1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <assert.h>
#include <algorithm>
#include <array>
#include <map>
#include <optional>
#include <set>
#include <sstream>
#include <string>
#include <string_view>
#include <variant>
#include <vector>
#include "RawPtrHelpers.h"
#include "SeparateRepositoryPaths.h"
#include "SpanifyManualPathsToIgnore.h"
#include "clang/AST/ASTContext.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Rewrite/Core/Rewriter.h"
#include "clang/Tooling/CommonOptionsParser.h"
#include "clang/Tooling/Refactoring.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/TargetSelect.h"
using namespace clang::ast_matchers;
namespace {
// Forward declarations
std::string GetArraySize(const clang::ArrayTypeLoc& array_type_loc,
const clang::SourceManager& source_manager,
const clang::ASTContext& ast_context);
// For debugging/assertions. Dump the match result to stderr.
void DumpMatchResult(const MatchFinder::MatchResult& result) {
llvm::errs() << "Matched nodes:\n";
for (const auto& node : result.Nodes.getMap()) {
llvm::errs() << " - " << node.first << ":\n";
}
for (const auto& node : result.Nodes.getMap()) {
llvm::errs() << "\nDump for node " << node.first << ":\n";
node.second.dump(llvm::errs(), *result.Context);
}
}
const char kBaseSpanIncludePath[] = "base/containers/span.h";
// Include path that needs to be added to all the files where
// base::raw_span<...> replaces a raw_ptr<...>.
const char kBaseRawSpanIncludePath[] = "base/memory/raw_span.h";
const char kBaseAutoSpanificationHelperIncludePath[] =
"base/containers/auto_spanification_helper.h";
const char kArrayIncludePath[] = "array";
const char kStringViewIncludePath[] = "string_view";
// Precedence values for EmitReplacement.
//
// The `extract_edits.py` script sorts multiple insertions at the same code
// location by these precedence values in ascending numerical order.
//
// Paired insertions (e.g., an opening and its corresponding closing bracket)
// typically use a precedence of `+K` for the "opening" part and `-K` for the
// "closing" part, where K is one of the constants defined below. This is
// because, for a given position, we usually want to close the bracket before
// opening a new one. A higher precedence value is used when the replacement
// has a higher tie with the expression.
enum Precedence {
kNeutralPrecedence = 0,
// Lower priority (weaker ties to the target)
kAppendDataCallPrecedence,
kDecaySpanToPointerPrecedence,
kAdaptBinaryOperationPrecedence,
kEmitSingleVariableSpanPrecedence,
kAdaptBinaryPlusEqOperationPrecedence,
kRewriteUnaryOperationPrecedence,
// Higher priority (stronger ties to the target)
};
// This iterates over function parameters and matches the ones that match
// parm_var_decl_matcher.
AST_MATCHER_P(clang::FunctionDecl,
forEachParmVarDecl,
clang::ast_matchers::internal::Matcher<clang::ParmVarDecl>,
parm_var_decl_matcher) {
const clang::FunctionDecl& function_decl = Node;
unsigned num_params = function_decl.getNumParams();
bool is_matching = false;
clang::ast_matchers::internal::BoundNodesTreeBuilder result;
for (unsigned i = 0; i < num_params; i++) {
const clang::ParmVarDecl* param = function_decl.getParamDecl(i);
clang::ast_matchers::internal::BoundNodesTreeBuilder param_matches;
if (parm_var_decl_matcher.matches(*param, Finder, ¶m_matches)) {
is_matching = true;
result.addMatch(param_matches);
}
}
*Builder = std::move(result);
return is_matching;
}
AST_MATCHER(clang::VarDecl, hasExternalStorage) {
return Node.hasExternalStorage();
}
// Returns the size of the array/string literal. It is stored in the
// `output_size` parameter.
// Returns true if the size is known, false otherwise.
bool ArraySize(const clang::Expr* expr, uint64_t* output_size) {
// C-style arrays with a known size.
//
// Note that some arrays in templates have a known size at instantiating
// time, but it is not determined at this point.
if (const auto* constant_array = clang::dyn_cast<clang::ConstantArrayType>(
expr->getType()->getUnqualifiedDesugaredType())) {
*output_size = constant_array->getSize().getLimitedValue();
return true;
}
// String literals.
if (const auto* string_literal =
clang::dyn_cast<clang::StringLiteral>(expr)) {
*output_size = string_literal->getLength() + 1;
return true;
}
return false;
}
// Return whether the subscript access is guaranteed to be safe, false
// otherwise.
