File: scoring.cpp

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (541 lines) | stat: -rw-r--r-- 19,857 bytes parent folder | download | duplicates (18)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
#include <zxcvbn/scoring.hpp>

#include <zxcvbn/adjacency_graphs.hpp>
#include <zxcvbn/util.hpp>

#include <numeric>
#include <string>
#include <vector>

#include <cmath>

#include "base/no_destructor.h"

namespace std {

template<class T, class U>
struct hash<std::pair<T, U>> {
  std::size_t operator()(const std::pair<T, U> & v) const {
    return std::hash<T>()(v.first) ^ std::hash<U>()(v.second);
  }
};

}

namespace zxcvbn {

const auto BRUTEFORCE_CARDINALITY = static_cast<guesses_t>(10);
const auto MIN_GUESSES_BEFORE_GROWING_SEQUENCE = static_cast<guesses_t>(10000);
const auto MIN_SUBMATCH_GUESSES_SINGLE_CHAR = static_cast<guesses_t>(10);
const auto MIN_SUBMATCH_GUESSES_MULTI_CHAR = static_cast<guesses_t>(50);

const std::regex& START_UPPER() {
  static base::NoDestructor<std::regex> start_upper(R"(^[A-Z][^A-Z]+$)");
  return *start_upper;
}

const std::regex& END_UPPER() {
  static base::NoDestructor<std::regex> end_upper(R"(^[^A-Z]+[A-Z]$)");
  return *end_upper;
}

const std::regex& ALL_UPPER() {
  static base::NoDestructor<std::regex> all_upper(R"(^[^a-z]+$)");
  return *all_upper;
}

const std::regex& ALL_LOWER() {
  static base::NoDestructor<std::regex> all_lower(R"(^[^A-Z]+$)");
  return *all_lower;
}

template<class Tret, class Tin>
Tret factorial(Tin n) {
  // unoptimized, called only on small n
  if (n < 2) return 1;
  Tret f = 1;
  for (Tin i = 2; i <= n; ++i) {
    f *= i;
  }
  return f;
}

template<class M, class K, class V>
static
void insert_or_assign(M & m, const K & k, V && v) {
  auto p = m.insert(std::make_pair(k, std::forward<V>(v)));
  if (!p.second) {
    p.first->second = std::forward<V>(v);
  }
}

static
std::size_t token_len(const Match & m) __attribute__((pure));

static
std::size_t token_len(const Match & m) {
  std::size_t result = m.j - m.i + 1;
  // Bruteforce matches might be any substring of the original string, which are
  // not necessarily aligned to UTF8 code points, and thus m.token might not be
  // a valid UTF8 string.
  if (m.get_pattern() != MatchPattern::BRUTEFORCE)
    assert(result == util::character_len(m.token));
  return result;
}

// ------------------------------------------------------------------------------
// search --- most guessable match sequence -------------------------------------
// ------------------------------------------------------------------------------
//
// takes a sequence of overlapping matches, returns the non-overlapping sequence with
// minimum guesses. the following is a O(l_max * (n + m)) dynamic programming algorithm
// for a length-n password with m candidate matches. l_max is the maximum optimal
// sequence length spanning each prefix of the password. In practice it rarely exceeds 5 and the
// search terminates rapidly.
//
// the optimal "minimum guesses" sequence is here defined to be the sequence that
// minimizes the following function:
//
//    g = l! * Product(m.guesses for m in sequence) + D^(l - 1)
//
// where l is the length of the sequence.
//
// the factorial term is the number of ways to order l patterns.
//
// the D^(l-1) term is another length penalty, roughly capturing the idea that an
// attacker will try lower-length sequences first before trying length-l sequences.
//
// for example, consider a sequence that is date-repeat-dictionary.
//  - an attacker would need to try other date-repeat-dictionary combinations,
//    hence the product term.
//  - an attacker would need to try repeat-date-dictionary, dictionary-repeat-date,
//    ..., hence the factorial term.
//  - an attacker would also likely try length-1 (dictionary) and length-2 (dictionary-date)
//    sequences before length-3. assuming at minimum D guesses per pattern type,
//    D^(l-1) approximates Sum(D^i for i in [1..l-1]
//
// ------------------------------------------------------------------------------

