max_retransmit_time_;
}
std::optional<int> SctpDataChannel::maxRetransmitsOpt() const {
return max_retransmits_;
}
std::string SctpDataChannel::protocol() const {
return protocol_;
}
bool SctpDataChannel::negotiated() const {
return negotiated_;
}
int SctpDataChannel::id() const {
RTC_DCHECK_RUN_ON(network_thread_);
return id_n_.has_value() ? id_n_->stream_id_int() : -1;
}
PriorityValue SctpDataChannel::priority() const {
return priority_.value_or(PriorityValue(Priority::kLow));
}
uint64_t SctpDataChannel::buffered_amount() const {
RTC_DCHECK_RUN_ON(network_thread_);
if (controller_ != nullptr && id_n_.has_value()) {
return controller_->buffered_amount(*id_n_);
}
return 0u;
}
void SctpDataChannel::Close() {
RTC_DCHECK_RUN_ON(network_thread_);
if (state_ == kClosing || state_ == kClosed)
return;
SetState(kClosing);
// Will send queued data before beginning the underlying closing procedure.
UpdateState();
}
SctpDataChannel::DataState SctpDataChannel::state() const {
// Note: The proxy is bypassed for the `state()` accessor. This is to allow
// observer callbacks to query what the new state is from within a state
// update notification without having to do a blocking call to the network
// thread from within a callback. This also makes it so that the returned
// state is guaranteed to be the new state that provoked the state change
// notification, whereby a blocking call to the network thread might end up
// getting put behind other messages on the network thread and eventually
// fetch a different state value (since pending messages might cause the
// state to change in the meantime).
const auto* current_thread = Thread::Current();
if (current_thread == signaling_thread_ && observer_adapter_ &&
observer_adapter_->IsInsideCallback()) {
return observer_adapter_->cached_state();
}
auto return_state = [&] {
RTC_DCHECK_RUN_ON(network_thread_);
return state_;
};
return current_thread == network_thread_
? return_state()
: network_thread_->BlockingCall(std::move(return_state));
}
RTCError SctpDataChannel::error() const {
const auto* current_thread = Thread::Current();
if (current_thread == signaling_thread_ && observer_adapter_ &&
observer_adapter_->IsInsideCallback()) {
return observer_adapter_->cached_error();
}
auto return_error = [&] {
RTC_DCHECK_RUN_ON(network_thread_);
return error_;
};
return current_thread == network_thread_
? return_error()
: network_thread_->BlockingCall(std::move(return_error));
}
uint32_t SctpDataChannel::messages_sent() const {
RTC_DCHECK_RUN_ON(network_thread_);
return messages_sent_;
}
uint64_t SctpDataChannel::bytes_sent() const {
RTC_DCHECK_RUN_ON(network_thread_);
return bytes_sent_;
}
uint32_t SctpDataChannel::messages_received() const {
RTC_DCHECK_RUN_ON(network_thread_);
return messages_received_;
}
uint64_t SctpDataChannel::bytes_received() const {
RTC_DCHECK_RUN_ON(network_thread_);
return bytes_received_;
}
bool SctpDataChannel::Send(const DataBuffer& buffer) {
RTC_DCHECK_RUN_ON(network_thread_);
RTCError err = SendImpl(buffer);
if (err.type() == RTCErrorType::INVALID_STATE ||
err.type() == RTCErrorType::RESOURCE_EXHAUSTED) {
return false;
}
// Always return true for SCTP DataChannel per the spec.
return true;
}
// RTC_RUN_ON(network_thread_);
RTCError SctpDataChannel::SendImpl(DataBuffer buffer) {
// The caller increases the cached `bufferedAmount` even if there are errors.
expected_buffer_amount_ += buffer.size();
if (state_ != kOpen) {
error_ = RTCError(RTCErrorType::INVALID_STATE);
return error_;
}
return SendDataMessage(buffer, true);
}
void SctpDataChannel::SendAsync(
DataBuffer buffer,
absl::AnyInvocable<void(RTCError) &&> on_complete) {
// Note: at this point, we do not know on which thread we're being called
// since this method bypasses the proxy. On Android the thread might be VM
// owned, on other platforms it might be the signaling thread, or in Chrome
// it can be the JS thread. We also don't know if it's consistently the same
// thread. So we always post to the network thread (even if the current thread
// might be the network thread - in theory a call could even come from within
// the `on_complete` callback).
