File: phone-ar-depth.html

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (519 lines) | stat: -rw-r--r-- 19,124 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
<!doctype html>
<!--
Copyright 2018 The Immersive Web Community Group

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-->
<html>
  <head>
    <meta charset='utf-8'>
    <meta name='viewport' content='width=device-width, initial-scale=1, user-scalable=no'>
    <meta name='mobile-web-app-capable' content='yes'>
    <meta name='apple-mobile-web-app-capable' content='yes'>

    <meta http-equiv="origin-trial" content="As0BE09FBB6viNVrwWICektFyN2QlX8TMaTNjvpcGH4Jf7cmI3J4UYvtZQZvScykvRwtGkO4cacWZ3EvIiRUbgUAAABaeyJvcmlnaW4iOiJodHRwczovL3N0b3JhZ2UuZ29vZ2xlYXBpcy5jb206NDQzIiwiZmVhdHVyZSI6IldlYlhSRGVwdGgiLCJleHBpcnkiOjE2MTE3NzIwMTl9">

    <title>AR Depth API</title>

    <link href='../css/common.css' rel='stylesheet'></link>

    <!--The polyfill is not needed for browser that have native API support,
        but is linked by these samples for wider compatibility.-->
    <!--script src='https://cdn.jsdelivr.net/npm/webxr-polyfill@latest/build/webxr-polyfill.js'></script-->
    <script src='../js/xrray-polyfill.js' type='module'></script>
    <script src='../js/webxr-polyfill.js'></script>

    <script src='../js/webxr-button.js'></script>
    <style>
      #text-info {
        position: absolute;
        top: 50%;
        left: 50%;
        transform: translate(-50%, -50%);
        font-size: large;
        color: red;
      }
    </style>
  </head>
  <body>
    <header>
      <details open>
        <summary>AR Depth API - CPU access</summary>
        <p>
          This sample demonstrates use of a depth API in immersive-ar session.
          The data will be accessed from a CPU.
          <a class="back" href="./index.html">Back</a>
        </p>
      </details>
    </header>
    <div id="text-overlay">
      <div id="text-info"></div>
    </div>
    <script id="vertexShader" type="x-shader/x-vertex">
      precision mediump float;

      attribute vec2 aVertexPosition;
      attribute float aDepthDistance;

      uniform float uPointSize;

      varying float vDepthDistance;

      void main(void) {
        gl_PointSize = uPointSize;
        gl_Position = vec4(aVertexPosition, -1.0, 1.0);
        vDepthDistance = aDepthDistance;
      }
    </script>
    <script id="fragmentShader" type="x-shader/x-fragment" src="../shaders/depth-api-cpu.frag"></script>
    <script id="turboFragment" type="x-shader/x-fragment" src="../shaders/turbo.glsl"></script>

    <script type="module" async>
      import {mat4, vec3, mat3, vec2} from '../js/cottontail/src/math/gl-matrix.js';

      // XR globals.
      let xrButton = null;
      let xrRefSpace = null;

      // WebGL scene globals.
      let gl = null;
      let shaderProgram = null;
      let programInfo = null;
      let vertexBuffer = null;

      // shader code
      let vertexShaderSource = null;
      let fragmentShaderSource = null;

      const textOverlayElement = document.querySelector("#text-overlay");
      if(!textOverlayElement) {
        console.error("#text-overlay element not found!");
        throw new Error("#text-overlay element not found!");
      }

      const textInfoElement = document.querySelector("#text-info");
      if(!textInfoElement) {
        console.error("#text-info element not found!");
        throw new Error("#text-info element not found!");
      }

      function initXR() {
        xrButton = new XRDeviceButton({
          onRequestSession: onRequestSession,
          onEndSession: onEndSession,
          textEnterXRTitle: "START AR",
          textXRNotFoundTitle: "AR NOT FOUND",
          textExitXRTitle: "EXIT  AR",
          supportedSessionTypes: ['immersive-ar']
        });
        document.querySelector('header').appendChild(xrButton.domElement);
      }

      function onRequestSession() {
        // Requests an immersive session with environment integration.

