File: camera-access-barebones.html

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (947 lines) | stat: -rw-r--r-- 33,604 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
<!doctype html>
<!--
Copyright 2018 The Immersive Web Community Group

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-->
<html>
  <head>
    <meta charset='utf-8'>
    <meta name='viewport' content='width=device-width, initial-scale=1, user-scalable=no'>
    <meta name='mobile-web-app-capable' content='yes'>
    <meta name='apple-mobile-web-app-capable' content='yes'>

    <title>Barebones WebXR Camera Access</title>
    <link href='../css/common.css' rel='stylesheet'></link>
    <style>
      #text-info {
        position: absolute;
        top: 50%;
        left: 50%;
        transform: translate(-50%, -50%);
        font-size: large;
        color: red;
      }
    </style>
  </head>
  <body>
    <header>
      <details open>
        <summary>Camera Access Barebones</summary>
        This sample demonstrates extremely simple use of WebXR's camera access by creating a rotating cube and applying the camera's image as a texture to it.
        <p>
          <input id="cameraOptional" type="checkbox">
          <label for="cameraOptional">Should "camera-access" feature be requested optionally?</label><br/>

          <a class="back" href="./index.html">Back</a>
        </p>
        <div id="warning-zone"></div>
        <button id="xr-button" class="barebones-button" disabled>XR not found</button>
      </details>
    </header>
    <div id="text-overlay">
      <div id="text-info"></div>
    </div>
    <main style='text-align: center;'>
      <p>Click 'Enter AR' to see content</p>
    </main>
    <script type="module">
        import * as mat4 from "../js/third-party/gl-matrix/mat4.js"
        import {QueryArgs} from '../js/cottontail/src/util/query-args.js';

        const cameraOptionalElement = document.getElementById('cameraOptional');

        // XR globals.
        let xrButton = document.getElementById('xr-button');
        let xrSession = null;
        let xrRefSpace = null;

        // WebGL scene globals.
        let gl = null;
        let glBinding = null;
        let cubeRotation = 0.0;
        let rotationSpeed = 0.01;
        let shaderProgram = null;
        let programInfo = null;
        let buffers = null;
        let texture = null;
        let readback_framebuffer = null;
        let readback_pixels = null;

        // If requested, perform readback:
        const perform_readback = QueryArgs.getBool('performReadback', false);
        // If requested, use DOM overlay to provide information about the read color:
        const use_dom_overlay = perform_readback && QueryArgs.getBool('useDomOverlay', false);

        const render_cube = QueryArgs.getBool('renderCube', true);

        const textOverlayElement = document.querySelector("#text-overlay");
        if (!textOverlayElement) {
          console.error("#text-overlay element not found!");
          throw new Error("#text-overlay element not found!");
        }

        const textInfoElement = document.querySelector("#text-info");
        if (!textInfoElement) {
          console.error("#text-info element not found!");
          throw new Error("#text-info element not found!");
        }

        // Vertex shader program
        const vsSource = `
                attribute vec4 aVertexPosition;
                attribute vec2 aTextureCoord;
                uniform mat4 uModelViewMatrix;
                uniform mat4 uProjectionMatrix;
                varying highp vec2 vTextureCoord;
                void main(void) {
                  gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
                  vTextureCoord = aTextureCoord;
                }
            `;

        // Fragment shader program
        const fsSource = `
            varying highp vec2 vTextureCoord;
            uniform sampler2D uSampler;
            precision mediump float;
            void main(void) {
              vec4 col = texture2D(uSampler, vTextureCoord);
              gl_FragColor.rgb = col.rgb;
              gl_FragColor.a = 0.75;
            }
        `;

        function checkSupportedState() {
            navigator.xr.isSessionSupported('immersive-ar').then((supported) => {
                if (supported) {
                  xrButton.innerHTML = 'Enter AR';
                } else {
                  xrButton.innerHTML = 'AR not found';
                }