ScoringResult most_guessable_match_sequence(const std::string & password,
                                            std::vector<Match> & matches,
                                            bool exclude_additive) {
  auto n = password.length();

  // partition matches into sublists according to ending index j
  std::unordered_map<idx_t, std::vector<std::reference_wrapper<Match>>> matches_by_j;
  for (auto & m : matches) {
    matches_by_j[m.j].push_back(m);
  }
  // small detail: for deterministic output, sort each sublist by i
  for (auto & item : matches_by_j) {
    std::sort(item.second.begin(), item.second.end(),
              [&] (const std::reference_wrapper<Match> & a,
                   const std::reference_wrapper<Match> & b) {
                return a.get().i < b.get().i;
              });
  }

  struct {
    // optimal.m[k][l] holds final match in the best length-l match sequence covering the
    // password prefix up to k, inclusive.
    // if there is no length-l sequence that scores better (fewer guesses) than
    // a shorter match sequence spanning the same prefix, optimal.m[k][l] is undefined.
    std::unordered_map<idx_t, std::unordered_map<idx_t, std::reference_wrapper<Match>>> m;

    // same structure as optimal.m -- holds the product term Prod(m.guesses for m in sequence).
    // optimal.pi allows for fast (non-looping) updates to the minimization function.
    std::unordered_map<idx_t, std::unordered_map<idx_t, guesses_t>> pi;

    // same structure as optimal.m -- holds the overall metric.
    std::unordered_map<idx_t, std::unordered_map<idx_t, guesses_t>> g;
  } optimal;

  // helper: considers whether a length-l sequence ending at match m is better (fewer guesses)
  // than previously encountered sequences, updating state if so.
  auto update = [&] (Match & m, idx_t l) {
    auto k = m.j;
    auto pi = estimate_guesses(m, password);
    if (l > 1) {
      // we're considering a length-l sequence ending with match m:
      // obtain the product term in the minimization function by multiplying m's guesses
      // by the product of the length-(l-1) sequence ending just before m, at m.i - 1.
      pi *= optimal.pi[m.i - 1][l - 1];
    }
    // calculate the minimization func
    auto g = factorial<guesses_t>(l) * pi;
    if (!exclude_additive) {
      g += std::pow(MIN_GUESSES_BEFORE_GROWING_SEQUENCE, l - 1);
    }
    // update state if new best.
    // first see if any competing sequences covering this prefix, with l or fewer matches,
    // fare better than this sequence. if so, skip it and return.
    for (const auto & item : optimal.g[k]) {
      auto & competing_l = item.first;
      auto & competing_g = item.second;
      if (competing_l > l) continue;
      if (competing_g <= g) return;
    }
    // this sequence might be part of the final optimal sequence.
    insert_or_assign(optimal.g[k], l, g);
    insert_or_assign(optimal.m[k], l, std::ref(m));
    insert_or_assign(optimal.pi[k], l, pi);
  };

  // helper: make bruteforce match objects spanning i to j, inclusive.
  // TODO: we store bruteforce matches in this vector so that we can
  //       store references in optimal.m, this is arguable hacked, so fix this
  std::unordered_map<std::pair<idx_t, idx_t>, std::unique_ptr<Match>> bruteforces;
  auto make_bruteforce_match = [&] (idx_t i, idx_t j) -> std::reference_wrapper<Match> {
    auto p = bruteforces.insert(std::make_pair(std::make_pair(i, j),
                                               std::make_unique<Match>
                                               (i, j,
                                                password.substr(i, j - i + 1),
                                                BruteforceMatch{})));
    return std::ref(*p.first->second);
  };

  // helper: evaluate bruteforce matches ending at k.
  auto bruteforce_update = [&] (idx_t k) {
    // see if a single bruteforce match spanning the k-prefix is optimal.
    auto m = make_bruteforce_match(0, k);
    update(m, 1);
    for (idx_t i = 1; i <= k; ++i) {
      // generate k bruteforce matches, spanning from (i=1, j=k) up to (i=k, j=k).
      // see if adding these new matches to any of the sequences in optimal[i-1]
      // leads to new bests.
      auto m2 = make_bruteforce_match(i, k);
      for (const auto & item : optimal.m[i - 1]) {
        auto & l = item.first;
        auto & last_m = item.second;
        // corner: an optimal sequence will never have two adjacent bruteforce matches.
        // it is strictly better to have a single bruteforce match spanning the same region:
        // same contribution to the guess product with a lower length.
        // --> safe to skip those cases.
        if (last_m.get().get_pattern() == MatchPattern::BRUTEFORCE) continue;
        // try adding m to this length-l sequence.
        update(m2, l + 1);
      }
    }
  };