//
// This is based on `llvm-project/clang/lib/Analysis/UnsafeBufferUsage.cpp`.
AST_MATCHER(clang::ArraySubscriptExpr, isSafeArraySubscript) {
// No guarantees if the array's size is not known.
uint64_t size = 0;
if (!ArraySize(Node.getBase()->IgnoreParenImpCasts(), &size)) {
return false;
}
// If the index depends on a template parameter, it could be out of bounds, we
// don't know yet at this point.
clang::Expr::EvalResult eval_index;
const clang::Expr* index_expr = Node.getIdx();
if (index_expr->isValueDependent()) {
return false;
}
// Try to evaluate the index expression. If we can't evaluate it, we can't
// provide any guarantees.
if (!index_expr->EvaluateAsInt(eval_index, Finder->getASTContext())) {
return false;
}
// `APInt` stands for Arbitrary Precision Integer.
llvm::APInt index_value = eval_index.Val.getInt();
// Negative indices are out of bounds. Hopefully, this never happens in
// Chromium. Print a warning for Chromium developers to know about them.
if (index_value.isNegative()) {
clang::SourceManager& source_manager =
Finder->getASTContext().getSourceManager();
llvm::errs() << llvm::formatv(
"{0}:{1}: Warning: array subscript out of bounds: {0} < 0\n",
source_manager.getFilename(Node.getExprLoc()),
source_manager.getSpellingLineNumber(Node.getExprLoc()),
index_value.getSExtValue());
return false;
}
// If the index is greater than or equal to the size of the array, it's out of
// bounds. Hopefully, this never happens in Chromium. Print a warning for
// Chromium developers to know about them.
if (index_value.uge(size)) {
clang::SourceManager& source_manager =
Finder->getASTContext().getSourceManager();
llvm::errs() << llvm::formatv(
"{0}:{1}: Warning: array subscript out of bounds: {2} >= {3}\n",
source_manager.getFilename(Node.getExprLoc()),
source_manager.getSpellingLineNumber(Node.getExprLoc()),
index_value.getSExtValue(), size);
return false;
}
// The subscript is guaranteed to be safe!
return true;
}
struct UnsafeFreeFuncToMacro {
// The name of an unsafe free function to be rewritten.
const std::string_view function_name;
// The helper macro name to be rewritten to.
const std::string_view macro_name;
};
std::optional<UnsafeFreeFuncToMacro> FindUnsafeFreeFuncToBeRewrittenToMacro(
const clang::FunctionDecl* function_decl) {
// The table of unsafe free functions to be rewritten to helper macro calls.
// Note that C++20 is not supported in tools/clang/spanify/ and we cannot use
// std::to_array.
static constexpr UnsafeFreeFuncToMacro unsafe_free_func_table[] = {
// https://source.chromium.org/chromium/chromium/src/+/main:third_party/boringssl/src/include/openssl/pool.h;drc=c76e4f83a8c5786b463c3e55c070a21ac751b96b;l=81
{"CRYPTO_BUFFER_data", "UNSAFE_CRYPTO_BUFFER_DATA"},
// https://source.chromium.org/chromium/chromium/src/+/main:third_party/harfbuzz-ng/src/src/hb-buffer.h;drc=ea6a172f84f2cbcfed803b5ae71064c7afb6b5c2;l=647
{"hb_buffer_get_glyph_infos", "UNSAFE_HB_BUFFER_GET_GLYPH_INFOS"},
// https://source.chromium.org/chromium/chromium/src/+/main:third_party/harfbuzz-ng/src/src/hb-buffer.h;drc=c76e4f83a8c5786b463c3e55c070a21ac751b96b;l=651
{"hb_buffer_get_glyph_positions", "UNSAFE_HB_BUFFER_GET_GLYPH_POSITIONS"},
// https://source.chromium.org/chromium/chromium/src/+/main:remoting/host/xsession_chooser_linux.cc;drc=fca90714b3949f0f4c27f26ef002fe8d33f3cb73;l=274
{"g_get_system_data_dirs", "UNSAFE_G_GET_SYSTEM_DATA_DIRS"},
};
const std::string& function_name = function_decl->getQualifiedNameAsString();
for (const auto& entry : unsafe_free_func_table) {
if (function_name == entry.function_name) {
return entry;
}
}
return std::nullopt;
}
struct UnsafeCxxMethodToMacro {
// The qualified class name of an unsafe method to be rewritten.