                xrButton.disabled = !supported;
            });
        }

        function initXR() {
            if (!window.isSecureContext) {
                let message = "WebXR unavailable due to insecure context";
                document.getElementById("warning-zone").innerText = message;
            }

            if (navigator.xr) {
                xrButton.addEventListener('click', onButtonClicked);
                navigator.xr.addEventListener('devicechange', checkSupportedState);
                checkSupportedState();
            }
        }

        function onButtonClicked() {
            if (!xrSession) {
                const sessionOptions = {
                  requiredFeatures: [],
                  optionalFeatures: [],
                };

                if(cameraOptionalElement.checked) {
                  sessionOptions.optionalFeatures.push('camera-access');
                } else {
                  sessionOptions.requiredFeatures.push('camera-access');
                }

                if (use_dom_overlay) {
                  sessionOptions.requiredFeatures.push('dom-overlay');
                  sessionOptions.domOverlay = { root: textOverlayElement };
                }

                navigator.xr.requestSession('immersive-ar', sessionOptions)
                            .then(onSessionStarted, onRequestSessionError);
            } else {
                xrSession.end();
            }
        }

        function onSessionStarted(session) {
            xrSession = session;
            xrButton.innerHTML = 'Exit AR';

            session.addEventListener('end', onSessionEnded);
            let canvas = document.createElement('canvas');
            gl = canvas.getContext('webgl', {
                xrCompatible: true
            });

            glBinding = new XRWebGLBinding(session, gl);

            // Init cube geometry and cube's default texture.
            initializeGLCube(gl);

            session.updateRenderState({ baseLayer: new XRWebGLLayer(session, gl) });
            session.requestReferenceSpace('viewer').then((refSpace) => {
                xrRefSpace = refSpace;
                session.requestAnimationFrame(onXRFrame);
            });
        }

        function onRequestSessionError(ex) {
            alert("Failed to start immersive AR session.");
            console.error(ex.message);
        }

        function onEndSession(session) {
            session.end();
        }

        function onSessionEnded(event) {
            xrSession = null;
            xrButton.innerHTML = 'Enter AR';
            gl = null;
        }

        // Only print each unique intrinsic string once.
        const intrinsicsPrinted = {};

