1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
/*
* Copyright 2020 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/boringssl_certificate.h"
#include <openssl/asn1.h>
#include <openssl/base.h>
#include <openssl/bytestring.h>
#include <openssl/digest.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/pool.h>
#include <openssl/rand.h>
#include <cstdint>
#include <cstring>
#include <ctime>
#include <memory>
#include <string>
#include <utility>
#include "absl/strings/string_view.h"
#include "rtc_base/buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/crypto_random.h"
#include "rtc_base/logging.h"
#include "rtc_base/message_digest.h"
#include "rtc_base/openssl_digest.h"
#include "rtc_base/openssl_key_pair.h"
#include "rtc_base/openssl_utility.h"
#include "rtc_base/ssl_certificate.h"
#include "rtc_base/ssl_identity.h"
namespace webrtc {
namespace {
// List of OIDs of signature algorithms accepted by WebRTC.
// Taken from openssl/nid.h.
const uint8_t kMD5WithRSA[] = {0x2b, 0x0e, 0x03, 0x02, 0x03};
const uint8_t kMD5WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x04};
const uint8_t kECDSAWithSHA1[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x01};
const uint8_t kDSAWithSHA1[] = {0x2a, 0x86, 0x48, 0xce, 0x38, 0x04, 0x03};
const uint8_t kDSAWithSHA1_2[] = {0x2b, 0x0e, 0x03, 0x02, 0x1b};
const uint8_t kSHA1WithRSA[] = {0x2b, 0x0e, 0x03, 0x02, 0x1d};
const uint8_t kSHA1WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x05};
const uint8_t kECDSAWithSHA224[] = {0x2a, 0x86, 0x48, 0xce,
0x3d, 0x04, 0x03, 0x01};
const uint8_t kSHA224WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x0e};
const uint8_t kDSAWithSHA224[] = {0x60, 0x86, 0x48, 0x01, 0x65,
0x03, 0x04, 0x03, 0x01};
const uint8_t kECDSAWithSHA256[] = {0x2a, 0x86, 0x48, 0xce,
0x3d, 0x04, 0x03, 0x02};
const uint8_t kSHA256WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x0b};
const uint8_t kDSAWithSHA256[] = {0x60, 0x86, 0x48, 0x01, 0x65,
0x03, 0x04, 0x03, 0x02};
const uint8_t kECDSAWithSHA384[] = {0x2a, 0x86, 0x48, 0xce,
0x3d, 0x04, 0x03, 0x03};
const uint8_t kSHA384WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x0c};
const uint8_t kECDSAWithSHA512[] = {0x2a, 0x86, 0x48, 0xce,
0x3d, 0x04, 0x03, 0x04};
const uint8_t kSHA512WithRSAEncryption[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x0d};
#if !defined(NDEBUG)
// Print a certificate to the log, for debugging.
void PrintCert(BoringSSLCertificate* cert) {
// Since we're using CRYPTO_BUFFER, we can't use X509_print_ex, so we'll just
// print the PEM string.
RTC_DLOG(LS_VERBOSE) << "PEM representation of certificate:\n"
<< cert->ToPEMString();
}
#endif
bool AddSHA256SignatureAlgorithm(CBB* cbb, KeyType key_type) {
// An AlgorithmIdentifier is described in RFC 5280, 4.1.1.2.
CBB sequence, oid, params;
if (!CBB_add_asn1(cbb, &sequence, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&sequence, &oid, CBS_ASN1_OBJECT)) {
return false;
}
switch (key_type) {
case KT_RSA:
if (!CBB_add_bytes(&oid, kSHA256WithRSAEncryption,
sizeof(kSHA256WithRSAEncryption)) ||
!CBB_add_asn1(&sequence, ¶ms, CBS_ASN1_NULL)) {
return false;
}
break;
case KT_ECDSA:
if (!CBB_add_bytes(&oid, kECDSAWithSHA256, sizeof(kECDSAWithSHA256))) {
return false;
}
break;
default:
RTC_DCHECK_NOTREACHED();
return false;
}
if (!CBB_flush(cbb)) {
return false;
}
return true;
}
// Adds an X.509 Common Name to `cbb`.
bool AddCommonName(CBB* cbb, absl::string_view common_name) {
// See RFC 4519.
static const uint8_t kCommonName[] = {0x55, 0x04, 0x03};
if (common_name.empty()) {
RTC_LOG(LS_ERROR) << "Common name cannot be empty.";
return false;
}
// See RFC 5280, section 4.1.2.4.