const std::string_view class_name;
// The name of an unsafe method to be rewritten.
const std::string_view method_name;
// The helper macro name to be rewritten to.
const std::string_view macro_name;
};
// Given a clang::CXXMethodDecl, find a corresponding UnsafeCxxMethodToMacro
// instance if the method matches. Returns nullptr if not found.
std::optional<UnsafeCxxMethodToMacro> FindUnsafeCxxMethodToBeRewrittenToMacro(
const clang::CXXMethodDecl* method_decl) {
// The table of unsafe methods to be rewritten to helper macro calls.
// Note that C++20 is not supported in tools/clang/spanify/ and we cannot use
// std::to_array.
static constexpr UnsafeCxxMethodToMacro unsafe_cxx_method_table[] = {
{"SkBitmap", "NoArgForTesting", "UNSAFE_SKBITMAP_NOARGFORTESTING"},
// https://source.chromium.org/chromium/chromium/src/+/main:third_party/skia/include/core/SkBitmap.h;drc=f72bd467feb15edd9323e46eab1b74ab6025bc5b;l=936
{"SkBitmap", "getAddr32", "UNSAFE_SKBITMAP_GETADDR32"},
};
const clang::CXXRecordDecl* class_decl = method_decl->getParent();
const std::string& method_name = method_decl->getNameAsString();
const std::string& class_name = class_decl->getQualifiedNameAsString();
for (const auto& entry : unsafe_cxx_method_table) {
if (method_name == entry.method_name && class_name == entry.class_name) {
return entry;
}
}
return std::nullopt;
}
AST_MATCHER(clang::FunctionDecl, unsafeFunctionToBeRewrittenToMacro) {
const clang::FunctionDecl* function_decl = &Node;
if (const clang::CXXMethodDecl* method_decl =
clang::dyn_cast<clang::CXXMethodDecl>(function_decl)) {
return bool(FindUnsafeCxxMethodToBeRewrittenToMacro(method_decl));
}
return bool(FindUnsafeFreeFuncToBeRewrittenToMacro(function_decl));
}
// Convert a number to a string with leading zeros. This is useful to ensure
// that the alphabetical order of the strings is the same as the numerical
// order.
std::string ToStringWithPadding(size_t value, size_t padding) {
std::string str = std::to_string(value);
assert(str.size() <= padding);
return std::string(padding - str.size(), '0') + str;
}
// A simple base64 hash function.
std::string HashBase64(const std::string& input, size_t output_size = 4) {
std::hash<std::string> hasher;
size_t hash = hasher(input);
constexpr std::array<char, 64> charset = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C',
'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c',
'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p',
'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '-', '_',
};
std::string output(output_size, '0');
for (size_t i = 0; i < output.size(); i++) {
output[i] = charset[hash % charset.size()];
hash /= charset.size();
}
return output;
}
// An identifier for a node.
//
// Important properties:
// - The same range in a file, but processed from two different compile units
// must have the same key. This is useful to combine rewrites from different
// compile units.
// - Sorting nodes alphabetically must preserve the order of the ranges in
// the file. This is useful to associate the function's argument using their
// alphabetical order.
//
// `human_readable`
// ----------------
// It is a debugging flag that makes the node key easier to read for debugging
// purposes. It can potentially be useful for external debugging tools to
// visualize the graph. However, it increase the output size by 25%.
//
// offset hash
// Example: ------- --------
// - human_readable = false => 0000426:NrcSLRGt
// - human_readable = true => 0000426:M4TJ:main.cc:11:8:3
// ------- ---- ------- -- - -
// offset hash filename | | `length
// | `- column
// `--- line
template <bool human_readable = false /* Tweak this to debug*/>
std::string NodeKeyFromRange(const clang::SourceRange& range,
const clang::SourceManager& source_manager,
const std::string& optional_seed = "") {
clang::tooling::Replacement replacement(
source_manager, clang::CharSourceRange::getCharRange(range), "");
llvm::StringRef path = replacement.getFilePath();
llvm::StringRef file_name = llvm::sys::path::filename(path);
// Note that the largest file is 7.2Mbytes long. So every offsets can be
// represented using 7 digits. `ToStringWithPadding` ensures that the
// alphabetical order of the nodes is the same as the order of the ranges in
// the file.