        // Calculates the camera intrinsics matrix from a projection matrix and viewport
        //
        // Projection matrix convention as per
        //   http://www.songho.ca/opengl/gl_projectionmatrix.html
        //
        // P = p0  p4  p8  p12
        //     p1  p5  p9  p13
        //     p2  p6  p10 p14
        //     p3  p7  p11 p15
        //
        // P = p0  p4  p8  0      = 2n/(r-l) skew     (r+l)/(r-l)   0
        //     0   p5  p9  0        0        2n/(t-b) (t+b)/(t-b)   0
        //     0   0   p10 p14      0        0        -(f+n)/(f-n) -2fn/(f-n)
        //     0   0   -1  0        0        0        -1            0
        //
        // The skew factor controls how much of the Y coordinate is mixed into the X coordinate.
        // It is usually zero, but WebXR allows nonzero skew values which results in rhomboid
        // (nonrectangular) pixels.
        //
        // The GL projection matrix transforms to clip space, then to NDC after perspective divide.
        // This needs to be scaled to pixels based on the viewport. The NDC x and y ranges (-1 .. 1)
        // are transformed to (vp.x .. vp.x + vp.width) and (vp.y .. vp.y + vp.height) respectively.
        // For example:
        //
        //   screen_x = vp.w * (ndc_x + 1) / 2 + vp.x
        //            = (vp.w/2) * ndc_x + (vp.w/2 + vp.x)
        //
        // Using a matrix S for the NDC-to-screen-coordinate transform, this is:
        //
        //   p_screen.xy = (S * p_ndc).xy
        //
        //   with S = vp.w/2  0       0  vp.w/2 + vp.x
        //            0       vp.h/2  0  vp.h/2 + vp.y
        //            0       0       1  0
        //            0       0       0  1
        //
        // This transforms a camera-space point into screen space as follows:
        //
        //   p_screen.xy = (S * p_ndc).xy
        //               = (S * p_clip).xy / p_clip.w
        //               = (S * P * p_camera).xy / (P * p_camera).w
        //               = (S * P * p_camera).xy / (-p_camera.z)
        //
        // Note that this uses the usual GL convention of looking along the negative Z axis, with
        // negative-z points being visible.
        //
        // Intrinsic matrix convention as per
        //   https://en.wikipedia.org/wiki/Camera_resectioning#Intrinsic_parameters
        //
        //   K = ax  gamma u0 0
        //       0   ay    v0 0
        //       0   0     1  0
        //
        // The intrinsic matrix K transforms from camera space to homogenous screen space, providing
        // pixel screen coordinates after the perspective divide. This convention assumes looking
        // along the positive Z axis, with positive-z points being visible.
        //
        // For compatibility with WebXR, invert the Z coordinate, and insert a placeholder 3rd row
        // to get a 4x4 matrix. This produces a modified intrinsic matrix K':
        //
        //   K' = 1  0  0  0 * K = ax  gamma -u0 0
        //        0  1  0  0       0   ay    -v0 0
        //        0  0 -1  0       *   *      *  *
        //        0  0  0  1       0   0      -1 0
        //
        // This results in the following transformation from camera space to screen space:
        //
        //   p_screen.xy = (K' * p_camera).xy / (K' * p_camera).w
        //               = (K' * p_camera).xy / (-p_camera.z)
        //
        // Since the p_screen.xy coordinates must be the same for both calculation methods, it
        // follows that the intrinsic matrix K' is simply S * P:
        //
        //   p_screen.xy = (K' * p_camera).xy / (-p_camera.z)
        //               = (S * P * p_camera).xy / (-p_camera.z)
        // => K' = S * P
        //
        // For example, K'[0,2] is -u0, and equals the product of row 0 of S with column 2 of P:
        //   K'[0,2] = S[0,] * P[,2]
        //   -u0 = [vp.v/2, 0, 0, vp.w/2 + vp.x] * [p8, p9, p10, -1]
        //       = (vp.w/2) * p8 + 0 * p9 + 0 * p10 + (vp.w/2 + vp.x) * (-1)
        //       = vp.w/2 * (p8 - 1) - vp.x
        // => u0 = vp.w/2 * (1 - p8) + vp.x
        function getCameraIntrinsics(projectionMatrix, viewport) {
            const p = projectionMatrix;
            // Principal point in pixels (typically at or near the center of the viewport)
            let u0 = (1 - p[8]) * viewport.width / 2 + viewport.x;
            let v0 = (1 - p[9]) * viewport.height / 2 + viewport.y;
            // Focal lengths in pixels (these are equal for square pixels)
            let ax = viewport.width / 2 * p[0];
            let ay = viewport.height / 2 * p[5];
            // Skew factor in pixels (nonzero for rhomboid pixels)
            let gamma = viewport.width / 2 * p[4];

            // Print the calculated intrinsics, but once per unique value to
            // avoid log spam. These can change every frame for some XR devices.
            const intrinsicString = (
                "intrinsics: u0=" +u0 + " v0=" + v0 + " ax=" + ax + " ay=" + ay +
                    " gamma=" + gamma + " for viewport {width=" +
                    viewport.width + ",height=" + viewport.height + ",x=" +
                    viewport.x + ",y=" + viewport.y + "}");
            if (!intrinsicsPrinted[intrinsicString]) {
                console.log("projection:", Array.from(projectionMatrix).join(", "));
                console.log(intrinsicString);
                intrinsicsPrinted[intrinsicString] = true;
            }
        }

        function onXRFrame(t, frame) {
            let session = frame.session;
            session.requestAnimationFrame(onXRFrame);
            let pose = frame.getViewerPose(xrRefSpace);

            if (pose) {
                gl.bindFramebuffer(gl.FRAMEBUFFER, session.renderState.baseLayer.framebuffer);

                gl.clearColor(0, 0, 0, 0);

