1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/rate_statistics.h"
#include <cstdint>
#include <cstdlib>
#include <limits>
#include <optional>
#include "test/gtest.h"
namespace {
using webrtc::RateStatistics;
const int64_t kWindowMs = 500;
class RateStatisticsTest : public ::testing::Test {
protected:
RateStatisticsTest() : stats_(kWindowMs, 8000) {}
RateStatistics stats_;
};
TEST_F(RateStatisticsTest, TestStrictMode) {
int64_t now_ms = 0;
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
const uint32_t kPacketSize = 1500u;
const uint32_t kExpectedRateBps = kPacketSize * 1000 * 8;
// Single data point is not enough for valid estimate.
stats_.Update(kPacketSize, now_ms++);
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
// Expecting 1200 kbps since the window is initially kept small and grows as
// we have more data.
stats_.Update(kPacketSize, now_ms);
EXPECT_EQ(kExpectedRateBps, *stats_.Rate(now_ms));
stats_.Reset();
// Expecting 0 after init.
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
const int kInterval = 10;
for (int i = 0; i < 100000; ++i) {
if (i % kInterval == 0)
stats_.Update(kPacketSize, now_ms);
// Approximately 1200 kbps expected. Not exact since when packets
// are removed we will jump 10 ms to the next packet.
if (i > kInterval) {
std::optional<uint32_t> rate = stats_.Rate(now_ms);
EXPECT_TRUE(static_cast<bool>(rate));
uint32_t samples = i / kInterval + 1;
uint64_t total_bits = samples * kPacketSize * 8;
uint32_t rate_bps = static_cast<uint32_t>((1000 * total_bits) / (i + 1));
EXPECT_NEAR(rate_bps, *rate, 22000u);
}
now_ms += 1;
}
now_ms += kWindowMs;
// The window is 2 seconds. If nothing has been received for that time
// the estimate should be 0.
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
}
TEST_F(RateStatisticsTest, IncreasingThenDecreasingBitrate) {
int64_t now_ms = 0;
stats_.Reset();
// Expecting 0 after init.
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
stats_.Update(1000, ++now_ms);
const uint32_t kExpectedBitrate = 8000000;
// 1000 bytes per millisecond until plateau is reached.
int prev_error = kExpectedBitrate;
std::optional<uint32_t> bitrate;
while (++now_ms < 10000) {
stats_.Update(1000, now_ms);
bitrate = stats_.Rate(now_ms);
EXPECT_TRUE(static_cast<bool>(bitrate));
int error = kExpectedBitrate - *bitrate;
error = std::abs(error);
// Expect the estimation error to decrease as the window is extended.
EXPECT_LE(error, prev_error + 1);
prev_error = error;
}
// Window filled, expect to be close to 8000000.
EXPECT_EQ(kExpectedBitrate, *bitrate);
// 1000 bytes per millisecond until 10-second mark, 8000 kbps expected.
while (++now_ms < 10000) {
stats_.Update(1000, now_ms);
bitrate = stats_.Rate(now_ms);
EXPECT_EQ(kExpectedBitrate, *bitrate);
}
// Zero bytes per millisecond until 0 is reached.
while (++now_ms < 20000) {
stats_.Update(0, now_ms);
std::optional<uint32_t> new_bitrate = stats_.Rate(now_ms);
if (static_cast<bool>(new_bitrate) && *new_bitrate != *bitrate) {
// New bitrate must be lower than previous one.
EXPECT_LT(*new_bitrate, *bitrate);
} else {
// 0 kbps expected.
EXPECT_EQ(0u, *new_bitrate);
break;
}
bitrate = new_bitrate;
}
// Zero bytes per millisecond until 20-second mark, 0 kbps expected.
while (++now_ms < 20000) {
stats_.Update(0, now_ms);
EXPECT_EQ(0u, *stats_.Rate(now_ms));
}
}
TEST_F(RateStatisticsTest, ResetAfterSilence) {
int64_t now_ms = 0;
stats_.Reset();
// Expecting 0 after init.
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
const uint32_t kExpectedBitrate = 8000000;
// 1000 bytes per millisecond until the window has been filled.
int prev_error = kExpectedBitrate;
std::optional<uint32_t> bitrate;
while (++now_ms < 10000) {
stats_.Update(1000, now_ms);
bitrate = stats_.Rate(now_ms);
if (bitrate) {
int error = kExpectedBitrate - *bitrate;
error = std::abs(error);
// Expect the estimation error to decrease as the window is extended.