if constexpr (!human_readable) {
return llvm::formatv(
"{0}:{1}", ToStringWithPadding(replacement.getOffset(), 7),
HashBase64(NodeKeyFromRange<true>(range, source_manager, optional_seed),
8));
}
return llvm::formatv("{0}:{1}:{2}:{3}:{4}:{5}",
ToStringWithPadding(replacement.getOffset(), 7),
HashBase64(path.str() + optional_seed), file_name,
source_manager.getSpellingLineNumber(range.getBegin()),
source_manager.getSpellingColumnNumber(range.getBegin()),
replacement.getLength());
}
// Returns the identifier for the given clang node. The returned identifier is
// unique to a pair of (node, optional_seed). See also `NodeKeyFromRange` for
// details.
//
// Arguments:
// node = A clang node whose identifier is returned.
// source_manager = The clang::SourceManager of the clang node `node`.
// optional_seed = The given string is used to make a variation of the
// identifier of `node`. This argument is useful when `node` alone does
// not provide enough fine precision.
template <typename T>
std::string NodeKey(const T* node,
const clang::SourceManager& source_manager,
const std::string& optional_seed = "") {
return NodeKeyFromRange(node->getSourceRange(), source_manager,
optional_seed);
}
std::string GetRHS(const MatchFinder::MatchResult& result);
std::string GetLHS(const MatchFinder::MatchResult& result);
// Emit a generic instruction to the output stream. This removes duplicates.
void Emit(const std::string& line) {
static std::set<std::string> emitted;
if (emitted.count(line) == 0) {
emitted.insert(line);
llvm::outs() << line;
}
}
// Associate a change with a node.
// A replacement has one of following format:
// - r:::<file path>:::<offset>:::<length>:::<replacement text>
// - include-user-header:::<file path>:::-1:::-1:::<include text>
// - include-system-header:::<file path>:::-1:::-1:::<include text>
//
// It is associated with a "Node", which is a unique identifier.
void EmitReplacement(std::string_view node, std::string_view replacement) {
Emit(llvm::formatv("r {0} {1}\n", node, replacement));
}
void EmitEdge(const std::string& lhs, const std::string& rhs) {
Emit(llvm::formatv("e {0} {1}\n", lhs, rhs));
}
// Emits a source node.
//
// A source node is a node that triggers the rewrite. All rewrites will start
// from sources.
void EmitSource(const std::string& node) {
Emit(llvm::formatv("s {0}\n", node));
}
// Emits a sink node.
//
// Those are nodes where we the size of the memory region is known
// This is true for nodes representing the following assignments:
// - nullptr => size is zero
// - new/new[n] => size is 1/n
// - constant arrays buf[1024] => size is 1024
// - calls to third_party functions that we can't rewrite (they should provide
// a size for the pointer returned)
//
// A rewrite is applied from a source if all the reachable end nodes are
// sinks.
void EmitSink(const std::string& node) {
Emit(llvm::formatv("i {0}\n", node));
}
// Emit `replacement` if `rhs_key` is rewritten, but `lhs_key` is not.
//
// `lhs_key` and `rhs_key` are the unique identifiers of the nodes.
void EmitFrontier(const std::string& lhs_key,
const std::string& rhs_key,
const std::string& replacement) {
Emit(llvm::formatv("f {0} {1} {2}\n", lhs_key, rhs_key, replacement));
}
static std::string GetReplacementDirective(
const clang::SourceRange& replacement_range,
std::string replacement_text,
const clang::SourceManager& source_manager,
int precedence = kNeutralPrecedence) {
clang::tooling::Replacement replacement(
source_manager, clang::CharSourceRange::getCharRange(replacement_range),
replacement_text);
llvm::StringRef file_path = replacement.getFilePath();
assert(!file_path.empty() && "Replacement file path is empty.");
// For replacements that span multiple lines, make sure to remove the newline
// character.