                // Clear the framebuffer
                gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

                gl.enable(gl.DEPTH_TEST);

                for (let view of pose.views) {
                    let viewport = session.renderState.baseLayer.getViewport(view);

                    gl.viewport(viewport.x, viewport.y,
                                viewport.width, viewport.height);

                    // For an application working in viewport space, get the camera intrinsics
                    // based on the viewport dimensions:
                    getCameraIntrinsics(view.projectionMatrix, viewport);

                    if (view.camera) {
                      // For an application working in camera texture space, get the camera
                      // intrinsics based on the camera texture width/height which may be
                      // different from the XR framebuffer width/height.
                      //
                      // Note that the camera texture has origin at bottom left, and the
                      // returned intrinsics are based on that convention. If a library
                      // has a different coordinate convention, the coordinates would
                      // need to be adjusted, for example mirroring the Y coordinate if
                      // the origin needs to be at the top left.
                      const cameraViewport = {
                          width: view.camera.width,
                          height: view.camera.height,
                          x: 0,
                          y: 0};
                      getCameraIntrinsics(view.projectionMatrix, cameraViewport);

                      // Update camera image texture.
                      const texture = glBinding.getCameraImage(view.camera);

                      if (perform_readback) {
                        const texture_bytes = view.camera.width * view.camera.height * 4;
                        if (!readback_pixels || readback_pixels.length != texture_bytes) {
                          readback_pixels = new Uint8Array(texture_bytes);
                        }

                        readback_pixels.fill(0);

                        gl.bindTexture(gl.TEXTURE_2D, texture);
                        gl.bindFramebuffer(gl.FRAMEBUFFER, readback_framebuffer);
                        gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0,
                                                gl.TEXTURE_2D, texture, 0);

                        if (gl.checkFramebufferStatus(gl.FRAMEBUFFER) == gl.FRAMEBUFFER_COMPLETE) {
                          gl.readPixels(0, 0, view.camera.width, view.camera.height,
                                        gl.RGBA, gl.UNSIGNED_BYTE, readback_pixels);
                          const e = gl.getError()
                          if (e != 0) {
                            console.warn("Got a GL error:", e);
                          } else {
                            // Texel index (row-major):
                            const middle_coords = view.camera.height/2 * view.camera.width
                                                + view.camera.width/2;

                            // The multiplication (x4) is needed to convert from texel index to
                            // byte index in our buffer (each texel is 4 bytes).
                            const middle_color = readback_pixels.slice(4*middle_coords, 4*(middle_coords+1));

                            // Print out color in the middle of the texture.
                            console.debug("Color in the middle of the texture:", middle_color);

                            const colorIsBlack = (middle_color[0] == 0) && (middle_color[1] == 0) && (middle_color[2] == 0);

                            const colorBlackMsg = "Color in the middle of the texture is black (session warming up?).";
                            // It is very unlikely for the color in the middle of the texture to be pure black, so notify the user:
                            if (use_dom_overlay) {
                              if (colorIsBlack) {
                                textInfoElement.innerHTML = colorBlackMsg;
                              } else {
                                textInfoElement.innerHTML = "";
                              }
                            } else if (colorIsBlack) {
                              console.warn(colorBlackMsg);
                            }
                          }
                        } else {
                          console.warn("Framebuffer incomplete!");
                        }

                        gl.bindFramebuffer(gl.FRAMEBUFFER, session.renderState.baseLayer.framebuffer);
                      }

                      if (render_cube) {
                        // Render cube with camera image texture on each face.
                        drawScene(gl, programInfo, buffers, texture, rotationSpeed, view);
                      }
                    }
                }
            }
        }

        // This function is adapted from a publicly provided code sample found at
        // https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/Tutorial/Using_textures_in_WebGL
        function initializeGLCube(gl) {
            // Initialize a shader program; this is where all the lighting
            // for the vertices and so forth is established.
            shaderProgram = initShaderProgram(gl, vsSource, fsSource);

