1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/numerics/running_statistics.h"
#include <math.h>
#include <random>
#include <vector>
#include "absl/algorithm/container.h"
#include "test/gtest.h"
// Tests were copied from samples_stats_counter_unittest.cc.
namespace webrtc {
namespace webrtc_impl {
namespace {
RunningStatistics<double> CreateStatsFilledWithIntsFrom1ToN(int n) {
std::vector<double> data;
for (int i = 1; i <= n; i++) {
data.push_back(i);
}
absl::c_shuffle(data, std::mt19937(std::random_device()()));
RunningStatistics<double> stats;
for (double v : data) {
stats.AddSample(v);
}
return stats;
}
// Add n samples drawn from uniform distribution in [a;b].
RunningStatistics<double> CreateStatsFromUniformDistribution(int n,
double a,
double b) {
std::mt19937 gen{std::random_device()()};
std::uniform_real_distribution<> dis(a, b);
RunningStatistics<double> stats;
for (int i = 1; i <= n; i++) {
stats.AddSample(dis(gen));
}
return stats;
}
class RunningStatisticsTest : public ::testing::TestWithParam<int> {};
constexpr int SIZE_FOR_MERGE = 5;
TEST(RunningStatistics, FullSimpleTest) {
auto stats = CreateStatsFilledWithIntsFrom1ToN(100);
EXPECT_DOUBLE_EQ(*stats.GetMin(), 1.0);
EXPECT_DOUBLE_EQ(*stats.GetMax(), 100.0);
EXPECT_DOUBLE_EQ(*stats.GetSum(), 5050.0);
// EXPECT_DOUBLE_EQ is too strict (max 4 ULP) for this one.
ASSERT_NEAR(*stats.GetMean(), 50.5, 1e-10);
}
TEST(RunningStatistics, VarianceAndDeviation) {
RunningStatistics<int> stats;
stats.AddSample(2);
stats.AddSample(2);
stats.AddSample(-1);
stats.AddSample(5);
EXPECT_DOUBLE_EQ(*stats.GetMean(), 2.0);
EXPECT_DOUBLE_EQ(*stats.GetVariance(), 4.5);
EXPECT_DOUBLE_EQ(*stats.GetStandardDeviation(), sqrt(4.5));
}
TEST(RunningStatistics, RemoveSample) {
// We check that adding then removing sample is no-op,
// or so (due to loss of precision).
RunningStatistics<int> stats;
stats.AddSample(2);
stats.AddSample(2);
stats.AddSample(-1);
stats.AddSample(5);
constexpr int iterations = 1e5;
for (int i = 0; i < iterations; ++i) {
stats.AddSample(i);
stats.RemoveSample(i);
EXPECT_NEAR(*stats.GetMean(), 2.0, 1e-8);
EXPECT_NEAR(*stats.GetVariance(), 4.5, 1e-3);
EXPECT_NEAR(*stats.GetStandardDeviation(), sqrt(4.5), 1e-4);
}
}
TEST(RunningStatistics, RemoveSamplesSequence) {
// We check that adding then removing a sequence of samples is no-op,
// or so (due to loss of precision).
RunningStatistics<int> stats;
stats.AddSample(2);
stats.AddSample(2);
stats.AddSample(-1);
stats.AddSample(5);
constexpr int iterations = 1e4;
for (int i = 0; i < iterations; ++i) {
stats.AddSample(i);
}
for (int i = 0; i < iterations; ++i) {
stats.RemoveSample(i);
}
EXPECT_NEAR(*stats.GetMean(), 2.0, 1e-7);
EXPECT_NEAR(*stats.GetVariance(), 4.5, 1e-3);
EXPECT_NEAR(*stats.GetStandardDeviation(), sqrt(4.5), 1e-4);
}
TEST(RunningStatistics, VarianceFromUniformDistribution) {
// Check variance converge to 1/12 for [0;1) uniform distribution.
// Acts as a sanity check for NumericStabilityForVariance test.
auto stats = CreateStatsFromUniformDistribution(1e6, 0, 1);
EXPECT_NEAR(*stats.GetVariance(), 1. / 12, 1e-3);
}
TEST(RunningStatistics, NumericStabilityForVariance) {
// Same test as VarianceFromUniformDistribution,
// except the range is shifted to [1e9;1e9+1).
// Variance should also converge to 1/12.
// NB: Although we lose precision for the samples themselves, the fractional
// part still enjoys 22 bits of mantissa and errors should even out,
// so that couldn't explain a mismatch.
auto stats = CreateStatsFromUniformDistribution(1e6, 1e9, 1e9 + 1);
EXPECT_NEAR(*stats.GetVariance(), 1. / 12, 1e-3);
}
TEST(RunningStatistics, MinRemainsUnchangedAfterRemove) {
// We don't want to recompute min (that's RollingAccumulator's role),
// check we get the overall min.
RunningStatistics<int> stats;
stats.AddSample(1);
stats.AddSample(2);
stats.RemoveSample(1);
EXPECT_EQ(stats.GetMin(), 1);
}
TEST(RunningStatistics, MaxRemainsUnchangedAfterRemove) {
// We don't want to recompute max (that's RollingAccumulator's role),
// check we get the overall max.
RunningStatistics<int> stats;
stats.AddSample(1);
stats.AddSample(2);
stats.RemoveSample(2);
EXPECT_EQ(stats.GetMax(), 2);
}
TEST_P(RunningStatisticsTest, MergeStatistics) {
int data[SIZE_FOR_MERGE] = {2, 2, -1, 5, 10};
// Split the data in different partitions.
// We have 6 distinct tests:
// * Empty merged with full sequence.
// * 1 sample merged with 4 last.
// * 2 samples merged with 3 last.
// [...]
// * Full merged with empty sequence.
// All must lead to the same result.
// I miss QuickCheck so much.
RunningStatistics<int> stats0, stats1;
for (int i = 0; i < GetParam(); ++i) {
stats0.AddSample(data[i]);
}
for (int i = GetParam(); i < SIZE_FOR_MERGE; ++i) {
stats1.AddSample(data[i]);
}
stats0.MergeStatistics(stats1);
EXPECT_EQ(stats0.Size(), SIZE_FOR_MERGE);
EXPECT_DOUBLE_EQ(*stats0.GetMin(), -1);
EXPECT_DOUBLE_EQ(*stats0.GetMax(), 10);
EXPECT_DOUBLE_EQ(*stats0.GetMean(), 3.6);
EXPECT_DOUBLE_EQ(*stats0.GetVariance(), 13.84);
EXPECT_DOUBLE_EQ(*stats0.GetStandardDeviation(), sqrt(13.84));
}
INSTANTIATE_TEST_SUITE_P(RunningStatisticsTests,
RunningStatisticsTest,
::testing::Range(0, SIZE_FOR_MERGE + 1));
} // namespace
} // namespace webrtc_impl
} // namespace webrtc
|