// `./apply-edits.py` expects `\n` to be escaped as '\0'.
std::replace(replacement_text.begin(), replacement_text.end(), '\n', '\0');
return llvm::formatv("r:::{0}:::{1}:::{2}:::{3}:::{4}", file_path,
replacement.getOffset(), replacement.getLength(),
precedence, replacement_text);
}
std::string GetIncludeDirective(const clang::SourceRange replacement_range,
const clang::SourceManager& source_manager,
const char* include_path = kBaseSpanIncludePath,
bool is_system_include_path = false) {
return llvm::formatv(
"{0}:::{1}:::-1:::-1:::{2}",
is_system_include_path ? "include-system-header" : "include-user-header",
GetFilename(source_manager, replacement_range.getBegin(),
raw_ptr_plugin::FilenameLocationType::kSpellingLoc),
include_path);
}
template <typename T>
const T* GetNodeOrCrash(const MatchFinder::MatchResult& result,
std::string_view id,
std::string_view assert_message) {
const T* node = result.Nodes.getNodeAs<T>(id);
if (!node) {
llvm::errs() << "\nError: no node for `" << id << "` (" << assert_message
<< ")\n";
DumpMatchResult(result);
assert(false && "`GetNodeOrCrash()`");
}
return node;
}
// The semantics of `getBeginLoc()` and `getEndLoc()` are somewhat
// surprising (e.g. https://stackoverflow.com/a/59718238). This function
// tries to do the least surprising thing, specializing for
//
// * `clang::MemberExpr`
// * `clang::DeclRefExpr`
// * `clang::CallExpr`
//
// and defaults to returning the range of token `expr`.
clang::SourceRange getExprRange(const clang::Expr* expr,
const clang::SourceManager& source_manager,
const clang::LangOptions& lang_options) {
if (const auto* member_expr = clang::dyn_cast<clang::MemberExpr>(expr)) {
clang::SourceLocation begin_loc = member_expr->getMemberLoc();
size_t member_name_length = member_expr->getMemberDecl()->getName().size();
clang::SourceLocation end_loc =
begin_loc.getLocWithOffset(member_name_length);
return {begin_loc, end_loc};
}
if (const auto* decl_ref = clang::dyn_cast<clang::DeclRefExpr>(expr)) {
auto name = decl_ref->getNameInfo().getName().getAsString();
return {decl_ref->getBeginLoc(),
decl_ref->getEndLoc().getLocWithOffset(name.size())};
}
if (const auto* call_expr = clang::dyn_cast<clang::CallExpr>(expr)) {
return {call_expr->getBeginLoc(),
call_expr->getRParenLoc().getLocWithOffset(1)};
}
if (auto* binary_op = clang::dyn_cast_or_null<clang::BinaryOperator>(expr)) {
return {expr->getBeginLoc(),
getExprRange(binary_op->getRHS(), source_manager, lang_options)
.getEnd()};
}
return {
expr->getBeginLoc(),
clang::Lexer::getLocForEndOfToken(expr->getExprLoc(), 0u, source_manager,
lang_options),
};
}
std::string GetTypeAsString(const clang::QualType& qual_type,
const clang::ASTContext& ast_context) {
clang::PrintingPolicy printing_policy(ast_context.getLangOpts());
printing_policy.SuppressScope = 0;
printing_policy.SuppressUnwrittenScope = 1;
printing_policy.SuppressElaboration = 0;
printing_policy.SuppressInlineNamespace = 1;
printing_policy.SuppressDefaultTemplateArgs = 1;
printing_policy.PrintAsCanonical = 0;
return qual_type.getAsString(printing_policy);
}
// It is intentional that this function ignores cast expressions and applies
// the `.data()` addition to the internal expression. if we have:
// type* ptr = reinterpret_cast<type*>(buf); where buf needs to be rewritten
// to span and ptr doesn't. The `.data()` call is added right after buffer as
// follows: type* ptr = reinterpret_cast<type*>(buf.data());
static clang::SourceRange getSourceRange(
const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
const clang::LangOptions& lang_opts = result.Context->getLangOpts();
if (auto* op =
result.Nodes.getNodeAs<clang::UnaryOperator>("unaryOperator")) {
if (op->isPostfix()) {
return {op->getBeginLoc(), op->getEndLoc().getLocWithOffset(2)};
}
auto* expr = result.Nodes.getNodeAs<clang::Expr>("rhs_expr");
return {op->getBeginLoc(),
getExprRange(expr, source_manager, lang_opts).getEnd()};
}
if (auto* op = result.Nodes.getNodeAs<clang::Expr>("binaryOperator")) {
auto* sub_expr = result.Nodes.getNodeAs<clang::Expr>("binary_op_rhs");
auto end_loc = getExprRange(sub_expr, source_manager, lang_opts).getEnd();
return {op->getBeginLoc(), end_loc};
}
if (auto* op = result.Nodes.getNodeAs<clang::CXXOperatorCallExpr>(
"raw_ptr_operator++")) {
auto* callee = op->getDirectCallee();
if (callee->getNumParams() == 0) { // postfix op++ on raw_ptr;
auto* expr = result.Nodes.getNodeAs<clang::Expr>("rhs_expr");
return clang::SourceRange(
getExprRange(expr, source_manager, lang_opts).getEnd());
}
return clang::SourceRange(op->getEndLoc().getLocWithOffset(2));
}
if (auto* expr = result.Nodes.getNodeAs<clang::Expr>("rhs_expr")) {
return clang::SourceRange(
getExprRange(expr, source_manager, lang_opts).getEnd());
}
if (auto* size_expr = result.Nodes.getNodeAs<clang::Expr>("size_node")) {
return clang::SourceRange(
getExprRange(size_expr, source_manager, lang_opts).getEnd());
}
// Not supposed to get here.