  // helper: step backwards through optimal.m starting at the end,
  // constructing the final optimal match sequence.
  auto unwind = [&] (idx_t n) {
    std::vector<std::reference_wrapper<Match>> optimal_match_sequence;
    if (!n) return optimal_match_sequence;
    auto k = n - 1;
    idx_t l = optimal.g[k].begin()->first;
    guesses_t g = optimal.g[k].begin()->second;
    for (const auto & item : optimal.g[k]) {
      auto & candidate_l = item.first;
      auto & candidate_g = item.second;
      if (candidate_g < g) {
        l = candidate_l;
        g = candidate_g;
      }
    }
    while (true) {
      auto it = optimal.m[k].find(l);
      assert(it != optimal.m[k].end());
      auto & m = it->second;
      optimal_match_sequence.push_back(m);
      if (!m.get().i) break;
      k = m.get().i - 1;
      l -= 1;
    }
    std::reverse(optimal_match_sequence.begin(), optimal_match_sequence.end());
    return optimal_match_sequence;
  };

  for (idx_t k = 0; k < n; ++k) {
    for (const auto & m : matches_by_j[k]) {
      if (m.get().i > 0) {
        for (const auto & item : optimal.m[m.get().i - 1]) {
          auto & l = item.first;
          update(m, l + 1);
        }
      }
      else {
        update(m, 1);
      }
    }
    bruteforce_update(k);
  }
  auto optimal_match_sequence = unwind(n);
  auto optimal_l = optimal_match_sequence.size();

  guesses_t guesses;
  // corner: empty password
  if (password.length() == 0) {
    guesses = 1;
  }
  else {
    guesses = optimal.g[n - 1][optimal_l];
  }

  // retrieve referenced bruteforce matches
  std::vector<std::unique_ptr<Match>> bruteforce_matches;
  for (const auto & ref : optimal_match_sequence) {
    auto & m = ref.get();
    if (m.get_pattern() != MatchPattern::BRUTEFORCE) continue;
    auto it = bruteforces.find(std::make_pair(m.i, m.j));
    if (it == bruteforces.end()) continue;
    bruteforce_matches.push_back(std::move(it->second));
  }

  return {
    password,
    guesses,
    static_cast<guesses_log10_t>(std::log10(guesses)),
    std::move(bruteforce_matches),
    std::move(optimal_match_sequence),
  };
}

// ------------------------------------------------------------------------------
// guess estimation -- one function per match pattern ---------------------------
// ------------------------------------------------------------------------------

guesses_t estimate_guesses(Match & match, const std::string & password) {
  if (match.guesses) return match.guesses; // a match's guess estimate doesn't change. cache it.
  guesses_t min_guesses = 1;
  if (match.token.length() < password.length()) {
    min_guesses = (token_len(match) == 1)
      ? MIN_SUBMATCH_GUESSES_SINGLE_CHAR
      : MIN_SUBMATCH_GUESSES_MULTI_CHAR;
  }
#define MATCH_FN(title, upper, lower) \
  : match.get_pattern() == MatchPattern::upper ? lower##_guesses
  guesses_t (*estimation_function)(const Match &) =
    (false) ? nullptr MATCH_RUN() : nullptr;
#undef MATCH_FN
  assert(estimation_function != nullptr);
  auto guesses = estimation_function(match);
  match.guesses = std::max(guesses, min_guesses);
  match.guesses_log10 = static_cast<guesses_log10_t>(std::log10(match.guesses));
  return match.guesses;
}

guesses_t unknown_guesses(const Match & match) {
  assert(match.guesses);
  return match.guesses;
}

