1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/rtp_to_ntp_estimator.h"
#include <cstddef>
#include <cstdint>
#include "rtc_base/random.h"
#include "system_wrappers/include/ntp_time.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr uint64_t kOneMsInNtp = 4294967;
constexpr uint64_t kOneHourInNtp = uint64_t{60 * 60} << 32;
constexpr uint32_t kTimestampTicksPerMs = 90;
} // namespace
TEST(WrapAroundTests, OldRtcpWrapped_OldRtpTimestamp) {
RtpToNtpEstimator estimator;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(kOneMsInNtp), 0),
RtpToNtpEstimator::kNewMeasurement);
// No wraparound will be detected, since we are not allowed to wrap below 0,
// but there will be huge rtp timestamp jump, e.g. old_timestamp = 0,
// new_timestamp = 4294967295, which should be detected.
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(2 * kOneMsInNtp),
-kTimestampTicksPerMs),
RtpToNtpEstimator::kInvalidMeasurement);
}
TEST(WrapAroundTests, OldRtcpWrapped_OldRtpTimestamp_Wraparound_Detected) {
RtpToNtpEstimator estimator;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), 0xFFFFFFFE),
RtpToNtpEstimator::kNewMeasurement);
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + 2 * kOneMsInNtp),
0xFFFFFFFE + 2 * kTimestampTicksPerMs),
RtpToNtpEstimator::kNewMeasurement);
// Expected to fail since the older RTCP has a smaller RTP timestamp than the
// newer (old:10, new:4294967206).
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + 3 * kOneMsInNtp),
0xFFFFFFFE + kTimestampTicksPerMs),
RtpToNtpEstimator::kInvalidMeasurement);
}
TEST(WrapAroundTests, OldRtcpWrapped_OldRtpTimestamp_NegativeWraparound) {
RtpToNtpEstimator estimator;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), 0),
RtpToNtpEstimator::kNewMeasurement);
// Expected to fail since the older RTCP has a smaller RTP timestamp than the
// newer (old:0, new:-180).
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + 2 * kOneMsInNtp),
0xFFFFFFFF - 2 * kTimestampTicksPerMs),
RtpToNtpEstimator::kInvalidMeasurement);
}
TEST(WrapAroundTests, NewRtcpWrapped) {
RtpToNtpEstimator estimator;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), 0xFFFFFFFF),
RtpToNtpEstimator::kNewMeasurement);
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + kOneMsInNtp),
0xFFFFFFFF + kTimestampTicksPerMs),
RtpToNtpEstimator::kNewMeasurement);
// Since this RTP packet has the same timestamp as the RTCP packet constructed
// at time 0 it should be mapped to 0 as well.
EXPECT_EQ(estimator.Estimate(0xFFFFFFFF), NtpTime(1));
}
TEST(WrapAroundTests, RtpWrapped) {
RtpToNtpEstimator estimator;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1),
0xFFFFFFFF - 2 * kTimestampTicksPerMs),
RtpToNtpEstimator::kNewMeasurement);
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + kOneMsInNtp),
0xFFFFFFFF - kTimestampTicksPerMs),
RtpToNtpEstimator::kNewMeasurement);
// Since this RTP packet has the same timestamp as the RTCP packet constructed
// at time 0 it should be mapped to 0 as well.
EXPECT_EQ(estimator.Estimate(0xFFFFFFFF - 2 * kTimestampTicksPerMs),
NtpTime(1));
// Two kTimestampTicksPerMs advanced.
EXPECT_EQ(estimator.Estimate(0xFFFFFFFF), NtpTime(1 + 2 * kOneMsInNtp));
// Wrapped rtp.