llvm::errs() << "\n"
"Error: getSourceRange() encountered an unexpected match.\n"
"Expected one of : \n"
" - unaryOperator\n"
" - binaryOperator\n"
" - raw_ptr_operator++\n"
" - rhs_expr\n"
"\n";
DumpMatchResult(result);
assert(false && "Unexpected match in getSourceRange()");
}
static void maybeUpdateSourceRangeIfInMacro(
const clang::SourceManager& source_manager,
const MatchFinder::MatchResult& result,
clang::SourceRange& range) {
if (!range.isValid() || !range.getBegin().isMacroID()) {
return;
}
// We need to find the reference to the object that might be getting
// accessed and rewritten to find the location to rewrite. SpellingLocation
// returns a different position if the source was pointing into the macro
// definition. See clang::SourceManager for details but relevant section:
//
// "Spelling locations represent where the bytes corresponding to a token came
// from and expansion locations represent where the location is in the user's
// view. In the case of a macro expansion, for example, the spelling location
// indicates where the expanded token came from and the expansion location
// specifies where it was expanded."
auto* rhs_decl_ref =
result.Nodes.getNodeAs<clang::DeclRefExpr>("declRefExpr");
if (!rhs_decl_ref) {
return;
}
// We're extracting the spellingLocation's position and then we'll move the
// location forward by the length of the variable. This will allow us to
// insert .data() at the end of the decl_ref.
clang::SourceLocation correct_start =
source_manager.getSpellingLoc(rhs_decl_ref->getLocation());
bool invalid_line, invalid_col = false;
auto line =
source_manager.getSpellingLineNumber(correct_start, &invalid_line);
auto col =
source_manager.getSpellingColumnNumber(correct_start, &invalid_col);
assert(correct_start.isValid() && !invalid_line && !invalid_col &&
"Unable to get SpellingLocation info");
// Get the name and find the end of the decl_ref.
std::string name = rhs_decl_ref->getFoundDecl()->getNameAsString();
clang::SourceLocation correct_end = source_manager.translateLineCol(
source_manager.getFileID(correct_start), line, col + name.size());
assert(correct_end.isValid() &&
"Incorrectly got an End SourceLocation for macro");
// This returns at the end of the variable being referenced so we can
// insert .data(), if we wanted it wrapped in params (variable).data()
// we'd need {correct_start, correct_end} but this doesn't seem needed in
// macros tested on so far.
range = clang::SourceRange{correct_end};
}
static std::string getNodeFromPointerTypeLoc(
const clang::PointerTypeLoc* type_loc,
const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
const clang::ASTContext& ast_context = *result.Context;
const auto& lang_opts = ast_context.getLangOpts();
// We are in the case of a function return type loc.