network_thread_->PostTask(SafeTask(
network_safety_, [this, buffer = std::move(buffer),
on_complete = std::move(on_complete)]() mutable {
RTC_DCHECK_RUN_ON(network_thread_);
RTCError err = SendImpl(std::move(buffer));
if (on_complete)
std::move(on_complete)(err);
}));
}
void SctpDataChannel::SetSctpSid_n(StreamId sid) {
RTC_DCHECK_RUN_ON(network_thread_);
RTC_DCHECK(!id_n_.has_value());
RTC_DCHECK_NE(handshake_state_, kHandshakeWaitingForAck);
RTC_DCHECK_EQ(state_, kConnecting);
id_n_ = sid;
}
void SctpDataChannel::OnClosingProcedureStartedRemotely() {
RTC_DCHECK_RUN_ON(network_thread_);
if (state_ != kClosing && state_ != kClosed) {
// Don't bother sending queued data since the side that initiated the
// closure wouldn't receive it anyway. See crbug.com/559394 for a lengthy
// discussion about this.
// Note that this is handled by the SctpTransport, when an incoming stream
// reset notification comes in, the outgoing stream is closed, which
// discards data.
// Just need to change state to kClosing, SctpTransport will handle the
// rest of the closing procedure and OnClosingProcedureComplete will be
// called later.
started_closing_procedure_ = true;
SetState(kClosing);
}
}
void SctpDataChannel::OnClosingProcedureComplete() {
RTC_DCHECK_RUN_ON(network_thread_);
// If the closing procedure is complete, we should have finished sending
// all pending data and transitioned to kClosing already.
RTC_DCHECK_EQ(state_, kClosing);
if (controller_ && id_n_.has_value()) {
RTC_DCHECK_EQ(controller_->buffered_amount(*id_n_), 0);
}
SetState(kClosed);
}
void SctpDataChannel::OnTransportChannelCreated() {
RTC_DCHECK_RUN_ON(network_thread_);
network_safety_->SetAlive();
}
void SctpDataChannel::OnTransportChannelClosed(RTCError error) {
RTC_DCHECK_RUN_ON(network_thread_);
// The SctpTransport is unusable, which could come from multiple reasons:
// - the SCTP m= section was rejected
// - the DTLS transport is closed
// - the SCTP transport is closed
CloseAbruptlyWithError(std::move(error));
}
void SctpDataChannel::OnBufferedAmountLow() {
RTC_DCHECK_RUN_ON(network_thread_);
MaybeSendOnBufferedAmountChanged();
if (state_ == DataChannelInterface::kClosing && !started_closing_procedure_ &&
id_n_.has_value() && buffered_amount() == 0) {
started_closing_procedure_ = true;
controller_->RemoveSctpDataStream(*id_n_);
}
}
DataChannelStats SctpDataChannel::GetStats() const {
RTC_DCHECK_RUN_ON(network_thread_);
DataChannelStats stats{internal_id_, id(), label(),
protocol(), state(), messages_sent(),
messages_received(), bytes_sent(), bytes_received()};
return stats;
}
void SctpDataChannel::OnDataReceived(DataMessageType type,
const CopyOnWriteBuffer& payload) {
RTC_DCHECK_RUN_ON(network_thread_);
RTC_DCHECK(id_n_.has_value());
if (type == DataMessageType::kControl) {
if (handshake_state_ != kHandshakeWaitingForAck) {
// Ignore it if we are not expecting an ACK message.
RTC_LOG(LS_WARNING)
<< "DataChannel received unexpected CONTROL message, sid = "
<< id_n_->stream_id_int();
return;
}
if (ParseDataChannelOpenAckMessage(payload)) {
// We can send unordered as soon as we receive the ACK message.
handshake_state_ = kHandshakeReady;
RTC_LOG(LS_INFO) << "DataChannel received OPEN_ACK message, sid = "
<< id_n_->stream_id_int();
} else {
RTC_LOG(LS_WARNING)
<< "DataChannel failed to parse OPEN_ACK message, sid = "
<< id_n_->stream_id_int();
}
return;
}
RTC_DCHECK(type == DataMessageType::kBinary ||
type == DataMessageType::kText);
RTC_DLOG(LS_VERBOSE) << "DataChannel received DATA message, sid = "
<< id_n_->stream_id_int();
// We can send unordered as soon as we receive any DATA message since the
// remote side must have received the OPEN (and old clients do not send
// OPEN_ACK).
