1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
/*
* Copyright 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/task_utils/repeating_task.h"
#include <atomic>
#include <memory>
#include <optional>
#include <utility>
#include "absl/functional/any_invocable.h"
#include "api/location.h"
#include "api/task_queue/task_queue_base.h"
#include "api/task_queue/test/mock_task_queue_base.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "rtc_base/event.h"
#include "rtc_base/task_queue_for_test.h"
#include "system_wrappers/include/clock.h"
#include "test/gmock.h"
#include "test/gtest.h"
// NOTE: Since these tests rely on real time behavior, they will be flaky
// if run on heavily loaded systems.
namespace webrtc {
namespace {
using ::testing::AtLeast;
using ::testing::Invoke;
using ::testing::MockFunction;
using ::testing::NiceMock;
using ::testing::Return;
using ::testing::WithArg;
constexpr TimeDelta kTimeout = TimeDelta::Millis(1000);
class MockClosure {
public:
MOCK_METHOD(TimeDelta, Call, ());
MOCK_METHOD(void, Delete, ());
};
class MockTaskQueue : public MockTaskQueueBase {
public:
MockTaskQueue() : task_queue_setter_(this) {}
private:
CurrentTaskQueueSetter task_queue_setter_;
};
class FakeTaskQueue : public TaskQueueBase {
public:
explicit FakeTaskQueue(SimulatedClock* clock)
: task_queue_setter_(this), clock_(clock) {}
void Delete() override {}
void PostTaskImpl(absl::AnyInvocable<void() &&> task,
const PostTaskTraits& /*traits*/,
const Location& /*location*/) override {
last_task_ = std::move(task);
last_precision_ = std::nullopt;
last_delay_ = TimeDelta::Zero();
}
void PostDelayedTaskImpl(absl::AnyInvocable<void() &&> task,
TimeDelta delay,
const PostDelayedTaskTraits& traits,
const Location& /*location*/) override {
last_task_ = std::move(task);
last_precision_ = traits.high_precision
? TaskQueueBase::DelayPrecision::kHigh
: TaskQueueBase::DelayPrecision::kLow;
last_delay_ = delay;
}
bool AdvanceTimeAndRunLastTask() {
EXPECT_TRUE(last_task_);
EXPECT_TRUE(last_delay_.IsFinite());
clock_->AdvanceTime(last_delay_);
last_delay_ = TimeDelta::MinusInfinity();
auto task = std::move(last_task_);
std::move(task)();
return last_task_ == nullptr;
}
bool IsTaskQueued() { return !!last_task_; }
TimeDelta last_delay() const {
EXPECT_TRUE(last_delay_.IsFinite());
return last_delay_;
}
std::optional<TaskQueueBase::DelayPrecision> last_precision() const {
return last_precision_;
}
private:
CurrentTaskQueueSetter task_queue_setter_;
SimulatedClock* clock_;
absl::AnyInvocable<void() &&> last_task_;
TimeDelta last_delay_ = TimeDelta::MinusInfinity();
std::optional<TaskQueueBase::DelayPrecision> last_precision_;
};
// NOTE: Since this utility class holds a raw pointer to a variable that likely
// lives on the stack, it's important that any repeating tasks that use this
// class be explicitly stopped when the test criteria have been met. If the
// task is not stopped, an instance of this class can be deleted when the
// pointed-to MockClosure has been deleted and we end up trying to call a
// virtual method on a deleted object in the dtor.
class MoveOnlyClosure {
public:
explicit MoveOnlyClosure(MockClosure* mock) : mock_(mock) {}
MoveOnlyClosure(const MoveOnlyClosure&) = delete;
MoveOnlyClosure(MoveOnlyClosure&& other) : mock_(other.mock_) {
other.mock_ = nullptr;
}
~MoveOnlyClosure() {
if (mock_)
mock_->Delete();
}
TimeDelta operator()() { return mock_->Call(); }
private:
MockClosure* mock_;
};
} // namespace
TEST(RepeatingTaskTest, TaskIsStoppedOnStop) {
const TimeDelta kShortInterval = TimeDelta::Millis(50);
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
std::atomic_int counter(0);
auto handle = RepeatingTaskHandle::Start(
&task_queue,
[&] {
counter++;
return kShortInterval;
},
TaskQueueBase::DelayPrecision::kLow, &clock);
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
EXPECT_EQ(counter.load(), 1);
// The handle reposted at the short interval.
EXPECT_EQ(task_queue.last_delay(), kShortInterval);
// Stop the handle. This prevernts the counter from incrementing.
handle.Stop();
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, CompensatesForLongRunTime) {
const TimeDelta kRepeatInterval = TimeDelta::Millis(2);
// Sleeping inside the task for longer than the repeat interval once, should
// be compensated for by repeating the task faster to catch up.
const TimeDelta kSleepDuration = TimeDelta::Millis(20);
std::atomic_int counter(0);
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
RepeatingTaskHandle::Start(
&task_queue,
[&] {
++counter;
// Task takes longer than the repeat duration.
clock.AdvanceTime(kSleepDuration);
return kRepeatInterval;
},
TaskQueueBase::DelayPrecision::kLow, &clock);
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// Task is posted right away since it took longer to run then the repeat
// interval.