        let options = {
          requiredFeatures: ['depth-sensing'],
          optionalFeatures: ['dom-overlay'],
          domOverlay: { root: textOverlayElement },
          depthSensing: {
            usagePreference: ["cpu-optimized"],
            dataFormatPreference: ["luminance-alpha"],
          }
        };

        navigator.xr.requestSession('immersive-ar', options).then((session) => {
            session.mode = 'immersive-ar';
            xrButton.setSession(session);

            fetchShaders().then(() => {
              onSessionStarted(session);
            })
        });
      }

      function onSessionStarted(session) {
        session.addEventListener('end', onSessionEnded);

        let canvas = document.createElement('canvas');
        gl = canvas.getContext('webgl', {
            xrCompatible: true
        });

        initializeGL();

        session.updateRenderState({ baseLayer: new XRWebGLLayer(session, gl) });
        session.requestReferenceSpace('local').then((refSpace) => {
          xrRefSpace = refSpace;
          session.requestAnimationFrame(onXRFrame);
        });

        if(session.depthUsage != "cpu-optimized") {
          throw new Error("Unsupported depth API usage!");
        }

        if(session.depthDataFormat != "luminance-alpha") {
          throw new Error("Unsupported depth data format!");
        }
      }

      function onEndSession(session) {
        session.end();
      }

      function onSessionEnded(event) {
        xrButton.setSession(null);
      }

      // Helper, fetches shader source code based on the passed in ID of the <script> element.
      // Will inspect src attribute value and issue fetch API call to obtain the script body.
      async function fetchShader(id) {
        const element = document.getElementById(id);
        const url = element.src;

        const response = await fetch(url);
        const text = await response.text();

        return text;
      }

      async function fetchShaders() {
        vertexShaderSource = document.getElementById('vertexShader').textContent;
        fragmentShaderSource = await fetchShader("fragmentShader") + "\n"
                             + await fetchShader("turboFragment");

      }

      function initializeGL() {
        shaderProgram = initShaderProgram(vertexShaderSource, fragmentShaderSource);

        programInfo = {
            program: shaderProgram,
            attribLocations: {
              vertexPosition: gl.getAttribLocation(shaderProgram, 'aVertexPosition'),
              depthDistance: gl.getAttribLocation(shaderProgram, 'aDepthDistance'),
            },
            uniformLocations: {
              pointSize: gl.getUniformLocation(shaderProgram, 'uPointSize'),
              alpha: gl.getUniformLocation(shaderProgram, 'uAlpha'),
            },
        };

        vertexBuffer = gl.createBuffer();
      }

      function initShaderProgram(vsSource, fsSource) {
        const vertexShader = loadShader(gl.VERTEX_SHADER, vsSource);
        const fragmentShader = loadShader(gl.FRAGMENT_SHADER, fsSource);

        // Create the shader program
        const shaderProgram = gl.createProgram();
        gl.attachShader(shaderProgram, vertexShader);
        gl.attachShader(shaderProgram, fragmentShader);
        gl.linkProgram(shaderProgram);

        // If creating the shader program failed, alert
        if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
          alert("Unable to initialize the shader program: " +
              gl.getProgramInfoLog(shaderProgram)
          );
          return null;
        }

        return shaderProgram;
      }

      function loadShader(type, source) {
        const shader = gl.createShader(type);

        gl.shaderSource(shader, source);
        gl.compileShader(shader);

        if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
          alert(
            "An error occurred compiling the shaders: " +
              gl.getShaderInfoLog(shader)
          );
          gl.deleteShader(shader);
          return null;
        }

        return shader;
      }

      // Component-wise multiplication of 2 vec3s:
      function scaleByVec(out, lhs, rhs) {
        out[0] = lhs[0] * rhs[0];
        out[1] = lhs[1] * rhs[1];
        out[2] = lhs[2] * rhs[2];

        return out;
      }

      function clamp(out, input, lower_bound, upper_bound) {
        out[0] = Math.max(lower_bound[0], Math.min(input[0], upper_bound[0]));
        out[1] = Math.max(lower_bound[1], Math.min(input[1], upper_bound[1]));
        out[2] = Math.max(lower_bound[2], Math.min(input[2], upper_bound[2]));

        return out;
      }

      // Called every time a XRSession requests that a new frame be drawn.
      function onXRFrame(t, frame) {
        const session = frame.session;
        session.requestAnimationFrame(onXRFrame);

        const baseLayer = session.renderState.baseLayer;

        const pose = frame.getViewerPose(xrRefSpace);

        if (pose) {
          gl.bindFramebuffer(gl.FRAMEBUFFER, session.renderState.baseLayer.framebuffer);