if (handshake_state_ == kHandshakeWaitingForAck) {
handshake_state_ = kHandshakeReady;
}
bool binary = (type == DataMessageType::kBinary);
auto buffer = std::make_unique<DataBuffer>(payload, binary);
if (state_ == kOpen && observer_) {
++messages_received_;
bytes_received_ += buffer->size();
observer_->OnMessage(*buffer.get());
} else {
if (queued_received_data_.byte_count() + payload.size() >
kMaxQueuedReceivedDataBytes) {
RTC_LOG(LS_ERROR) << "Queued received data exceeds the max buffer size.";
queued_received_data_.Clear();
CloseAbruptlyWithError(
RTCError(RTCErrorType::RESOURCE_EXHAUSTED,
"Queued received data exceeds the max buffer size."));
return;
}
queued_received_data_.PushBack(std::move(buffer));
}
}
void SctpDataChannel::OnTransportReady() {
RTC_DCHECK_RUN_ON(network_thread_);
RTC_DCHECK(connected_to_transport());
RTC_DCHECK(id_n_.has_value());
UpdateState();
}
void SctpDataChannel::CloseAbruptlyWithError(RTCError error) {
RTC_DCHECK_RUN_ON(network_thread_);
if (state_ == kClosed) {
return;
}
network_safety_->SetNotAlive();
// Still go to "kClosing" before "kClosed", since observers may be expecting
// that.
SetState(kClosing);
error_ = std::move(error);
SetState(kClosed);
}
void SctpDataChannel::CloseAbruptlyWithDataChannelFailure(
const std::string& message) {
RTC_DCHECK_RUN_ON(network_thread_);
RTCError error(RTCErrorType::OPERATION_ERROR_WITH_DATA, message);
error.set_error_detail(RTCErrorDetailType::DATA_CHANNEL_FAILURE);
CloseAbruptlyWithError(std::move(error));
}
// RTC_RUN_ON(network_thread_).
void SctpDataChannel::UpdateState() {
// UpdateState determines what to do from a few state variables. Include
// all conditions required for each state transition here for
// clarity. OnTransportReady(true) will send any queued data and then invoke
// UpdateState().
switch (state_) {
case kConnecting: {
if (connected_to_transport() && controller_) {
if (handshake_state_ == kHandshakeShouldSendOpen) {
CopyOnWriteBuffer payload;
WriteDataChannelOpenMessage(label_, protocol_, priority_, ordered_,
max_retransmits_, max_retransmit_time_,
&payload);
SendControlMessage(payload);
} else if (handshake_state_ == kHandshakeShouldSendAck) {
CopyOnWriteBuffer payload;
WriteDataChannelOpenAckMessage(&payload);
SendControlMessage(payload);
}
if (handshake_state_ == kHandshakeReady ||
handshake_state_ == kHandshakeWaitingForAck) {
SetState(kOpen);
// If we have received buffers before the channel got writable.
// Deliver them now.
DeliverQueuedReceivedData();
}
} else {
RTC_DCHECK(!id_n_.has_value());
}
break;
}
case kOpen: {
break;
}
case kClosing: {
if (connected_to_transport() && controller_ && id_n_.has_value()) {
// Wait for all queued data to be sent before beginning the closing
// procedure.
if (controller_->buffered_amount(*id_n_) == 0) {
// For SCTP data channels, we need to wait for the closing procedure
// to complete; after calling RemoveSctpDataStream,
// OnClosingProcedureComplete will end up called asynchronously
// afterwards.
if (!started_closing_procedure_ && id_n_.has_value()) {
started_closing_procedure_ = true;
controller_->RemoveSctpDataStream(*id_n_);
}
}
} else {
// When we're not connected to a transport, we'll transition
// directly to the `kClosed` state from here.
SetState(kClosed);
}
break;
}
case kClosed:
break;
}
}
// RTC_RUN_ON(network_thread_).
void SctpDataChannel::SetState(DataState state) {
if (state_ == state) {
return;
}
state_ = state;
if (observer_) {
observer_->OnStateChange();
}
if (controller_)
controller_->OnChannelStateChanged(this, state_);
}
// RTC_RUN_ON(network_thread_).
void SctpDataChannel::DeliverQueuedReceivedData() {
if (!observer_ || state_ != kOpen) {
return;
}
while (!queued_received_data_.Empty()) {
std::unique_ptr<DataBuffer> buffer = queued_received_data_.PopFront();
++messages_received_;
bytes_received_ += buffer->size();
observer_->OnMessage(*buffer);
}
}
// RTC_RUN_ON(network_thread_)
void SctpDataChannel::MaybeSendOnBufferedAmountChanged() {
// The `buffered_amount` in the signaling thread (RTCDataChannel in Blink)
// has a cached variant of the SCTP socket's buffered_amount, which it
// increases for every data sent and decreased when `OnBufferedAmountChange`
// is sent.