CBB rdns;
if (!CBB_add_asn1(cbb, &rdns, CBS_ASN1_SEQUENCE)) {
return false;
}
CBB rdn, attr, type, value;
if (!CBB_add_asn1(&rdns, &rdn, CBS_ASN1_SET) ||
!CBB_add_asn1(&rdn, &attr, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&attr, &type, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&type, kCommonName, sizeof(kCommonName)) ||
!CBB_add_asn1(&attr, &value, CBS_ASN1_UTF8STRING) ||
!CBB_add_bytes(&value,
reinterpret_cast<const uint8_t*>(common_name.data()),
common_name.size()) ||
!CBB_flush(cbb)) {
return false;
}
return true;
}
bool AddTime(CBB* cbb, time_t time) {
bssl::UniquePtr<ASN1_TIME> asn1_time(ASN1_TIME_new());
if (!asn1_time) {
return false;
}
if (!ASN1_TIME_set(asn1_time.get(), time)) {
return false;
}
unsigned tag;
switch (asn1_time->type) {
case V_ASN1_UTCTIME:
tag = CBS_ASN1_UTCTIME;
break;
case V_ASN1_GENERALIZEDTIME:
tag = CBS_ASN1_GENERALIZEDTIME;
break;
default:
return false;
}
CBB child;
if (!CBB_add_asn1(cbb, &child, tag) ||
!CBB_add_bytes(&child, asn1_time->data, asn1_time->length) ||
!CBB_flush(cbb)) {
return false;
}
return true;
}
// Generate a self-signed certificate, with the public key from the
// given key pair. Caller is responsible for freeing the returned object.
bssl::UniquePtr<CRYPTO_BUFFER> MakeCertificate(
EVP_PKEY* pkey,
const SSLIdentityParams& params) {
RTC_LOG(LS_INFO) << "Making certificate for " << params.common_name;
// See RFC 5280, section 4.1. First, construct the TBSCertificate.
bssl::ScopedCBB cbb;
CBB tbs_cert, version, validity;
uint8_t* tbs_cert_bytes;
size_t tbs_cert_len;
uint64_t serial_number;
if (!CBB_init(cbb.get(), 64) ||
!CBB_add_asn1(cbb.get(), &tbs_cert, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&tbs_cert, &version,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
!CBB_add_asn1_uint64(&version, 2) ||
!RAND_bytes(reinterpret_cast<uint8_t*>(&serial_number),
sizeof(serial_number)) ||
!CBB_add_asn1_uint64(&tbs_cert, serial_number) ||
!AddSHA256SignatureAlgorithm(&tbs_cert, params.key_params.type()) ||
!AddCommonName(&tbs_cert, params.common_name) || // issuer
!CBB_add_asn1(&tbs_cert, &validity, CBS_ASN1_SEQUENCE) ||
!AddTime(&validity, params.not_before) ||
!AddTime(&validity, params.not_after) ||
!AddCommonName(&tbs_cert, params.common_name) || // subject
!EVP_marshal_public_key(&tbs_cert, pkey) || // subjectPublicKeyInfo
!CBB_finish(cbb.get(), &tbs_cert_bytes, &tbs_cert_len)) {
return nullptr;
}
bssl::UniquePtr<uint8_t> delete_tbs_cert_bytes(tbs_cert_bytes);
// Sign the TBSCertificate and write the entire certificate.