            // Collect all the info needed to use the shader program.
            // Look up which attributes our shader program is using
            // for aVertexPosition, aTextureCoord and also
            // look up uniform locations.
            programInfo = {
                program: shaderProgram,
                attribLocations: {
                  vertexPosition: gl.getAttribLocation(shaderProgram, 'aVertexPosition'),
                  textureCoord: gl.getAttribLocation(shaderProgram, 'aTextureCoord'),
                },
                uniformLocations: {
                  projectionMatrix: gl.getUniformLocation(shaderProgram, 'uProjectionMatrix'),
                  modelViewMatrix: gl.getUniformLocation(shaderProgram, 'uModelViewMatrix'),
                  uSampler: gl.getUniformLocation(shaderProgram, 'uSampler'),
                },
            };

            // Here's where we call the routine that builds all the
            // objects we'll be drawing.
            buffers = initBuffers(gl);
            texture = loadTexture(gl, '../media/textures/cube-sea.png');

            readback_framebuffer = gl.createFramebuffer();
        }

        // Initialize the buffers we'll need. For this demo, we just
        // have one object -- a simple three-dimensional cube.
        function initBuffers(gl) {
          // Create a buffer for the cube's vertex positions.
          const positionBuffer = gl.createBuffer();

          // Select the positionBuffer as the one to apply buffer
          // operations to from here out.
          gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);

          // Now create an array of positions for the cube.
          const positions = [
            // Front face
            -1.0,
            -1.0,
            1.0,
            1.0,
            -1.0,
            1.0,
            1.0,
            1.0,
            1.0,
            -1.0,
            1.0,
            1.0,

            // Back face
            -1.0,
            -1.0,
            -1.0,
            -1.0,
            1.0,
            -1.0,
            1.0,
            1.0,
            -1.0,
            1.0,
            -1.0,
            -1.0,

            // Top face
            -1.0,
            1.0,
            -1.0,
            -1.0,
            1.0,
            1.0,
            1.0,
            1.0,
            1.0,
            1.0,
            1.0,
            -1.0,

            // Bottom face
            -1.0,
            -1.0,
            -1.0,
            1.0,
            -1.0,
            -1.0,
            1.0,
            -1.0,
            1.0,
            -1.0,
            -1.0,
            1.0,

            // Right face
            1.0,
            -1.0,
            -1.0,
            1.0,
            1.0,
            -1.0,
            1.0,
            1.0,
            1.0,
            1.0,
            -1.0,
            1.0,

            // Left face
            -1.0,
            -1.0,
            -1.0,
            -1.0,
            -1.0,
            1.0,
            -1.0,
            1.0,
            1.0,
            -1.0,
            1.0,
            -1.0,
          ];

          // Now pass the list of positions into WebGL to build the
          // shape. We do this by creating a Float32Array from the
          // JavaScript array, then use it to fill the current buffer.
          gl.bufferData(
            gl.ARRAY_BUFFER,
            new Float32Array(positions),
            gl.STATIC_DRAW
          );

          // Now set up the texture coordinates for the faces.
          const textureCoordBuffer = gl.createBuffer();
          gl.bindBuffer(gl.ARRAY_BUFFER, textureCoordBuffer);

          const textureCoordinates = [
            // Front
            0.0,
            0.0,
            1.0,
            0.0,
            1.0,
            1.0,
            0.0,
            1.0,
            // Back
            0.0,
            0.0,
            1.0,
            0.0,
            1.0,
            1.0,
            0.0,
            1.0,
            // Top
            0.0,
            0.0,
            1.0,
            0.0,
            1.0,
            1.0,
            0.0,
            1.0,
            // Bottom
            0.0,
            0.0,
            1.0,
            0.0,
            1.0,
            1.0,
            0.0,
            1.0,
            // Right
            0.0,
            0.0,
            1.0,
            0.0,
            1.0,
            1.0,
            0.0,
            1.0,
            // Left
            0.0,
            0.0,
            1.0,
            0.0,
            1.0,
            1.0,
            0.0,
            1.0,
          ];

          gl.bufferData(
            gl.ARRAY_BUFFER,
            new Float32Array(textureCoordinates),
            gl.STATIC_DRAW
          );