EXPECT_EQ(estimator.Estimate(0xFFFFFFFF + kTimestampTicksPerMs),
NtpTime(1 + 3 * kOneMsInNtp));
}
TEST(WrapAroundTests, OldRtp_RtcpsWrapped) {
RtpToNtpEstimator estimator;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), 0xFFFFFFFF),
RtpToNtpEstimator::kNewMeasurement);
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + kOneMsInNtp),
0xFFFFFFFF + kTimestampTicksPerMs),
RtpToNtpEstimator::kNewMeasurement);
EXPECT_FALSE(estimator.Estimate(0xFFFFFFFF - kTimestampTicksPerMs).Valid());
}
TEST(WrapAroundTests, OldRtp_NewRtcpWrapped) {
RtpToNtpEstimator estimator;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), 0xFFFFFFFF),
RtpToNtpEstimator::kNewMeasurement);
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + kOneMsInNtp),
0xFFFFFFFF + kTimestampTicksPerMs),
RtpToNtpEstimator::kNewMeasurement);
// Constructed at the same time as the first RTCP and should therefore be
// mapped to zero.
EXPECT_EQ(estimator.Estimate(0xFFFFFFFF), NtpTime(1));
}
TEST(WrapAroundTests, GracefullyHandleRtpJump) {
RtpToNtpEstimator estimator;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), 0xFFFFFFFF),
RtpToNtpEstimator::kNewMeasurement);
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1 + kOneMsInNtp),
0xFFFFFFFF + kTimestampTicksPerMs),
RtpToNtpEstimator::kNewMeasurement);
// Constructed at the same time as the first RTCP and should therefore be
// mapped to zero.
EXPECT_EQ(estimator.Estimate(0xFFFFFFFF), NtpTime(1));
uint32_t timestamp = 0xFFFFFFFF - 0xFFFFF;
uint64_t ntp_raw = 1 + 2 * kOneMsInNtp;
for (int i = 0; i < RtpToNtpEstimator::kMaxInvalidSamples - 1; ++i) {
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw), timestamp),
RtpToNtpEstimator::kInvalidMeasurement);
ntp_raw += kOneMsInNtp;
timestamp += kTimestampTicksPerMs;
}
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw), timestamp),
RtpToNtpEstimator::kNewMeasurement);
ntp_raw += kOneMsInNtp;
timestamp += kTimestampTicksPerMs;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw), timestamp),
RtpToNtpEstimator::kNewMeasurement);
EXPECT_EQ(estimator.Estimate(timestamp), NtpTime(ntp_raw));
}
TEST(UpdateRtcpMeasurementTests, FailsForZeroNtp) {
RtpToNtpEstimator estimator;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(0), 0x12345678),
RtpToNtpEstimator::kInvalidMeasurement);
}
TEST(UpdateRtcpMeasurementTests, FailsForEqualNtp) {
RtpToNtpEstimator estimator;
NtpTime ntp(0, 699925050);
uint32_t timestamp = 0x12345678;
EXPECT_EQ(estimator.UpdateMeasurements(ntp, timestamp),
RtpToNtpEstimator::kNewMeasurement);
// Ntp time already added, list not updated.
EXPECT_EQ(estimator.UpdateMeasurements(ntp, timestamp + 1),
RtpToNtpEstimator::kSameMeasurement);
}
TEST(UpdateRtcpMeasurementTests, FailsForOldNtp) {
RtpToNtpEstimator estimator;
uint64_t ntp_raw = 699925050;
NtpTime ntp(ntp_raw);
uint32_t timestamp = 0x12345678;
EXPECT_EQ(estimator.UpdateMeasurements(ntp, timestamp),
RtpToNtpEstimator::kNewMeasurement);
// Old ntp time, list not updated.
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw - kOneMsInNtp),
timestamp + kTimestampTicksPerMs),
RtpToNtpEstimator::kInvalidMeasurement);
}
TEST(UpdateRtcpMeasurementTests, FailsForTooNewNtp) {
RtpToNtpEstimator estimator;
uint64_t ntp_raw = 699925050;
uint32_t timestamp = 0x12345678;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw), timestamp),
RtpToNtpEstimator::kNewMeasurement);
// Ntp time from far future, list not updated.