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, CompensatesForShortRunTime) {
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
std::atomic_int counter(0);
RepeatingTaskHandle::Start(
&task_queue,
[&] {
// Simulate the task taking 100ms, which should be compensated for.
counter++;
clock.AdvanceTime(TimeDelta::Millis(100));
return TimeDelta::Millis(300);
},
TaskQueueBase::DelayPrecision::kLow, &clock);
// Expect instant post task.
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
// Task should be retained by the handler since it is not cancelled.
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// New delay should be 200ms since repeat delay was 300ms but task took 100ms.
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Millis(200));
}
TEST(RepeatingTaskTest, CancelDelayedTaskBeforeItRuns) {
Event done;
MockClosure mock;
EXPECT_CALL(mock, Call).Times(0);
EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); }));
TaskQueueForTest task_queue("queue");
auto handle = RepeatingTaskHandle::DelayedStart(
task_queue.Get(), TimeDelta::Millis(100), MoveOnlyClosure(&mock));
task_queue.PostTask(
[handle = std::move(handle)]() mutable { handle.Stop(); });
EXPECT_TRUE(done.Wait(kTimeout));
}
TEST(RepeatingTaskTest, CancelTaskAfterItRuns) {
Event done;
MockClosure mock;
EXPECT_CALL(mock, Call).WillOnce(Return(TimeDelta::Millis(100)));
EXPECT_CALL(mock, Delete).WillOnce(Invoke([&done] { done.Set(); }));
TaskQueueForTest task_queue("queue");
auto handle =
RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&mock));
task_queue.PostTask(
[handle = std::move(handle)]() mutable { handle.Stop(); });
EXPECT_TRUE(done.Wait(kTimeout));
}
TEST(RepeatingTaskTest, TaskCanStopItself) {
std::atomic_int counter(0);
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
RepeatingTaskHandle handle = RepeatingTaskHandle::Start(&task_queue, [&] {
++counter;
handle.Stop();
return TimeDelta::Millis(2);
});
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
// Task cancelled itself so wants to be released.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, TaskCanStopItselfByReturningInfinity) {
std::atomic_int counter(0);
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
RepeatingTaskHandle handle = RepeatingTaskHandle::Start(&task_queue, [&] {
++counter;
return TimeDelta::PlusInfinity();
});
EXPECT_EQ(task_queue.last_delay(), TimeDelta::Zero());
// Task cancelled itself so wants to be released.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
EXPECT_EQ(counter.load(), 1);
}
TEST(RepeatingTaskTest, ZeroReturnValueRepostsTheTask) {
NiceMock<MockClosure> closure;
Event done;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Zero()))
.WillOnce(Invoke([&] {
done.Set();
return TimeDelta::PlusInfinity();
}));
TaskQueueForTest task_queue("queue");
RepeatingTaskHandle::Start(task_queue.Get(), MoveOnlyClosure(&closure));
EXPECT_TRUE(done.Wait(kTimeout));
}
TEST(RepeatingTaskTest, StartPeriodicTask) {
MockFunction<TimeDelta()> closure;
Event done;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Millis(20)))
.WillOnce(Return(TimeDelta::Millis(20)))
.WillOnce(Invoke([&] {
done.Set();
return TimeDelta::PlusInfinity();
}));
TaskQueueForTest task_queue("queue");
RepeatingTaskHandle::Start(task_queue.Get(), closure.AsStdFunction());
EXPECT_TRUE(done.Wait(kTimeout));
}
TEST(RepeatingTaskTest, Example) {
class ObjectOnTaskQueue {
public:
void DoPeriodicTask() {}
TimeDelta TimeUntilNextRun() { return TimeDelta::Millis(100); }
void StartPeriodicTask(RepeatingTaskHandle* handle,
TaskQueueBase* task_queue) {
*handle = RepeatingTaskHandle::Start(task_queue, [this] {
DoPeriodicTask();
return TimeUntilNextRun();
});
}
};
TaskQueueForTest task_queue("queue");
auto object = std::make_unique<ObjectOnTaskQueue>();
// Create and start the periodic task.
RepeatingTaskHandle handle;
object->StartPeriodicTask(&handle, task_queue.Get());
// Restart the task
task_queue.PostTask(
[handle = std::move(handle)]() mutable { handle.Stop(); });
object->StartPeriodicTask(&handle, task_queue.Get());
task_queue.PostTask(
[handle = std::move(handle)]() mutable { handle.Stop(); });
struct Destructor {
void operator()() { object.reset(); }
std::unique_ptr<ObjectOnTaskQueue> object;
};
task_queue.PostTask(Destructor{std::move(object)});
// Do not wait for the destructor closure in order to create a race between
// task queue destruction and running the desctructor closure.
