1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_tools/frame_analyzer/linear_least_squares.h"
#include <math.h>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <numeric>
#include <type_traits>
#include <utility>
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace test {
template <class T>
using Matrix = std::valarray<std::valarray<T>>;
namespace {
template <typename R, typename T>
R DotProduct(const std::valarray<T>& a, const std::valarray<T>& b) {
RTC_CHECK_EQ(a.size(), b.size());
return std::inner_product(std::begin(a), std::end(a), std::begin(b), R(0));
}
// Calculates a^T * b.
template <typename R, typename T>
Matrix<R> MatrixMultiply(const Matrix<T>& a, const Matrix<T>& b) {
Matrix<R> result(std::valarray<R>(a.size()), b.size());
for (size_t i = 0; i < a.size(); ++i) {
for (size_t j = 0; j < b.size(); ++j)
result[j][i] = DotProduct<R>(a[i], b[j]);
}
return result;
}
template <typename T>
Matrix<T> Transpose(const Matrix<T>& matrix) {
if (matrix.size() == 0)
return Matrix<T>();
const size_t rows = matrix.size();
const size_t columns = matrix[0].size();
Matrix<T> result(std::valarray<T>(rows), columns);
for (size_t i = 0; i < rows; ++i) {
for (size_t j = 0; j < columns; ++j)
result[j][i] = matrix[i][j];
}
return result;
}
// Convert valarray from type T to type R.
template <typename R, typename T>
std::valarray<R> ConvertTo(const std::valarray<T>& v) {
std::valarray<R> result(v.size());
for (size_t i = 0; i < v.size(); ++i)
result[i] = static_cast<R>(v[i]);
return result;
}
// Convert valarray Matrix from type T to type R.
template <typename R, typename T>
Matrix<R> ConvertTo(const Matrix<T>& mat) {
Matrix<R> result(mat.size());
for (size_t i = 0; i < mat.size(); ++i)
result[i] = ConvertTo<R>(mat[i]);
return result;
}
// Convert from valarray Matrix back to the more conventional std::vector.
template <typename T>
std::vector<std::vector<T>> ToVectorMatrix(const Matrix<T>& m) {
std::vector<std::vector<T>> result;
for (const std::valarray<T>& v : m)
result.emplace_back(std::begin(v), std::end(v));
return result;
}
// Create a valarray Matrix from a conventional std::vector.
template <typename T>
Matrix<T> FromVectorMatrix(const std::vector<std::vector<T>>& mat) {
Matrix<T> result(mat.size());
for (size_t i = 0; i < mat.size(); ++i)
result[i] = std::valarray<T>(mat[i].data(), mat[i].size());
return result;
}
// Returns `matrix_to_invert`^-1 * `right_hand_matrix`. `matrix_to_invert` must
// have square size.
Matrix<double> GaussianElimination(Matrix<double> matrix_to_invert,
Matrix<double> right_hand_matrix) {
// `n` is the width/height of `matrix_to_invert`.
const size_t n = matrix_to_invert.size();
// Make sure `matrix_to_invert` has square size.
for (const std::valarray<double>& column : matrix_to_invert)
RTC_CHECK_EQ(n, column.size());
// Make sure `right_hand_matrix` has correct size.
for (const std::valarray<double>& column : right_hand_matrix)
RTC_CHECK_EQ(n, column.size());
// Transpose the matrices before and after so that we can perform Gaussian
// elimination on the columns instead of the rows, since that is easier with
// our representation.
matrix_to_invert = Transpose(matrix_to_invert);
right_hand_matrix = Transpose(right_hand_matrix);
// Loop over the diagonal of `matrix_to_invert` and perform column reduction.
// Column reduction is a sequence of elementary column operations that is
// performed on both `matrix_to_invert` and `right_hand_matrix` until
// `matrix_to_invert` has been transformed to the identity matrix.
for (size_t diagonal_index = 0; diagonal_index < n; ++diagonal_index) {
// Make sure the diagonal element has the highest absolute value by
// swapping columns if necessary.
for (size_t column = diagonal_index + 1; column < n; ++column) {
if (std::abs(matrix_to_invert[column][diagonal_index]) >
std::abs(matrix_to_invert[diagonal_index][diagonal_index])) {
std::swap(matrix_to_invert[column], matrix_to_invert[diagonal_index]);
std::swap(right_hand_matrix[column], right_hand_matrix[diagonal_index]);
}
}
// Reduce the diagonal element to be 1, by dividing the column with that
// value. If the diagonal element is 0, it means the system of equations has
// many solutions, and in that case we will return an arbitrary solution.
if (matrix_to_invert[diagonal_index][diagonal_index] == 0.0) {
RTC_LOG(LS_WARNING) << "Matrix is not invertible, ignoring.";
continue;
}
const double diagonal_element =
matrix_to_invert[diagonal_index][diagonal_index];
matrix_to_invert[diagonal_index] /= diagonal_element;
right_hand_matrix[diagonal_index] /= diagonal_element;
// Eliminate the other entries in row `diagonal_index` by making them zero.
for (size_t column = 0; column < n; ++column) {
if (column == diagonal_index)
continue;
const double row_element = matrix_to_invert[column][diagonal_index];
matrix_to_invert[column] -=
row_element * matrix_to_invert[diagonal_index];
right_hand_matrix[column] -=
row_element * right_hand_matrix[diagonal_index];
}
}
// Transpose the result before returning it, explained in comment above.
return Transpose(right_hand_matrix);
}
} // namespace
IncrementalLinearLeastSquares::IncrementalLinearLeastSquares() = default;
IncrementalLinearLeastSquares::~IncrementalLinearLeastSquares() = default;
void IncrementalLinearLeastSquares::AddObservations(
const std::vector<std::vector<uint8_t>>& x,
const std::vector<std::vector<uint8_t>>& y) {
if (x.empty() || y.empty())
return;
// Make sure all columns are the same size.
const size_t n = x[0].size();
for (const std::vector<uint8_t>& column : x)
RTC_CHECK_EQ(n, column.size());
for (const std::vector<uint8_t>& column : y)
RTC_CHECK_EQ(n, column.size());
// We will multiply the uint8_t values together, so we need to expand to a
// type that can safely store those values, i.e. uint16_t.
const Matrix<uint16_t> unpacked_x = ConvertTo<uint16_t>(FromVectorMatrix(x));
const Matrix<uint16_t> unpacked_y = ConvertTo<uint16_t>(FromVectorMatrix(y));
const Matrix<uint64_t> xx = MatrixMultiply<uint64_t>(unpacked_x, unpacked_x);
const Matrix<uint64_t> xy = MatrixMultiply<uint64_t>(unpacked_x, unpacked_y);
if (sum_xx && sum_xy) {
*sum_xx += xx;
*sum_xy += xy;
} else {
sum_xx = xx;
sum_xy = xy;
}
}
std::vector<std::vector<double>>
IncrementalLinearLeastSquares::GetBestSolution() const {
RTC_CHECK(sum_xx && sum_xy) << "No observations have been added";
return ToVectorMatrix(GaussianElimination(ConvertTo<double>(*sum_xx),
ConvertTo<double>(*sum_xy)));
}
} // namespace test
} // namespace webrtc
|