// This doesn't always generate the right range since type_loc doesn't
// account for qualifiers (like const). Didn't find a proper way for now
// to get the location with type qualifiers taken into account.
clang::SourceRange replacement_range = {
type_loc->getBeginLoc(), type_loc->getEndLoc().getLocWithOffset(1)};
std::string initial_text =
clang::Lexer::getSourceText(
clang::CharSourceRange::getCharRange(replacement_range),
source_manager, lang_opts)
.str();
initial_text.pop_back();
std::string replacement_text = "base::span<" + initial_text + ">";
const std::string key = NodeKey(type_loc, source_manager);
EmitReplacement(key,
GetReplacementDirective(replacement_range, replacement_text,
source_manager));
EmitReplacement(key, GetIncludeDirective(replacement_range, source_manager));
return key;
}
static std::string getNodeFromRawPtrTypeLoc(
const clang::TemplateSpecializationTypeLoc* raw_ptr_type_loc,
const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
auto replacement_range = clang::SourceRange(raw_ptr_type_loc->getBeginLoc(),
raw_ptr_type_loc->getLAngleLoc());
const std::string key = NodeKey(raw_ptr_type_loc, source_manager);
EmitReplacement(key,
GetReplacementDirective(replacement_range, "base::raw_span",
source_manager));
EmitReplacement(key, GetIncludeDirective(replacement_range, source_manager,
kBaseRawSpanIncludePath));
return key;
}
// This represents a c-style array function parameter.
// Since we don't always have the size of the array parameter, we rewrite the
// parameter to a base::span to preserve the size information for bound
// checking.
// Example:
// void fct(int arr[]) => void fct(base::span<int> arr)
// void fct(int arr[3]) => void fct(base::span<int, 3> arr)
static std::string getNodeFromFunctionArrayParameter(
const clang::TypeLoc* type_loc,
const clang::ParmVarDecl* param_decl,
const MatchFinder::MatchResult& result) {
clang::SourceManager& source_manager = *result.SourceManager;
const clang::ASTContext& ast_context = *result.Context;
// Preserve qualifiers.
const clang::QualType& qual_type = param_decl->getType();
std::ostringstream qualifiers;
qualifiers << (qual_type.isConstQualified() ? "const " : "")
<< (qual_type.isVolatileQualified() ? "volatile " : "");
std::string type = GetTypeAsString(qual_type->getPointeeType(), ast_context);
const clang::ArrayTypeLoc& array_type_loc =
type_loc->getUnqualifiedLoc().getAs<clang::ArrayTypeLoc>();
assert(!array_type_loc.isNull());
const std::string& array_size_as_string =
GetArraySize(array_type_loc, source_manager, ast_context);
std::string span_type;
if (array_size_as_string.empty()) {
span_type = llvm::formatv("base::span<{0}> ", type).str();
} else {
span_type =
llvm::formatv("base::span<{0}, {1}> ", type, array_size_as_string)
.str();
}
// In case of array types, replacement_range is expanded to include the
// brackets, and replacement_text includes the identifier accordingly.
// E.g. "const int arr[3]" and "const base::span<int, 3> arr".
clang::SourceRange replacement_range{
param_decl->getBeginLoc(),
array_type_loc.getRBracketLoc().getLocWithOffset(1)};
std::string replacement_text =
qualifiers.str() + span_type + param_decl->getNameAsString();
const std::string key =
NodeKeyFromRange(replacement_range, source_manager, type);
EmitReplacement(key,
GetReplacementDirective(replacement_range, replacement_text,
source_manager));
EmitReplacement(key, GetIncludeDirective(replacement_range, source_manager));
return key;
}
static std::string getNodeFromDecl(const clang::DeclaratorDecl* decl,
const MatchFinder::MatchResult& result) {
clang::SourceManager& source_manager = *result.SourceManager;
const clang::ASTContext& ast_context = *result.Context;
clang::SourceRange replacement_range{decl->getBeginLoc(),
decl->getLocation()};
// Preserve qualifiers.
const clang::QualType& qual_type = decl->getType();
std::ostringstream qualifiers;
qualifiers << (qual_type.isConstQualified() ? "const " : "")
<< (qual_type.isVolatileQualified() ? "volatile " : "");
// If the original type cannot be recovered from the source, we need to
// consult the clang deduced type.
//
// Please note that the deduced type may not be the same as the original type.
// For example, if we have the following code:
// const auto* p = get_buffer<uint16_t>();
// we will get:`unsigned short` instead of `uint16_t`.
std::string type = GetTypeAsString(qual_type->getPointeeType(), ast_context);
std::string replacement_text =
qualifiers.str() + llvm::formatv("base::span<{0}>", type).str();
// Since the `type` might be clang deduced type, this node is keyed by the
// type because it could be different depending on the context. This
// effectively prevents deduced types from being rewritten.