guesses_t bruteforce_guesses(const Match & match) {
  auto guesses = std::pow(BRUTEFORCE_CARDINALITY, token_len(match));
  // small detail: make bruteforce matches at minimum one guess bigger than smallest allowed
  // submatch guesses, such that non-bruteforce submatches over the same [i..j] take precedence.
  auto min_guesses = (token_len(match) == 1)
    ? MIN_SUBMATCH_GUESSES_SINGLE_CHAR + 1
    : MIN_SUBMATCH_GUESSES_MULTI_CHAR + 1;
  return std::max(guesses, min_guesses);
}

guesses_t repeat_guesses(const Match & match) {
  return match.get_repeat().base_guesses * match.get_repeat().repeat_count;
}

guesses_t sequence_guesses(const Match & match) {
  auto second_chr_pos = util::utf8_iter(match.token.begin(), match.token.end());
  auto first_chr = std::string(match.token.begin(), second_chr_pos);
  guesses_t base_guesses;
  // lower guesses for obvious starting points
  if (first_chr == "a" || first_chr == "A" || first_chr == "z" ||
      first_chr == "Z" || first_chr == "0" || first_chr == "1" ||
      first_chr == "9") {
    base_guesses = 4;
  }
  else {
    if (std::regex_match(first_chr, std::regex(R"(\d)"))) {
      base_guesses = 10; // digits
    }
    else {
      // could give a higher base for uppercase,
      // assigning 26 to both upper and lower sequences is more conservative.
      base_guesses = 26;
    }
  }
  if (!match.get_sequence().ascending) {
    // need to try a descending sequence in addition to every ascending sequence ->
    // 2x guesses
    base_guesses *= 2;
  }
  return base_guesses * token_len(match);
}

guesses_t regex_guesses(const Match & match) {
  switch (match.get_regex().regex_tag) {
  case RegexTag::RECENT_YEAR:
  {
    // conservative estimate of year space: num years from REFERENCE_YEAR.
    // if year is close to REFERENCE_YEAR, estimate a year space of MIN_YEAR_SPACE.
    auto pre_year_space = std::stoul(match.get_regex().regex_match.matches[0]);
    if (pre_year_space > REFERENCE_YEAR) {
      pre_year_space -= REFERENCE_YEAR;
    }
    else {
      pre_year_space = REFERENCE_YEAR - pre_year_space;
    }
    guesses_t year_space = pre_year_space;
    year_space = std::max(year_space, MIN_YEAR_SPACE);
    return year_space;
  }
  case RegexTag::ALPHA_LOWER: case RegexTag::ALPHANUMERIC: {
    auto base = [&] {
      switch (match.get_regex().regex_tag) {
      case RegexTag::ALPHA_LOWER: return 26;
      case RegexTag::ALPHANUMERIC: return 62;
      default: assert(false); return 0;
      }
    }();
    return std::pow(base, token_len(match));
  }
  default:
    return 0;
  }
}

guesses_t date_guesses(const Match & match) {
  // base guesses: (year distance from REFERENCE_YEAR) * num_days * num_years
  auto pre_year_space = match.get_date().year;
  if (pre_year_space > REFERENCE_YEAR) {
    pre_year_space -= REFERENCE_YEAR;
  }
  else {
    pre_year_space = REFERENCE_YEAR - pre_year_space;
  }

  guesses_t year_space = pre_year_space;
  year_space = std::max(year_space, MIN_YEAR_SPACE);
  auto guesses = year_space * 365;
  // double for four-digit years
  if (match.get_date().has_full_year) guesses *= 2;
  // add factor of 4 for separator selection (one of ~4 choices)
  if (match.get_date().separator.length()) guesses *= 4;
  return guesses;
}

guesses_t spatial_guesses(const Match & match) {
  std::size_t s;
  guesses_t d;
  if (match.get_spatial().graph == GraphTag::QWERTY ||
      match.get_spatial().graph == GraphTag::DVORAK) {
    s = KEYBOARD_STARTING_POSITIONS;
    d = KEYBOARD_AVERAGE_DEGREE;
  }
  else {
    s = KEYPAD_STARTING_POSITIONS;
    d = KEYPAD_AVERAGE_DEGREE;
  }
  guesses_t guesses = 0;
  auto L = token_len(match);
  auto t = static_cast<decltype(L)>(match.get_spatial().turns);
  // estimate the number of possible patterns w/ length L or less with t turns or less.
  for (decltype(L) i = 2; i <= L; ++i) {
    auto possible_turns = std::min(t, i - 1);
    for (decltype(possible_turns) j = 1; j <= possible_turns; ++j) {
      guesses += nCk(i - 1, j - 1) * s * std::pow(d, j);
    }
  }
  // add extra guesses for shifted keys. (% instead of 5, A instead of a.)
  // math is similar to extra guesses of l33t substitutions in dictionary matches.
  if (match.get_spatial().shifted_count) {
    auto S = match.get_spatial().shifted_count;
    decltype(S) U = token_len(match) - match.get_spatial().shifted_count; // unshifted count
    if (S == 0 || U == 0) {
      guesses *= 2;
    }
    else {
      auto shifted_variations = 0;
      for (decltype(S) i = 1; i <= std::min(S, U); ++i) {
        shifted_variations += nCk(S + U, i);
      }
      guesses *= shifted_variations;
    }
  }

