1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/win32.h"
#include <winsock2.h>
#include <ws2tcpip.h>
#include <algorithm>
#include <iterator>
#include "rtc_base/byte_order.h"
#include "rtc_base/checks.h"
#include "rtc_base/string_utils.h"
namespace webrtc {
// Helper function declarations for inet_ntop/inet_pton.
static const char* inet_ntop_v4(const void* src, char* dst, socklen_t size);
static const char* inet_ntop_v6(const void* src, char* dst, socklen_t size);
static int inet_pton_v4(const char* src, void* dst);
static int inet_pton_v6(const char* src, void* dst);
// Implementation of inet_ntop (create a printable representation of an
// ip address). XP doesn't have its own inet_ntop, and
// WSAAddressToString requires both IPv6 to be installed and for Winsock
// to be initialized.
const char* win32_inet_ntop(int af,
const void* src,
char* dst,
socklen_t size) {
if (!src || !dst) {
return nullptr;
}
switch (af) {
case AF_INET: {
return inet_ntop_v4(src, dst, size);
}
case AF_INET6: {
return inet_ntop_v6(src, dst, size);
}
}
return nullptr;
}
// As above, but for inet_pton. Implements inet_pton for v4 and v6.
// Note that our inet_ntop will output normal 'dotted' v4 addresses only.
int win32_inet_pton(int af, const char* src, void* dst) {
if (!src || !dst) {
return 0;
}
if (af == AF_INET) {
return inet_pton_v4(src, dst);
} else if (af == AF_INET6) {
return inet_pton_v6(src, dst);
}
return -1;
}
// Helper function for inet_ntop for IPv4 addresses.
// Outputs "dotted-quad" decimal notation.
const char* inet_ntop_v4(const void* src, char* dst, socklen_t size) {
if (size < INET_ADDRSTRLEN) {
return nullptr;
}
const struct in_addr* as_in_addr =
reinterpret_cast<const struct in_addr*>(src);
snprintf(dst, size, "%d.%d.%d.%d", as_in_addr->S_un.S_un_b.s_b1,
as_in_addr->S_un.S_un_b.s_b2, as_in_addr->S_un.S_un_b.s_b3,
as_in_addr->S_un.S_un_b.s_b4);
return dst;
}
// Helper function for inet_ntop for IPv6 addresses.
const char* inet_ntop_v6(const void* src, char* dst, socklen_t size) {
if (size < INET6_ADDRSTRLEN) {
return nullptr;
}
const uint16_t* as_shorts = reinterpret_cast<const uint16_t*>(src);
int runpos[8];
int current = 1;
int max = 0;
int maxpos = -1;
int run_array_size = std::ssize(runpos);
// Run over the address marking runs of 0s.
for (int i = 0; i < run_array_size; ++i) {
if (as_shorts[i] == 0) {
runpos[i] = current;
if (current > max) {
maxpos = i;
max = current;
}
++current;
} else {
runpos[i] = -1;
current = 1;
}
}
if (max > 0) {
int tmpmax = maxpos;
// Run back through, setting -1 for all but the longest run.
for (int i = run_array_size - 1; i >= 0; i--) {
if (i > tmpmax) {
runpos[i] = -1;
} else if (runpos[i] == -1) {
// We're less than maxpos, we hit a -1, so the 'good' run is done.
// Setting tmpmax -1 means all remaining positions get set to -1.
tmpmax = -1;
}
}
}
char* cursor = dst;
// Print IPv4 compatible and IPv4 mapped addresses using the IPv4 helper.
// These addresses have an initial run of either eight zero-bytes followed
// by 0xFFFF, or an initial run of ten zero-bytes.
if (runpos[0] == 1 &&
(maxpos == 5 || (maxpos == 4 && as_shorts[5] == 0xFFFF))) {
*cursor++ = ':';
*cursor++ = ':';
if (maxpos == 4) {
cursor += snprintf(cursor, INET6_ADDRSTRLEN - 2, "ffff:");
}
const struct in_addr* as_v4 =
reinterpret_cast<const struct in_addr*>(&(as_shorts[6]));
inet_ntop_v4(as_v4, cursor,
static_cast<socklen_t>(INET6_ADDRSTRLEN - (cursor - dst)));
} else {
for (int i = 0; i < run_array_size; ++i) {
if (runpos[i] == -1) {
cursor += snprintf(cursor, INET6_ADDRSTRLEN - (cursor - dst), "%x",
NetworkToHost16(as_shorts[i]));
if (i != 7 && runpos[i + 1] != 1) {
*cursor++ = ':';
}
} else if (runpos[i] == 1) {
// Entered the run; print the colons and skip the run.
*cursor++ = ':';
*cursor++ = ':';
i += (max - 1);
}
}
}
return dst;
}
// Helper function for inet_pton for IPv4 addresses.
// `src` points to a character string containing an IPv4 network address in
// dotted-decimal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number
// of up to three digits in the range 0 to 255.