EXPECT_LE(error, prev_error + 1);
prev_error = error;
}
}
// Window filled, expect to be close to 8000000.
EXPECT_EQ(kExpectedBitrate, *bitrate);
now_ms += kWindowMs + 1;
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
// Silence over window size should trigger auto reset for coming sample.
stats_.Update(1000, now_ms);
++now_ms;
stats_.Update(1000, now_ms);
// We expect two samples of 1000 bytes, and that the bitrate is measured over
// active window instead of full window, which is now_ms - first_timestamp + 1
EXPECT_EQ(kExpectedBitrate, *stats_.Rate(now_ms));
// Manual reset, add the same samples again.
stats_.Reset();
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
stats_.Update(1000, now_ms);
++now_ms;
stats_.Update(1000, now_ms);
// We expect two samples of 1000 bytes, and that the bitrate is measured over
// 2 ms (window size has been reset) i.e. 2 * 8 * 1000 / 0.002 = 8000000.
EXPECT_EQ(kExpectedBitrate, *stats_.Rate(now_ms));
}
TEST_F(RateStatisticsTest, HandlesChangingWindowSize) {
int64_t now_ms = 0;
stats_.Reset();
// Sanity test window size.
EXPECT_TRUE(stats_.SetWindowSize(kWindowMs, now_ms));
EXPECT_FALSE(stats_.SetWindowSize(kWindowMs + 1, now_ms));
EXPECT_FALSE(stats_.SetWindowSize(0, now_ms));
EXPECT_TRUE(stats_.SetWindowSize(1, now_ms));
EXPECT_TRUE(stats_.SetWindowSize(kWindowMs, now_ms));
// Fill the buffer at a rate of 1 byte / millisecond (8 kbps).
const int kBatchSize = 10;
for (int i = 0; i <= kWindowMs; i += kBatchSize)
stats_.Update(kBatchSize, now_ms += kBatchSize);
EXPECT_EQ(static_cast<uint32_t>(8000), *stats_.Rate(now_ms));
// Halve the window size, rate should stay the same.
EXPECT_TRUE(stats_.SetWindowSize(kWindowMs / 2, now_ms));
EXPECT_EQ(static_cast<uint32_t>(8000), *stats_.Rate(now_ms));
// Double the window size again, rate should stay the same. (As the window
// won't actually expand until new bit and bobs fall into it.
EXPECT_TRUE(stats_.SetWindowSize(kWindowMs, now_ms));
EXPECT_EQ(static_cast<uint32_t>(8000), *stats_.Rate(now_ms));
// Fill the now empty half with bits it twice the rate.
for (int i = 0; i < kWindowMs / 2; i += kBatchSize)
stats_.Update(kBatchSize * 2, now_ms += kBatchSize);
// Rate should have increase be 50%.
EXPECT_EQ(static_cast<uint32_t>((8000 * 3) / 2), *stats_.Rate(now_ms));
}
TEST_F(RateStatisticsTest, RespectsWindowSizeEdges) {
int64_t now_ms = 0;
stats_.Reset();
// Expecting 0 after init.
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
// One byte per ms, using one big sample.
stats_.Update(kWindowMs, now_ms);
now_ms += kWindowMs - 2;
// Shouldn't work! (Only one sample, not full window size.)
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
// Window size should be full, and the single data point should be accepted.
++now_ms;
std::optional<uint32_t> bitrate = stats_.Rate(now_ms);
EXPECT_TRUE(static_cast<bool>(bitrate));
EXPECT_EQ(1000 * 8u, *bitrate);
// Add another, now we have twice the bitrate.
stats_.Update(kWindowMs, now_ms);
bitrate = stats_.Rate(now_ms);
EXPECT_TRUE(static_cast<bool>(bitrate));
EXPECT_EQ(2 * 1000 * 8u, *bitrate);
// Now that first sample should drop out...
now_ms += 1;
bitrate = stats_.Rate(now_ms);
EXPECT_TRUE(static_cast<bool>(bitrate));
EXPECT_EQ(1000 * 8u, *bitrate);
}
TEST_F(RateStatisticsTest, HandlesZeroCounts) {
int64_t now_ms = 0;
stats_.Reset();
// Expecting 0 after init.