  return guesses;
}

guesses_t dictionary_guesses(const Match & match) {
  auto base_guesses = match.get_dictionary().rank; // keep these as properties for display purposes
  auto uppercase_variations_ = uppercase_variations(match);
  auto l33t_variations_ = l33t_variations(match);
  auto reversed_variations = match.get_dictionary().reversed ? 2 : 1;
  return (base_guesses * uppercase_variations_ * l33t_variations_ * reversed_variations);
}

guesses_t uppercase_variations(const Match & match) {
  auto & word = match.token;
  if (std::regex_match(word, ALL_LOWER()) || !word.size())
    return 1;
  // a capitalized word is the most common capitalization scheme,
  // so it only doubles the search space (uncapitalized + capitalized).
  // allcaps and end-capitalized are common enough too, underestimate as 2x factor to be safe.
  for (const auto& regex : {START_UPPER(), END_UPPER(), ALL_UPPER()}) {
    if (std::regex_match(word, regex)) return 2;
  }
  // otherwise calculate the number of ways to capitalize U+L uppercase+lowercase letters
  // with U uppercase letters or less. or, if there's more uppercase than lower (for eg. PASSwORD),
  // the number of ways to lowercase U+L letters with L lowercase letters or less.
  auto match_chr = [] (const std::string & str, const std::regex & regex) {
    decltype(str.length()) toret = 0;
    for (auto it = str.begin(); it != str.end();) {
      auto it2 = util::utf8_iter(it, str.end());
      auto s = std::string(it, it2);
      if (std::regex_match(s, regex)) {
        toret += 1;
      }
      it = it2;
    }
    return toret;
  };
  auto U = match_chr(word, std::regex(R"([A-Z])"));
  auto L = match_chr(word, std::regex(R"([a-z])"));
  guesses_t variations = 0;
  for (decltype(U) i = 1; i <= std::min(U, L); ++i) {
    variations += nCk(U + L, i);
  }
  return variations;
}

guesses_t l33t_variations(const Match & match) {
  auto & dmatch = match.get_dictionary();
  if (!dmatch.l33t) return 1;
  guesses_t variations = 1;
  for (const auto & item : dmatch.sub) {
    auto & subbed = item.first;
    auto & unsubbed = item.second;
    // lower-case match.token before calculating: capitalization shouldn't affect l33t calc.
    idx_t S = 0, U = 0;
    // XXX: using ascii_lower is okay for now since our
    // sub dictionaries are ascii only
    auto ltoken = util::ascii_lower(match.token);
    for (auto it = ltoken.begin(); it != ltoken.end();) {
      auto it2 = util::utf8_iter(it, ltoken.end());
      auto cs = std::string(it, it2);
      if (cs == subbed) S += 1;
      if (cs == unsubbed) U += 1;
      it = it2;
    }
    if (!S || !U) {
      // for this sub, password is either fully subbed (444) or fully unsubbed (aaa)
      // treat that as doubling the space (attacker needs to try fully subbed chars in addition to
      // unsubbed.)
      variations *= 2;
    }
    else {
      // this case is similar to capitalization:
      // with aa44a, U = 3, S = 2, attacker needs to try unsubbed + one sub + two subs
      auto p = std::min(U, S);
      guesses_t possibilities = 0;
      for (decltype(p) i = 1; i <= p; ++i) {
        possibilities += nCk(U + S, i);
      }
      variations *= possibilities;
    }
  }
  return variations;
}

}