1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_tools/frame_analyzer/video_quality_analysis.h"
#include <algorithm>
#include <array>
#include <cstddef>
#include "api/numerics/samples_stats_counter.h"
#include "api/test/metrics/metric.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "third_party/libyuv/include/libyuv/compare.h"
namespace webrtc {
namespace test {
ResultsContainer::ResultsContainer() {}
ResultsContainer::~ResultsContainer() {}
template <typename FrameMetricFunction>
static double CalculateMetric(
const FrameMetricFunction& frame_metric_function,
const scoped_refptr<I420BufferInterface>& ref_buffer,
const scoped_refptr<I420BufferInterface>& test_buffer) {
RTC_CHECK_EQ(ref_buffer->width(), test_buffer->width());
RTC_CHECK_EQ(ref_buffer->height(), test_buffer->height());
return frame_metric_function(
ref_buffer->DataY(), ref_buffer->StrideY(), ref_buffer->DataU(),
ref_buffer->StrideU(), ref_buffer->DataV(), ref_buffer->StrideV(),
test_buffer->DataY(), test_buffer->StrideY(), test_buffer->DataU(),
test_buffer->StrideU(), test_buffer->DataV(), test_buffer->StrideV(),
test_buffer->width(), test_buffer->height());
}
double Psnr(const scoped_refptr<I420BufferInterface>& ref_buffer,
const scoped_refptr<I420BufferInterface>& test_buffer) {
// LibYuv sets the max psnr value to 128, we restrict it to 48.
// In case of 0 mse in one frame, 128 can skew the results significantly.
return std::min(48.0,
CalculateMetric(&libyuv::I420Psnr, ref_buffer, test_buffer));
}
double Ssim(const scoped_refptr<I420BufferInterface>& ref_buffer,
const scoped_refptr<I420BufferInterface>& test_buffer) {
return CalculateMetric(&libyuv::I420Ssim, ref_buffer, test_buffer);
}
std::vector<AnalysisResult> RunAnalysis(
const scoped_refptr<test::Video>& reference_video,
const scoped_refptr<test::Video>& test_video,
const std::vector<size_t>& test_frame_indices) {
std::vector<AnalysisResult> results;
for (size_t i = 0; i < test_video->number_of_frames(); ++i) {
const scoped_refptr<I420BufferInterface>& test_frame =
test_video->GetFrame(i);
const scoped_refptr<I420BufferInterface>& reference_frame =
reference_video->GetFrame(i);
// Fill in the result struct.
AnalysisResult result;
result.frame_number = test_frame_indices[i];
result.psnr_value = Psnr(reference_frame, test_frame);
result.ssim_value = Ssim(reference_frame, test_frame);
results.push_back(result);
}
return results;
}
std::vector<Cluster> CalculateFrameClusters(
const std::vector<size_t>& indices) {
std::vector<Cluster> clusters;
for (size_t index : indices) {
if (!clusters.empty() && clusters.back().index == index) {
// This frame belongs to the previous cluster.
++clusters.back().number_of_repeated_frames;
} else {
// Start a new cluster.
clusters.push_back({index, /* number_of_repeated_frames= */ 1});
}
}
return clusters;
}
int GetMaxRepeatedFrames(const std::vector<Cluster>& clusters) {
int max_number_of_repeated_frames = 0;
for (const Cluster& cluster : clusters) {
max_number_of_repeated_frames = std::max(max_number_of_repeated_frames,
cluster.number_of_repeated_frames);
}
return max_number_of_repeated_frames;
}
int GetMaxSkippedFrames(const std::vector<Cluster>& clusters) {
size_t max_skipped_frames = 0;
for (size_t i = 1; i < clusters.size(); ++i) {
const size_t skipped_frames = clusters[i].index - clusters[i - 1].index - 1;
max_skipped_frames = std::max(max_skipped_frames, skipped_frames);
}
return static_cast<int>(max_skipped_frames);
}
int GetTotalNumberOfSkippedFrames(const std::vector<Cluster>& clusters) {
// The number of reference frames the test video spans.
const size_t number_ref_frames =
clusters.empty() ? 0 : 1 + clusters.back().index - clusters.front().index;
return static_cast<int>(number_ref_frames - clusters.size());
}
void PrintAnalysisResults(const std::string& label,
ResultsContainer& results,
MetricsLogger& logger) {
if (results.frames.size() > 0u) {
logger.LogSingleValueMetric("Unique_frames_count", label,
results.frames.size(), Unit::kUnitless,
ImprovementDirection::kNeitherIsBetter);
SamplesStatsCounter psnr_values;
SamplesStatsCounter ssim_values;
for (const auto& frame : results.frames) {
psnr_values.AddSample(frame.psnr_value);
ssim_values.AddSample(frame.ssim_value);
}
logger.LogMetric("PSNR_dB", label, psnr_values, Unit::kUnitless,
ImprovementDirection::kNeitherIsBetter);
logger.LogMetric("SSIM", label, ssim_values, Unit::kUnitless,
ImprovementDirection::kNeitherIsBetter);
}
logger.LogSingleValueMetric("Max_repeated", label,
results.max_repeated_frames, Unit::kUnitless,
ImprovementDirection::kNeitherIsBetter);
logger.LogSingleValueMetric("Max_skipped", label, results.max_skipped_frames,
Unit::kUnitless,
ImprovementDirection::kNeitherIsBetter);
logger.LogSingleValueMetric("Total_skipped", label,
results.total_skipped_frames, Unit::kUnitless,
ImprovementDirection::kNeitherIsBetter);
logger.LogSingleValueMetric("Decode_errors_reference", label,
results.decode_errors_ref, Unit::kUnitless,
ImprovementDirection::kNeitherIsBetter);
logger.LogSingleValueMetric("Decode_errors_test", label,
results.decode_errors_test, Unit::kUnitless,
ImprovementDirection::kNeitherIsBetter);
}
} // namespace test
} // namespace webrtc
|