CBB cert, signature;
bssl::ScopedEVP_MD_CTX ctx;
uint8_t* sig_out;
size_t sig_len;
uint8_t* cert_bytes;
size_t cert_len;
if (!CBB_init(cbb.get(), tbs_cert_len) ||
!CBB_add_asn1(cbb.get(), &cert, CBS_ASN1_SEQUENCE) ||
!CBB_add_bytes(&cert, tbs_cert_bytes, tbs_cert_len) ||
!AddSHA256SignatureAlgorithm(&cert, params.key_params.type()) ||
!CBB_add_asn1(&cert, &signature, CBS_ASN1_BITSTRING) ||
!CBB_add_u8(&signature, 0 /* no unused bits */) ||
!EVP_DigestSignInit(ctx.get(), nullptr, EVP_sha256(), nullptr, pkey) ||
// Compute the maximum signature length.
!EVP_DigestSign(ctx.get(), nullptr, &sig_len, tbs_cert_bytes,
tbs_cert_len) ||
!CBB_reserve(&signature, &sig_out, sig_len) ||
// Actually sign the TBSCertificate.
!EVP_DigestSign(ctx.get(), sig_out, &sig_len, tbs_cert_bytes,
tbs_cert_len) ||
!CBB_did_write(&signature, sig_len) ||
!CBB_finish(cbb.get(), &cert_bytes, &cert_len)) {
return nullptr;
}
bssl::UniquePtr<uint8_t> delete_cert_bytes(cert_bytes);
RTC_LOG(LS_INFO) << "Returning certificate";
return bssl::UniquePtr<CRYPTO_BUFFER>(
CRYPTO_BUFFER_new(cert_bytes, cert_len, openssl::GetBufferPool()));
}
} // namespace
BoringSSLCertificate::BoringSSLCertificate(
bssl::UniquePtr<CRYPTO_BUFFER> cert_buffer)
: cert_buffer_(std::move(cert_buffer)) {
RTC_DCHECK(cert_buffer_ != nullptr);
}
std::unique_ptr<BoringSSLCertificate> BoringSSLCertificate::Generate(
OpenSSLKeyPair* key_pair,
const SSLIdentityParams& params) {
SSLIdentityParams actual_params(params);
if (actual_params.common_name.empty()) {
// Use a random string, arbitrarily 8 chars long.
actual_params.common_name = CreateRandomString(8);
}
bssl::UniquePtr<CRYPTO_BUFFER> cert_buffer =
MakeCertificate(key_pair->pkey(), actual_params);
if (!cert_buffer) {
openssl::LogSSLErrors("Generating certificate");
return nullptr;
}
auto ret = std::make_unique<BoringSSLCertificate>(std::move(cert_buffer));
#if !defined(NDEBUG)
PrintCert(ret.get());
#endif
return ret;
}
std::unique_ptr<BoringSSLCertificate> BoringSSLCertificate::FromPEMString(
absl::string_view pem_string) {
std::string der;
if (!SSLIdentity::PemToDer(kPemTypeCertificate, pem_string, &der)) {
return nullptr;
}
bssl::UniquePtr<CRYPTO_BUFFER> cert_buffer(
CRYPTO_BUFFER_new(reinterpret_cast<const uint8_t*>(der.c_str()),
der.length(), openssl::GetBufferPool()));
if (!cert_buffer) {
return nullptr;
}
return std::make_unique<BoringSSLCertificate>(std::move(cert_buffer));
}
#define OID_MATCHES(oid, oid_other) \
(CBS_len(&oid) == sizeof(oid_other) && \
0 == memcmp(CBS_data(&oid), oid_other, sizeof(oid_other)))
bool BoringSSLCertificate::GetSignatureDigestAlgorithm(
std::string* algorithm) const {
CBS oid;
if (!openssl::ParseCertificate(cert_buffer_.get(), &oid, nullptr)) {
RTC_LOG(LS_ERROR) << "Failed to parse certificate.";
return false;
}
if (OID_MATCHES(oid, kMD5WithRSA) ||