          // Clear the framebuffer
          gl.clearColor(0, 0, 0, 0);
          gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

          for (const view of pose.views) {
            const viewport = baseLayer.getViewport(view);
            gl.viewport(viewport.x, viewport.y,
                        viewport.width, viewport.height);

            const depthData = frame.getDepthInformation(view);
            if (depthData) {
              textInfoElement.innerHTML = "";

              renderDepthInformationCPU(depthData, view, viewport);
            } else {
              console.error("Depth data unavailable in the current frame!");
              textInfoElement.innerHTML = "Depth data unavailable in the current frame!";
            }
          }
        } else {
              console.error("Pose unavailable in the current frame!");
          textInfoElement.innerHTML = "Pose unavailable in the current frame!";
        }
      }

      function calculateVerticesFromDepth(depthData, viewport) {
        // This function calculates vertices data going from depth buffer
        // coordinates into normalized view coordinates to then fetch the
        // distance using the XRCPUDepthInformation.getDepthInMeters() helper.
        // The normalized view coordinates are then converted to NDC in order
        // to produce the vertices data.

        const RESOLUTION = 5;

        const depth_width = depthData.width;
        const depth_height = depthData.height;

        const X_RANGE = depth_width;
        const Y_RANGE = depth_height;

        const vertices_data = [];

        const norm_depth_from_norm_view = depthData.normDepthBufferFromNormView.matrix;
        const norm_view_from_norm_depth = mat4.invert(mat4.create(), norm_depth_from_norm_view);

        const inverse_depth_dimensions = vec3.fromValues(1.0 / depth_width,
                                                         1.0 / depth_height,
                                                         0);

        for(let x = 0; x < X_RANGE; x = x + RESOLUTION) {
          for(let y = 0; y < Y_RANGE; y = y + RESOLUTION) {

            // We start with absolute depth buffer coordinates:
            const depth_coords_depth_buffer = vec3.fromValues(x, y, 0);

            // Normalize them by depth buffer dimensions:
            const depth_cooords_norm_depth_buffer = scaleByVec(vec3.create(),
                                                               depth_coords_depth_buffer,
                                                               inverse_depth_dimensions);

            // Transform to normalized view coordinates:
            const depth_coords_view_norm = vec3.transformMat4(vec3.create(),
                                                              depth_cooords_norm_depth_buffer,
                                                              norm_view_from_norm_depth);

            if(depth_coords_view_norm[0] < 0 || depth_coords_view_norm[0] > 1 ||
               depth_coords_view_norm[1] < 0 || depth_coords_view_norm[1] > 1) {
              continue;
            }

            // getDepthInMeters() accepts inputs in normalized view coordinate system
            // that has origin in top left corner, X's grow to the right, and Y's grow
            // downward.
            const distance = depthData.getDepthInMeters(depth_coords_view_norm[0],
                                                        depth_coords_view_norm[1]);

            // We need to convert normalized view coordinates to normalized device coordinates,
            // with the origin at the center of a cube with side length = 2 and Y growing upward.
            const depth_coords_ndc = vec3.clone(depth_coords_view_norm);

            // First, fix up the Y axis:
            depth_coords_ndc[1] = 1 - depth_coords_ndc[1];

            // Then, convert to range [-1, 1]:
            depth_coords_ndc[0] = (2.0 * depth_coords_ndc[0]) - 1;
            depth_coords_ndc[1] = (2.0 * depth_coords_ndc[1]) - 1;

            if(depth_coords_ndc[0] > 1 || depth_coords_ndc[0] < -1 ||
               depth_coords_ndc[1] > 1 || depth_coords_ndc[1] < -1) {
              continue;
            }

            vertices_data.push(depth_coords_ndc[0], depth_coords_ndc[1], distance);
          }
        }

        return vertices_data;
      }

      function calculateVerticesFromViewCoordinates(depthData, viewport) {
        // This function calculates vertices data going directly from normalized
        // view coordinates & using the XRCPUDepthInformation.getDepthInMeters()
        // helper. Normalized view coordinates are then converted to NDC.

