1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/timestamp_aligner.h"
#include <math.h>
#include <algorithm>
#include <cstdint>
#include <limits>
#include "rtc_base/random.h"
#include "rtc_base/time_utils.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
// Computes the difference x_k - mean(x), when x_k is the linear sequence x_k =
// k, and the "mean" is plain mean for the first `window_size` samples, followed
// by exponential averaging with weight 1 / `window_size` for each new sample.
// This is needed to predict the effect of camera clock drift on the timestamp
// translation. See the comment on TimestampAligner::UpdateOffset for more
// context.
double MeanTimeDifference(int nsamples, int window_size) {
if (nsamples <= window_size) {
// Plain averaging.
return nsamples / 2.0;
} else {
// Exponential convergence towards
// interval_error * (window_size - 1)
double alpha = 1.0 - 1.0 / window_size;
return ((window_size - 1) -
(window_size / 2.0 - 1) * pow(alpha, nsamples - window_size));
}
}
class TimestampAlignerForTest : public TimestampAligner {
// Make internal methods accessible to testing.
public:
using TimestampAligner::ClipTimestamp;
using TimestampAligner::UpdateOffset;
};
void TestTimestampFilter(double rel_freq_error) {
TimestampAlignerForTest timestamp_aligner_for_test;
TimestampAligner timestamp_aligner;
const int64_t kEpoch = 10000;
const int64_t kJitterUs = 5000;
const int64_t kIntervalUs = 33333; // 30 FPS
const int kWindowSize = 100;
const int kNumFrames = 3 * kWindowSize;
int64_t interval_error_us = kIntervalUs * rel_freq_error;
int64_t system_start_us = TimeMicros();
Random random(17);
int64_t prev_translated_time_us = system_start_us;
for (int i = 0; i < kNumFrames; i++) {
// Camera time subject to drift.
int64_t camera_time_us = kEpoch + i * (kIntervalUs + interval_error_us);
int64_t system_time_us = system_start_us + i * kIntervalUs;
// And system time readings are subject to jitter.
int64_t system_measured_us = system_time_us + random.Rand(kJitterUs);
int64_t offset_us = timestamp_aligner_for_test.UpdateOffset(
camera_time_us, system_measured_us);
int64_t filtered_time_us = camera_time_us + offset_us;
int64_t translated_time_us = timestamp_aligner_for_test.ClipTimestamp(
filtered_time_us, system_measured_us);
// Check that we get identical result from the all-in-one helper method.
ASSERT_EQ(translated_time_us, timestamp_aligner.TranslateTimestamp(
camera_time_us, system_measured_us));
EXPECT_LE(translated_time_us, system_measured_us);
EXPECT_GE(translated_time_us,
prev_translated_time_us + kNumMicrosecsPerMillisec);
// The relative frequency error contributes to the expected error
// by a factor which is the difference between the current time
// and the average of earlier sample times.
int64_t expected_error_us =
kJitterUs / 2 +
rel_freq_error * kIntervalUs * MeanTimeDifference(i, kWindowSize);
int64_t bias_us = filtered_time_us - translated_time_us;
EXPECT_GE(bias_us, 0);
if (i == 0) {
EXPECT_EQ(translated_time_us, system_measured_us);
} else {
EXPECT_NEAR(filtered_time_us, system_time_us + expected_error_us,
2.0 * kJitterUs / sqrt(std::max(i, kWindowSize)));
}
// If the camera clock runs too fast (rel_freq_error > 0.0), The
// bias is expected to roughly cancel the expected error from the
// clock drift, as this grows. Otherwise, it reflects the
// measurement noise. The tolerances here were selected after some
// trial and error.
if (i < 10 || rel_freq_error <= 0.0) {
EXPECT_LE(bias_us, 3000);
} else {
EXPECT_NEAR(bias_us, expected_error_us, 1500);
}
prev_translated_time_us = translated_time_us;
}
}
} // Anonymous namespace
TEST(TimestampAlignerTest, AttenuateTimestampJitterNoDrift) {
TestTimestampFilter(0.0);
}
// 100 ppm is a worst case for a reasonable crystal.
TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallPosDrift) {
TestTimestampFilter(0.0001);
}
TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallNegDrift) {
TestTimestampFilter(-0.0001);
}
// 3000 ppm, 3 ms / s, is the worst observed drift, see
// https://bugs.chromium.org/p/webrtc/issues/detail?id=5456
TEST(TimestampAlignerTest, AttenuateTimestampJitterLargePosDrift) {
TestTimestampFilter(0.003);
}
TEST(TimestampAlignerTest, AttenuateTimestampJitterLargeNegDrift) {
TestTimestampFilter(-0.003);
}
// Exhibits a mostly hypothetical problem, where certain inputs to the
// TimestampAligner.UpdateOffset filter result in non-monotonous
// translated timestamps. This test verifies that the ClipTimestamp
// logic handles this case correctly.
TEST(TimestampAlignerTest, ClipToMonotonous) {
TimestampAlignerForTest timestamp_aligner;
// For system time stamps { 0, s1, s1 + s2 }, and camera timestamps
// {0, c1, c1 + c2}, we exhibit non-monotonous behaviour if and only
// if c1 > s1 + 2 s2 + 4 c2.
const int kNumSamples = 3;
const int64_t kCaptureTimeUs[kNumSamples] = {0, 80000, 90001};
const int64_t kSystemTimeUs[kNumSamples] = {0, 10000, 20000};
const int64_t expected_offset_us[kNumSamples] = {0, -35000, -46667};
// Non-monotonic translated timestamps can happen when only for
// translated timestamps in the future. Which is tolerated if
// `timestamp_aligner.clip_bias_us` is large enough. Instead of
// changing that private member for this test, just add the bias to
// `kSystemTimeUs` when calling ClipTimestamp.
const int64_t kClipBiasUs = 100000;
bool did_clip = false;
int64_t prev_timestamp_us = std::numeric_limits<int64_t>::min();
for (int i = 0; i < kNumSamples; i++) {
int64_t offset_us =
timestamp_aligner.UpdateOffset(kCaptureTimeUs[i], kSystemTimeUs[i]);
EXPECT_EQ(offset_us, expected_offset_us[i]);
int64_t translated_timestamp_us = kCaptureTimeUs[i] + offset_us;
int64_t clip_timestamp_us = timestamp_aligner.ClipTimestamp(
translated_timestamp_us, kSystemTimeUs[i] + kClipBiasUs);
if (translated_timestamp_us <= prev_timestamp_us) {
did_clip = true;
EXPECT_EQ(clip_timestamp_us,
prev_timestamp_us + kNumMicrosecsPerMillisec);
} else {
// No change from clipping.
EXPECT_EQ(clip_timestamp_us, translated_timestamp_us);
}
prev_timestamp_us = clip_timestamp_us;
}
EXPECT_TRUE(did_clip);
}
TEST(TimestampAlignerTest, TranslateTimestampWithoutStateUpdate) {
TimestampAligner timestamp_aligner;
constexpr int kNumSamples = 4;
constexpr int64_t kCaptureTimeUs[kNumSamples] = {0, 80000, 90001, 100000};
constexpr int64_t kSystemTimeUs[kNumSamples] = {0, 10000, 20000, 30000};
constexpr int64_t kQueryCaptureTimeOffsetUs[kNumSamples] = {0, 123, -321,
345};
for (int i = 0; i < kNumSamples; i++) {
int64_t reference_timestamp = timestamp_aligner.TranslateTimestamp(
kCaptureTimeUs[i], kSystemTimeUs[i]);
EXPECT_EQ(reference_timestamp - kQueryCaptureTimeOffsetUs[i],
timestamp_aligner.TranslateTimestamp(
kCaptureTimeUs[i] - kQueryCaptureTimeOffsetUs[i]));
}
}
} // namespace webrtc
|