}
TEST(RepeatingTaskTest, ClockIntegration) {
absl::AnyInvocable<void() &&> delayed_task;
TimeDelta expected_delay = TimeDelta::Zero();
SimulatedClock clock(Timestamp::Zero());
NiceMock<MockTaskQueue> task_queue;
ON_CALL(task_queue, PostDelayedTaskImpl)
.WillByDefault([&](absl::AnyInvocable<void()&&> task, TimeDelta delay,
const MockTaskQueue::PostDelayedTaskTraits&,
const Location&) {
EXPECT_EQ(delay, expected_delay);
delayed_task = std::move(task);
});
expected_delay = TimeDelta::Millis(100);
RepeatingTaskHandle handle = RepeatingTaskHandle::DelayedStart(
&task_queue, TimeDelta::Millis(100),
[&clock]() {
EXPECT_EQ(Timestamp::Millis(100), clock.CurrentTime());
// Simulate work happening for 10ms.
clock.AdvanceTimeMilliseconds(10);
return TimeDelta::Millis(100);
},
TaskQueueBase::DelayPrecision::kLow, &clock);
clock.AdvanceTimeMilliseconds(100);
absl::AnyInvocable<void() &&> task_to_run = std::move(delayed_task);
expected_delay = TimeDelta::Millis(90);
std::move(task_to_run)();
EXPECT_NE(delayed_task, nullptr);
handle.Stop();
}
TEST(RepeatingTaskTest, CanBeStoppedAfterTaskQueueDeletedTheRepeatingTask) {
absl::AnyInvocable<void() &&> repeating_task;
MockTaskQueue task_queue;
EXPECT_CALL(task_queue, PostDelayedTaskImpl)
.WillOnce(WithArg<0>([&](absl::AnyInvocable<void()&&> task) {
repeating_task = std::move(task);
}));
RepeatingTaskHandle handle =
RepeatingTaskHandle::DelayedStart(&task_queue, TimeDelta::Millis(100),
[] { return TimeDelta::Millis(100); });
// shutdown task queue: delete all pending tasks and run 'regular' task.
repeating_task = nullptr;
handle.Stop();
}
TEST(RepeatingTaskTest, DefaultPrecisionIsLow) {
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
// Closure that repeats twice.
MockFunction<TimeDelta()> closure;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Millis(1)))
.WillOnce(Return(TimeDelta::PlusInfinity()));
RepeatingTaskHandle::Start(&task_queue, closure.AsStdFunction());
// Initial task is a PostTask().
EXPECT_FALSE(task_queue.last_precision().has_value());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// Repeated task is a delayed task with the default precision: low.
EXPECT_TRUE(task_queue.last_precision().has_value());
EXPECT_EQ(task_queue.last_precision().value(),
TaskQueueBase::DelayPrecision::kLow);
// No more tasks.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
}
TEST(RepeatingTaskTest, CanSpecifyToPostTasksWithLowPrecision) {
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
// Closure that repeats twice.
MockFunction<TimeDelta()> closure;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Millis(1)))
.WillOnce(Return(TimeDelta::PlusInfinity()));
RepeatingTaskHandle::Start(&task_queue, closure.AsStdFunction(),
TaskQueueBase::DelayPrecision::kLow);
// Initial task is a PostTask().
EXPECT_FALSE(task_queue.last_precision().has_value());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// Repeated task is a delayed task with the specified precision.
EXPECT_TRUE(task_queue.last_precision().has_value());
EXPECT_EQ(task_queue.last_precision().value(),
TaskQueueBase::DelayPrecision::kLow);
// No more tasks.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
}
TEST(RepeatingTaskTest, CanSpecifyToPostTasksWithHighPrecision) {
SimulatedClock clock(Timestamp::Zero());
FakeTaskQueue task_queue(&clock);
// Closure that repeats twice.
MockFunction<TimeDelta()> closure;
EXPECT_CALL(closure, Call())
.WillOnce(Return(TimeDelta::Millis(1)))
.WillOnce(Return(TimeDelta::PlusInfinity()));
RepeatingTaskHandle::Start(&task_queue, closure.AsStdFunction(),
TaskQueueBase::DelayPrecision::kHigh);
// Initial task is a PostTask().
EXPECT_FALSE(task_queue.last_precision().has_value());
EXPECT_FALSE(task_queue.AdvanceTimeAndRunLastTask());
// Repeated task is a delayed task with the specified precision.
EXPECT_TRUE(task_queue.last_precision().has_value());
EXPECT_EQ(task_queue.last_precision().value(),
TaskQueueBase::DelayPrecision::kHigh);
// No more tasks.
EXPECT_TRUE(task_queue.AdvanceTimeAndRunLastTask());
}
} // namespace webrtc
|