// The address is converted and copied to dst,
// which must be sizeof(struct in_addr) (4) bytes (32 bits) long.
int inet_pton_v4(const char* src, void* dst) {
const int kIpv4AddressSize = 4;
int found = 0;
const char* src_pos = src;
unsigned char result[kIpv4AddressSize] = {0};
while (*src_pos != '\0') {
// strtol won't treat whitespace characters in the begining as an error,
// so check to ensure this is started with digit before passing to strtol.
if (!isdigit(*src_pos)) {
return 0;
}
char* end_pos;
long value = strtol(src_pos, &end_pos, 10);
if (value < 0 || value > 255 || src_pos == end_pos) {
return 0;
}
++found;
if (found > kIpv4AddressSize) {
return 0;
}
result[found - 1] = static_cast<unsigned char>(value);
src_pos = end_pos;
if (*src_pos == '.') {
// There's more.
++src_pos;
} else if (*src_pos != '\0') {
// If it's neither '.' nor '\0' then return fail.
return 0;
}
}
if (found != kIpv4AddressSize) {
return 0;
}
memcpy(dst, result, sizeof(result));
return 1;
}
// Helper function for inet_pton for IPv6 addresses.
int inet_pton_v6(const char* src, void* dst) {
// sscanf will pick any other invalid chars up, but it parses 0xnnnn as hex.
// Check for literal x in the input string.
const char* readcursor = src;
char c = *readcursor++;
while (c) {
if (c == 'x') {
return 0;
}
c = *readcursor++;
}
readcursor = src;
struct in6_addr an_addr;
memset(&an_addr, 0, sizeof(an_addr));
uint16_t* addr_cursor = reinterpret_cast<uint16_t*>(&an_addr.s6_addr[0]);
uint16_t* addr_end = reinterpret_cast<uint16_t*>(&an_addr.s6_addr[16]);
bool seencompressed = false;
// Addresses that start with "::" (i.e., a run of initial zeros) or
// "::ffff:" can potentially be IPv4 mapped or compatibility addresses.
// These have dotted-style IPv4 addresses on the end (e.g. "::192.168.7.1").
if (*readcursor == ':' && *(readcursor + 1) == ':' &&
*(readcursor + 2) != 0) {
// Check for periods, which we'll take as a sign of v4 addresses.
const char* addrstart = readcursor + 2;
if (strchr(addrstart, '.')) {
const char* colon = strchr(addrstart, ':');
if (colon) {
uint16_t a_short;
int bytesread = 0;
if (sscanf(addrstart, "%hx%n", &a_short, &bytesread) != 1 ||
a_short != 0xFFFF || bytesread != 4) {
// Colons + periods means has to be ::ffff:a.b.c.d. But it wasn't.
return 0;
} else {
an_addr.s6_addr[10] = 0xFF;
an_addr.s6_addr[11] = 0xFF;
addrstart = colon + 1;
}
}
struct in_addr v4;
if (inet_pton_v4(addrstart, &v4.s_addr)) {
memcpy(&an_addr.s6_addr[12], &v4, sizeof(v4));
memcpy(dst, &an_addr, sizeof(an_addr));
return 1;
} else {
// Invalid v4 address.
return 0;
}
}
}
// For addresses without a trailing IPv4 component ('normal' IPv6 addresses).
while (*readcursor != 0 && addr_cursor < addr_end) {
if (*readcursor == ':') {
if (*(readcursor + 1) == ':') {
if (seencompressed) {
// Can only have one compressed run of zeroes ("::") per address.
return 0;
}
// Hit a compressed run. Count colons to figure out how much of the
// address is skipped.
readcursor += 2;
const char* coloncounter = readcursor;
int coloncount = 0;
if (*coloncounter == 0) {
// Special case - trailing ::.
addr_cursor = addr_end;
} else {
while (*coloncounter) {
if (*coloncounter == ':') {
++coloncount;
}
++coloncounter;
}
// (coloncount + 1) is the number of shorts left in the address.
// If this number is greater than the number of available shorts, the
// address is malformed.
if (coloncount + 1 > addr_end - addr_cursor) {
return 0;
}
addr_cursor = addr_end - (coloncount + 1);
seencompressed = true;
}
} else {
++readcursor;
}
} else {
uint16_t word;
int bytesread = 0;
if (sscanf(readcursor, "%4hx%n", &word, &bytesread) != 1) {
return 0;
} else {
*addr_cursor = HostToNetwork16(word);
++addr_cursor;
readcursor += bytesread;
if (*readcursor != ':' && *readcursor != '\0') {
return 0;
}
}
}
}
if (*readcursor != '\0' || addr_cursor < addr_end) {
// Catches addresses too short or too long.
return 0;
}
memcpy(dst, &an_addr, sizeof(an_addr));
return 1;
}
} // namespace webrtc
|