OID_MATCHES(oid, kMD5WithRSAEncryption)) {
*algorithm = DIGEST_MD5;
return true;
}
if (OID_MATCHES(oid, kECDSAWithSHA1) || OID_MATCHES(oid, kDSAWithSHA1) ||
OID_MATCHES(oid, kDSAWithSHA1_2) || OID_MATCHES(oid, kSHA1WithRSA) ||
OID_MATCHES(oid, kSHA1WithRSAEncryption)) {
*algorithm = DIGEST_SHA_1;
return true;
}
if (OID_MATCHES(oid, kECDSAWithSHA224) ||
OID_MATCHES(oid, kSHA224WithRSAEncryption) ||
OID_MATCHES(oid, kDSAWithSHA224)) {
*algorithm = DIGEST_SHA_224;
return true;
}
if (OID_MATCHES(oid, kECDSAWithSHA256) ||
OID_MATCHES(oid, kSHA256WithRSAEncryption) ||
OID_MATCHES(oid, kDSAWithSHA256)) {
*algorithm = DIGEST_SHA_256;
return true;
}
if (OID_MATCHES(oid, kECDSAWithSHA384) ||
OID_MATCHES(oid, kSHA384WithRSAEncryption)) {
*algorithm = DIGEST_SHA_384;
return true;
}
if (OID_MATCHES(oid, kECDSAWithSHA512) ||
OID_MATCHES(oid, kSHA512WithRSAEncryption)) {
*algorithm = DIGEST_SHA_512;
return true;
}
// Unknown algorithm. There are several unhandled options that are less
// common and more complex.
RTC_LOG(LS_ERROR) << "Unknown signature algorithm.";
algorithm->clear();
return false;
}
bool BoringSSLCertificate::ComputeDigest(absl::string_view algorithm,
Buffer& digest) const {
RTC_DCHECK_GT(digest.capacity(), 0);
const EVP_MD* md = nullptr;
unsigned int n = 0;
if (!OpenSSLDigest::GetDigestEVP(algorithm, &md)) {
return false;
}
if (digest.capacity() < static_cast<size_t>(EVP_MD_size(md))) {
return false;
}
if (!EVP_Digest(CRYPTO_BUFFER_data(cert_buffer_.get()),
CRYPTO_BUFFER_len(cert_buffer_.get()), digest.data(), &n, md,
nullptr)) {
return false;
}
digest.SetSize(n);
return true;
}
BoringSSLCertificate::~BoringSSLCertificate() {}
std::unique_ptr<SSLCertificate> BoringSSLCertificate::Clone() const {
return std::make_unique<BoringSSLCertificate>(
bssl::UpRef(cert_buffer_.get()));
}
std::string BoringSSLCertificate::ToPEMString() const {
return SSLIdentity::DerToPem(kPemTypeCertificate,
CRYPTO_BUFFER_data(cert_buffer_.get()),
CRYPTO_BUFFER_len(cert_buffer_.get()));
}
void BoringSSLCertificate::ToDER(Buffer* der_buffer) const {
der_buffer->SetData(CRYPTO_BUFFER_data(cert_buffer_.get()),
CRYPTO_BUFFER_len(cert_buffer_.get()));
}
bool BoringSSLCertificate::operator==(const BoringSSLCertificate& other) const {
return CRYPTO_BUFFER_len(cert_buffer_.get()) ==
CRYPTO_BUFFER_len(other.cert_buffer_.get()) &&
0 == memcmp(CRYPTO_BUFFER_data(cert_buffer_.get()),
CRYPTO_BUFFER_data(other.cert_buffer_.get()),
CRYPTO_BUFFER_len(cert_buffer_.get()));
}
bool BoringSSLCertificate::operator!=(const BoringSSLCertificate& other) const {
return !(*this == other);
}
int64_t BoringSSLCertificate::CertificateExpirationTime() const {
int64_t ret;
if (!openssl::ParseCertificate(cert_buffer_.get(), nullptr, &ret)) {
RTC_LOG(LS_ERROR) << "Failed to parse certificate.";
return -1;
}
return ret;
}
} // namespace webrtc
|