          // Build the element array buffer; this specifies the indices
          // into the vertex arrays for each face's vertices.

          const indexBuffer = gl.createBuffer();
          gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);

          // This array defines each face as two triangles, using the
          // indices into the vertex array to specify each triangle's
          // position.

          const indices = [
            0,
            1,
            2,
            0,
            2,
            3, // front
            4,
            5,
            6,
            4,
            6,
            7, // back
            8,
            9,
            10,
            8,
            10,
            11, // top
            12,
            13,
            14,
            12,
            14,
            15, // bottom
            16,
            17,
            18,
            16,
            18,
            19, // right
            20,
            21,
            22,
            20,
            22,
            23, // left
          ];

          // Now send the element array to GL
          gl.bufferData(
            gl.ELEMENT_ARRAY_BUFFER,
            new Uint16Array(indices),
            gl.STATIC_DRAW
          );

          return {
            position: positionBuffer,
            textureCoord: textureCoordBuffer,
            indices: indexBuffer,
          };
        }

        // Initialize a texture and load an image.
        // When the image finished loading copy it into the texture.
        function loadTexture(gl, url) {
          const texture = gl.createTexture();
          gl.bindTexture(gl.TEXTURE_2D, texture);

          // Because images have to be download over the internet
          // they might take a moment until they are ready.
          // Until then put a single pixel in the texture so we can
          // use it immediately. When the image has finished downloading
          // we'll update the texture with the contents of the image.
          const level = 0;
          const internalFormat = gl.RGBA;
          const width = 1;
          const height = 1;
          const border = 0;
          const srcFormat = gl.RGBA;
          const srcType = gl.UNSIGNED_BYTE;
          const pixel = new Uint8Array([0, 0, 255, 255]); // opaque blue
          gl.texImage2D(
            gl.TEXTURE_2D,
            level,
            internalFormat,
            width,
            height,
            border,
            srcFormat,
            srcType,
            pixel
          );

          const image = new Image();
          image.onload = function () {
            gl.bindTexture(gl.TEXTURE_2D, texture);
            gl.texImage2D(
              gl.TEXTURE_2D,
              level,
              internalFormat,
              srcFormat,
              srcType,
              image
            );

            // WebGL1 has different requirements for power of 2 images
            // vs non power of 2 images so check if the image is a
            // power of 2 in both dimensions.
            if (isPowerOf2(image.width) && isPowerOf2(image.height)) {
              // Yes, it's a power of 2. Generate mips.
              gl.generateMipmap(gl.TEXTURE_2D);
            } else {
              // No, it's not a power of 2. Turn of mips and set
              // wrapping to clamp to edge
              gl.texParameteri(
                gl.TEXTURE_2D,
                gl.TEXTURE_WRAP_S,
                gl.CLAMP_TO_EDGE
              );
              gl.texParameteri(
                gl.TEXTURE_2D,
                gl.TEXTURE_WRAP_T,
                gl.CLAMP_TO_EDGE
              );
              gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
            }
          };
          image.src = url;

          return texture;
        }

        // Draw the scene.
        function drawScene(gl, programInfo, buffers, texture, deltaTime, view) {
          // Set the drawing position to the "identity" point, which is
          // the center of the scene.
          const modelViewMatrix = mat4.create();

          // Now move the drawing position a bit to where we want to
          // start drawing the square.

          mat4.translate(
            modelViewMatrix, // destination matrix
            modelViewMatrix, // matrix to translate
            [0.0, 0.0, -6.0]
          ); // amount to translate
          mat4.rotate(
            modelViewMatrix, // destination matrix
            modelViewMatrix, // matrix to rotate
            cubeRotation, // amount to rotate in radians
            [0, 0, 1]
          ); // axis to rotate around (Z)
          mat4.rotate(
            modelViewMatrix, // destination matrix
            modelViewMatrix, // matrix to rotate
            cubeRotation * 0.7, // amount to rotate in radians
            [0, 1, 0]
          ); // axis to rotate around (X)