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
stats_.Update(kWindowMs, now_ms);
now_ms += kWindowMs - 1;
stats_.Update(0, now_ms);
std::optional<uint32_t> bitrate = stats_.Rate(now_ms);
EXPECT_TRUE(static_cast<bool>(bitrate));
EXPECT_EQ(1000 * 8u, *bitrate);
// Move window along so first data point falls out.
++now_ms;
bitrate = stats_.Rate(now_ms);
EXPECT_TRUE(static_cast<bool>(bitrate));
EXPECT_EQ(0u, *bitrate);
// Move window so last data point falls out.
now_ms += kWindowMs;
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
}
TEST_F(RateStatisticsTest, HandlesQuietPeriods) {
int64_t now_ms = 0;
stats_.Reset();
// Expecting 0 after init.
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
stats_.Update(0, now_ms);
now_ms += kWindowMs - 1;
std::optional<uint32_t> bitrate = stats_.Rate(now_ms);
EXPECT_TRUE(static_cast<bool>(bitrate));
EXPECT_EQ(0u, *bitrate);
// Move window along so first data point falls out.
++now_ms;
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
// Move window a long way out.
// This will cause an automatic reset of the window
// First data point won't give a valid result
now_ms += 2 * kWindowMs;
stats_.Update(0, now_ms);
bitrate = stats_.Rate(now_ms);
EXPECT_FALSE(static_cast<bool>(stats_.Rate(now_ms)));
// Second data point gives valid result
++now_ms;
stats_.Update(0, now_ms);
bitrate = stats_.Rate(now_ms);
EXPECT_TRUE(static_cast<bool>(bitrate));
EXPECT_EQ(0u, *bitrate);
}
TEST_F(RateStatisticsTest, HandlesBigNumbers) {
int64_t large_number = 0x100000000u;
int64_t now_ms = 0;
stats_.Update(large_number, now_ms++);
stats_.Update(large_number, now_ms);
EXPECT_TRUE(stats_.Rate(now_ms));
EXPECT_EQ(large_number * RateStatistics::kBpsScale, *stats_.Rate(now_ms));
}
TEST_F(RateStatisticsTest, HandlesTooLargeNumbers) {
int64_t very_large_number = std::numeric_limits<int64_t>::max();
int64_t now_ms = 0;
stats_.Update(very_large_number, now_ms++);
stats_.Update(very_large_number, now_ms);
// This should overflow the internal accumulator.
EXPECT_FALSE(stats_.Rate(now_ms));
}
TEST_F(RateStatisticsTest, HandlesSomewhatLargeNumbers) {
int64_t very_large_number = std::numeric_limits<int64_t>::max();
int64_t now_ms = 0;
stats_.Update(very_large_number / 4, now_ms++);
stats_.Update(very_large_number / 4, now_ms);
// This should generate a rate of more than int64_t max, but still
// accumulate less than int64_t overflow.
EXPECT_FALSE(stats_.Rate(now_ms));
}
TEST_F(RateStatisticsTest, HandlesLowFps) {
RateStatistics fps_stats(/*window_size_ms=*/1000, /*scale=*/1000);
const int64_t kExpectedFps = 1;
constexpr int64_t kTimeDelta = 1000 / kExpectedFps;
int64_t now_ms = 0;
EXPECT_FALSE(stats_.Rate(now_ms));
// Fill 1 s window.
while (now_ms < 1000) {
fps_stats.Update(1, now_ms);
now_ms += kTimeDelta;
}
// Simulate 1 fps stream for 10 seconds.
while (now_ms < 10000) {
fps_stats.Update(1, now_ms);
EXPECT_EQ(kExpectedFps, fps_stats.Rate(now_ms));
now_ms += kTimeDelta;
}
}
TEST_F(RateStatisticsTest, Handles25Fps) {
RateStatistics fps_stats(/*window_size_ms=*/1000, /*scale=*/1000);
constexpr int64_t kExpectedFps = 25;
constexpr int64_t kTimeDelta = 1000 / kExpectedFps;
int64_t now_ms = 0;
EXPECT_FALSE(stats_.Rate(now_ms));
// Fill 1 s window.
while (now_ms < 1000) {
fps_stats.Update(1, now_ms);
now_ms += kTimeDelta;
}
// Simulate 25 fps stream for 10 seconds.
while (now_ms < 10000) {
fps_stats.Update(1, now_ms);
EXPECT_EQ(kExpectedFps, fps_stats.Rate(now_ms));
now_ms += kTimeDelta;
}
}
} // namespace
|