        const smaller_dim = Math.min(viewport.width, viewport.height);
        const larger_dim = Math.max(viewport.width, viewport.height);
        const is_portrait = smaller_dim == viewport.width;

        const larger_dim_resolution = (smaller_dim * 0.1) / larger_dim;

        const X_RESOLUTION = is_portrait ? 0.1 : larger_dim_resolution;
        const Y_RESOLUTION = is_portrait ? larger_dim_resolution : 0.1;

        const X_RANGE = 1.0;
        const Y_RANGE = 1.0;

        const vertices_data = [];

        for(let x = 0; x <= X_RANGE; x += X_RESOLUTION) {
          for(let y = 0; y <= Y_RANGE; y += Y_RESOLUTION) {
            const distance = depthData.getDepthInMeters(x, y);

            // We need to convert normalized view coordinates to normalized device coordinates,
            // with the origin at the center of a cube with side length = 2 and Y growing upward.
            const depth_coords_ndc = vec3.fromValues(x, y, 0.0);

            // First, fix up the Y axis:
            depth_coords_ndc[1] = 1 - depth_coords_ndc[1];

            // Then, convert to range [-1, 1]:
            depth_coords_ndc[0] = (2.0 * depth_coords_ndc[0]) - 1;
            depth_coords_ndc[1] = (2.0 * depth_coords_ndc[1]) - 1;

            if(depth_coords_ndc[0] > 1 || depth_coords_ndc[0] < -1 ||
               depth_coords_ndc[1] > 1 || depth_coords_ndc[1] < -1) {
              continue;
            }

            vertices_data.push(depth_coords_ndc[0], depth_coords_ndc[1], distance);
          }
        }

        return vertices_data;
      }

      function calculateVerticesFromViewCoordinatesSupersampled(depthData, viewport) {
        // For verification only.

        const smaller_depth_dim = Math.min(depthData.width, depthData.height);
        const larger_depth_dim = Math.max(depthData.width, depthData.height);

        const X_RANGE = 0.1;
        const Y_RANGE = 0.1;

        const NUM_SAMPLES_X = Math.trunc(4 * smaller_depth_dim);
        const NUM_SAMPLES_Y = Math.trunc(4 * larger_depth_dim);

        const vertices_data = [];

        for(let x = 0; x <= X_RANGE; x += 1/NUM_SAMPLES_X) {
          for(let y = 0; y <= X_RANGE; y += 1/NUM_SAMPLES_Y ) {
            const distance = depthData.getDepthInMeters(x, y);

            // We need to convert normalized view coordinates to normalized device coordinates,
            // with the origin at the center of a cube with side length = 2 and Y growing upward.
            const depth_coords_ndc = vec3.fromValues(x, y, 0.0);

            // First, fix up the Y axis:
            depth_coords_ndc[1] = 1 - depth_coords_ndc[1];

            // Then, convert to range [-1, 1]:
            depth_coords_ndc[0] = (2.0 * depth_coords_ndc[0]) - 1;
            depth_coords_ndc[1] = (2.0 * depth_coords_ndc[1]) - 1;

            if(depth_coords_ndc[0] > 1 || depth_coords_ndc[0] < -1 ||
               depth_coords_ndc[1] > 1 || depth_coords_ndc[1] < -1) {
              continue;
            }

            vertices_data.push(depth_coords_ndc[0], depth_coords_ndc[1], distance);
          }
        }

        return vertices_data;
      }

      function renderDepthInformationCPU(depthData, view, viewport) {
        const vertices_data = calculateVerticesFromViewCoordinates(depthData, viewport);

        gl.useProgram(programInfo.program);

        gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
        gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices_data), gl.DYNAMIC_DRAW);

        gl.vertexAttribPointer(
          programInfo.attribLocations.vertexPosition,
          2,      // 2 components
          gl.FLOAT,
          false,  // don't normalize
          12,     // stride = 3 floats * 4 bytes
          0       // start at offset 0 of the buffer
        );
        gl.enableVertexAttribArray(
          programInfo.attribLocations.vertexPosition
        );

        gl.vertexAttribPointer(
          programInfo.attribLocations.depthDistance,
          1,      // 1 component
          gl.FLOAT,
          false,  // don't normalize
          12,     // stride = 3 floats * 4 bytes
          8       // start at offset of 2 floats * 4 bytes of the buffer
        );
        gl.enableVertexAttribArray(
          programInfo.attribLocations.depthDistance
        );

        gl.uniform1f(programInfo.uniformLocations.pointSize,
                     15.0);

        gl.uniform1f(programInfo.uniformLocations.alpha,
                     0.9);

        gl.drawArrays(gl.POINTS, 0, vertices_data.length / 3);
      }

      // Start the XR application.
      initXR();
    </script>
  </body>
</html>