//
// To ensure it's consistent, this object maintains its own view of that value
// and if it changes with a reasonable amount (10kb, or down to zero), send
// the `OnBufferedAmountChange` to update the caller's cached variable.
if (!controller_ || !id_n_.has_value() || !observer_) {
return;
}
// This becomes the resolution of how often the bufferedAmount is updated on
// the signaling thread and exists to avoid doing cross-thread communication
// too often. On benchmarks, Chrome handle around 300Mbps, which with this
// size results in a rate of ~400 updates per second - a reasonable number.
static constexpr int64_t kMinBufferedAmountDiffToTriggerCallback = 100 * 1024;
size_t actual_buffer_amount = controller_->buffered_amount(*id_n_);
if (actual_buffer_amount > expected_buffer_amount_) {
RTC_DLOG(LS_ERROR) << "Actual buffer_amount larger than expected";
return;
}
// Fire OnBufferedAmountChange to decrease the cached view if it represents a
// big enough change (to reduce the frequency of cross-thread communication),
// or if it reaches zero.
if ((actual_buffer_amount == 0 && expected_buffer_amount_ != 0) ||
(expected_buffer_amount_ - actual_buffer_amount >
kMinBufferedAmountDiffToTriggerCallback)) {
uint64_t diff = expected_buffer_amount_ - actual_buffer_amount;
expected_buffer_amount_ = actual_buffer_amount;
observer_->OnBufferedAmountChange(diff);
}
// The threshold is always updated to ensure it's lower than what it's now.
// This ensures that this function will be called again, until the channel is
// completely drained.
controller_->SetBufferedAmountLowThreshold(
*id_n_,
actual_buffer_amount > kMinBufferedAmountDiffToTriggerCallback
? actual_buffer_amount - kMinBufferedAmountDiffToTriggerCallback
: 0);
}
// RTC_RUN_ON(network_thread_).
RTCError SctpDataChannel::SendDataMessage(const DataBuffer& buffer,
bool queue_if_blocked) {
SendDataParams send_params;
if (!controller_ || !id_n_.has_value()) {
error_ = RTCError(RTCErrorType::INVALID_STATE);
return error_;
}
send_params.ordered = ordered_;
// Send as ordered if it is still going through OPEN/ACK signaling.
if (handshake_state_ != kHandshakeReady && !ordered_) {
send_params.ordered = true;
RTC_DLOG(LS_VERBOSE)
<< "Sending data as ordered for unordered DataChannel "
"because the OPEN_ACK message has not been received.";
}
send_params.max_rtx_count = max_retransmits_;
send_params.max_rtx_ms = max_retransmit_time_;
send_params.type =
buffer.binary ? DataMessageType::kBinary : DataMessageType::kText;
error_ = controller_->SendData(*id_n_, send_params, buffer.data);
MaybeSendOnBufferedAmountChanged();
if (error_.ok()) {
++messages_sent_;
bytes_sent_ += buffer.size();
return error_;
}
// Close the channel if the error is not SDR_BLOCK, or if queuing the
// message failed.
RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send data, "
"send_result = "
<< ToString(error_.type()) << ":" << error_.message();
CloseAbruptlyWithError(
RTCError(RTCErrorType::NETWORK_ERROR, "Failure to send data"));
return error_;
}
// RTC_RUN_ON(network_thread_).
bool SctpDataChannel::SendControlMessage(const CopyOnWriteBuffer& buffer) {
RTC_DCHECK(connected_to_transport());
RTC_DCHECK(id_n_.has_value());
RTC_DCHECK(controller_);
bool is_open_message = handshake_state_ == kHandshakeShouldSendOpen;
RTC_DCHECK(!is_open_message || !negotiated_);
SendDataParams send_params;
// Send data as ordered before we receive any message from the remote peer to
// make sure the remote peer will not receive any data before it receives the
// OPEN message.
send_params.ordered = ordered_ || is_open_message;
send_params.type = DataMessageType::kControl;
RTCError err = controller_->SendData(*id_n_, send_params, buffer);
if (err.ok()) {
RTC_DLOG(LS_VERBOSE) << "Sent CONTROL message on channel "
<< id_n_->stream_id_int();
if (handshake_state_ == kHandshakeShouldSendAck) {
handshake_state_ = kHandshakeReady;
} else if (handshake_state_ == kHandshakeShouldSendOpen) {
handshake_state_ = kHandshakeWaitingForAck;
}
} else {
RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send"
" the CONTROL message, send_result = "
<< ToString(err.type());
err.set_message("Failed to send a CONTROL message");
CloseAbruptlyWithError(err);
}
return err.ok();
}
// static
void SctpDataChannel::ResetInternalIdAllocatorForTesting(int new_value) {
g_unique_id = new_value;
}
} // namespace webrtc
|