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw + 2 * kOneHourInNtp),
timestamp + 10 * kTimestampTicksPerMs),
RtpToNtpEstimator::kInvalidMeasurement);
}
TEST(UpdateRtcpMeasurementTests, FailsForEqualTimestamp) {
RtpToNtpEstimator estimator;
uint32_t timestamp = 0x12345678;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(2), timestamp),
RtpToNtpEstimator::kNewMeasurement);
// Timestamp already added, list not updated.
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(3), timestamp),
RtpToNtpEstimator::kSameMeasurement);
}
TEST(UpdateRtcpMeasurementTests, FailsForOldRtpTimestamp) {
RtpToNtpEstimator estimator;
uint32_t timestamp = 0x12345678;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(2), timestamp),
RtpToNtpEstimator::kNewMeasurement);
// Old timestamp, list not updated.
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(2 + kOneMsInNtp),
timestamp - kTimestampTicksPerMs),
RtpToNtpEstimator::kInvalidMeasurement);
}
TEST(UpdateRtcpMeasurementTests, VerifyParameters) {
RtpToNtpEstimator estimator;
uint32_t timestamp = 0x12345678;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(kOneMsInNtp), timestamp),
RtpToNtpEstimator::kNewMeasurement);
EXPECT_DOUBLE_EQ(estimator.EstimatedFrequencyKhz(), 0.0);
// Add second report, parameters should be calculated.
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(2 * kOneMsInNtp),
timestamp + kTimestampTicksPerMs),
RtpToNtpEstimator::kNewMeasurement);
EXPECT_NEAR(estimator.EstimatedFrequencyKhz(), kTimestampTicksPerMs, 0.01);
}
TEST(RtpToNtpTests, FailsForNoParameters) {
RtpToNtpEstimator estimator;
uint32_t timestamp = 0x12345678;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(1), timestamp),
RtpToNtpEstimator::kNewMeasurement);
// Parameters are not calculated, conversion of RTP to NTP time should fail.
EXPECT_DOUBLE_EQ(estimator.EstimatedFrequencyKhz(), 0.0);
EXPECT_FALSE(estimator.Estimate(timestamp).Valid());
}
TEST(RtpToNtpTests, AveragesErrorOut) {
RtpToNtpEstimator estimator;
uint64_t ntp_raw = 90000000; // More than 1 ms.
ASSERT_GT(ntp_raw, kOneMsInNtp);
uint32_t timestamp = 0x12345678;
constexpr uint64_t kNtpSecStep = uint64_t{1} << 32; // 1 second.
constexpr int kRtpTicksPerMs = 90;
constexpr int kRtpStep = kRtpTicksPerMs * 1000;
EXPECT_EQ(estimator.UpdateMeasurements(NtpTime(ntp_raw), timestamp),
RtpToNtpEstimator::kNewMeasurement);
Random rand(1123536L);
for (size_t i = 0; i < 1000; i++) {
// Advance both timestamps by exactly 1 second.
ntp_raw += kNtpSecStep;
timestamp += kRtpStep;
// Add upto 1ms of errors to NTP and RTP timestamps passed to estimator.
EXPECT_EQ(
estimator.UpdateMeasurements(
NtpTime(ntp_raw + rand.Rand(-int{kOneMsInNtp}, int{kOneMsInNtp})),
timestamp + rand.Rand(-kRtpTicksPerMs, kRtpTicksPerMs)),
RtpToNtpEstimator::kNewMeasurement);
NtpTime estimated_ntp = estimator.Estimate(timestamp);
EXPECT_TRUE(estimated_ntp.Valid());
// Allow upto 2 ms of error.
EXPECT_NEAR(ntp_raw, static_cast<uint64_t>(estimated_ntp), 2 * kOneMsInNtp);
}
}
} // namespace webrtc
|