          // Tell WebGL how to pull out the positions from the position
          // buffer into the vertexPosition attribute
          {
            const numComponents = 3;
            const type = gl.FLOAT;
            const normalize = false;
            const stride = 0;
            const offset = 0;
            gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position);
            gl.vertexAttribPointer(
              programInfo.attribLocations.vertexPosition,
              numComponents,
              type,
              normalize,
              stride,
              offset
            );
            gl.enableVertexAttribArray(
              programInfo.attribLocations.vertexPosition
            );
          }

          // Tell WebGL how to pull out the texture coordinates from
          // the texture coordinate buffer into the textureCoord attribute.
          {
            const numComponents = 2;
            const type = gl.FLOAT;
            const normalize = false;
            const stride = 0;
            const offset = 0;
            gl.bindBuffer(gl.ARRAY_BUFFER, buffers.textureCoord);
            gl.vertexAttribPointer(
              programInfo.attribLocations.textureCoord,
              numComponents,
              type,
              normalize,
              stride,
              offset
            );
            gl.enableVertexAttribArray(
              programInfo.attribLocations.textureCoord
            );
          }

          // Tell WebGL which indices to use to index the vertices
          gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffers.indices);

          // Tell WebGL to use our program when drawing
          gl.useProgram(programInfo.program);

          // Set the shader uniforms
          gl.uniformMatrix4fv(
            programInfo.uniformLocations.projectionMatrix,
            false,
            view.projectionMatrix
          );
          gl.uniformMatrix4fv(
            programInfo.uniformLocations.modelViewMatrix,
            false,
            modelViewMatrix
          );

          // Specify the texture to map onto the faces.

          // Tell WebGL we want to affect texture unit 0
          gl.activeTexture(gl.TEXTURE0);

          // Bind the texture to texture unit 0
          gl.bindTexture(gl.TEXTURE_2D, texture);

          // Tell the shader we bound the texture to texture unit 0
          gl.uniform1i(programInfo.uniformLocations.uSampler, 0);

          {
            const vertexCount = 36;
            const type = gl.UNSIGNED_SHORT;
            const offset = 0;
            gl.drawElements(gl.TRIANGLES, vertexCount, type, offset);
          }

          // Update the rotation for the next draw
          cubeRotation += deltaTime;

          // gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black, fully opaque
          // gl.clear(gl.COLOR_BUFFER_BIT);
        }

        // Initialize a shader program, so WebGL knows how to draw our data
        //
        function initShaderProgram(gl, vsSource, fsSource) {
          const vertexShader = loadShader(gl, gl.VERTEX_SHADER, vsSource);
          const fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fsSource);

          // Create the shader program

          const shaderProgram = gl.createProgram();
          gl.attachShader(shaderProgram, vertexShader);
          gl.attachShader(shaderProgram, fragmentShader);
          gl.linkProgram(shaderProgram);

          // If creating the shader program failed, alert

          if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
            alert(
              "Unable to initialize the shader program: " +
                gl.getProgramInfoLog(shaderProgram)
            );
            return null;
          }

          return shaderProgram;
        }

        // Creates a shader of the given type, uploads the source and
        // compiles it.
        //
        function loadShader(gl, type, source) {
          const shader = gl.createShader(type);

          // Send the source to the shader object

          gl.shaderSource(shader, source);

          // Compile the shader program

          gl.compileShader(shader);

          // See if it compiled successfully

          if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
            alert(
              "An error occurred compiling the shaders: " +
                gl.getShaderInfoLog(shader)
            );
            gl.deleteShader(shader);
            return null;
          }

          return shader;
        }

        function isPowerOf2(value) {
          return (value & (value - 1)) == 0;
        }

        initXR();
    </script>
  </body>
</html>