// See test: 'span-template-original.cc' for an example.
const std::string key =
NodeKeyFromRange(replacement_range, source_manager, type);
EmitReplacement(key,
GetReplacementDirective(replacement_range, replacement_text,
source_manager));
EmitReplacement(key, GetIncludeDirective(replacement_range, source_manager));
return key;
}
static void DecaySpanToPointer(const MatchFinder::MatchResult& result) {
const clang::Expr* deref_expr =
result.Nodes.getNodeAs<clang::Expr>("deref_expr");
const clang::SourceManager& source_manager = *result.SourceManager;
auto begin_range = clang::SourceRange(
deref_expr->getBeginLoc(), deref_expr->getBeginLoc().getLocWithOffset(1));
auto end_range = clang::SourceRange(getSourceRange(result).getEnd());
// Replacement to delete the leading '*'
std::string begin_replacement_text = " ";
std::string end_replacement_text = "[0]";
if (result.Nodes.getNodeAs<clang::Expr>("unaryOperator")) {
// For unaryOperators we still encapsulate the expression with parenthesis.
begin_replacement_text = "(";
end_replacement_text = ")[0]";
}
EmitReplacement(
GetRHS(result),
GetReplacementDirective(begin_range, begin_replacement_text,
source_manager, -kDecaySpanToPointerPrecedence));
EmitReplacement(
GetRHS(result),
GetReplacementDirective(end_range, end_replacement_text, source_manager,
kDecaySpanToPointerPrecedence));
}
static clang::SourceLocation GetBinaryOperationOperatorLoc(
const clang::Expr* expr,
const MatchFinder::MatchResult& result) {
if (auto* binary_op = clang::dyn_cast_or_null<clang::BinaryOperator>(expr)) {
return binary_op->getOperatorLoc();
}
if (auto* binary_op =
clang::dyn_cast_or_null<clang::CXXOperatorCallExpr>(expr)) {
return binary_op->getOperatorLoc();
}
if (auto* binary_op =
clang::dyn_cast_or_null<clang::CXXRewrittenBinaryOperator>(expr)) {
return binary_op->getOperatorLoc();
}
// Not supposed to get here.
llvm::errs()
<< "\n"
"Error: GetBinaryOperationOperatorLoc() encountered an unexpected "
"expression.\n"
"Expected on of clang::BinaryOperator, clang::CXXOperatorCallExpr, "
"clang::CXXRewrittenBinaryOperator \n";
DumpMatchResult(result);
assert(false && "Unexpected binaryOperation Node");
}
struct RangedReplacement {
clang::SourceRange range;
std::string text;
};
// Specifies an edit: `base::checked_cast<size_t>(...)`
struct CheckedCastReplacement {
RangedReplacement opener;
RangedReplacement closer;
};
// There are three possible subspan expr replacements, respectively:
// 1. No replacement (leave as is)
// 2. Append a `u` to an integer literal.
// 3. Wrap the expression in `base::checked_cast<size_t>(...)`.
using SubspanExprReplacement =
std::variant<std::monostate, RangedReplacement, CheckedCastReplacement>;
static SubspanExprReplacement GetSubspanExprReplacement(
const clang::Expr* expr,
const MatchFinder::MatchResult& result,
std::string_view key) {
clang::QualType type = expr->getType();
const clang::ASTContext& ast_context = *result.Context;
const uint64_t size_t_bits =
ast_context.getTypeSize(ast_context.getSizeType());
const bool is_unsigned_type =
type == ast_context.getCorrespondingUnsignedType(type);
if (is_unsigned_type && ast_context.getTypeSize(type) <= size_t_bits) {
return {};
}
const clang::SourceManager& source_manager = *result.SourceManager;
const clang::SourceRange range =
getExprRange(expr, source_manager, result.Context->getLangOpts());
if (const auto* integer_literal =
clang::dyn_cast<clang::IntegerLiteral>(expr)) {
assert(integer_literal->getValue().isNonNegative());
return RangedReplacement{.range = range.getEnd(), .text = "u"};
}
EmitReplacement(key, GetIncludeDirective(range, source_manager,
"base/numerics/safe_conversions.h"));
EmitReplacement(key, GetIncludeDirective(range, source_manager, "cstdint",
/*is_system_include_path=*/true));
return CheckedCastReplacement{
.opener = {.range = range.getBegin(),
.text = "base::checked_cast<size_t>("},
.closer = {.range = range.getEnd(), .text = ")"}};
}
// When a binary operation and rhs expr appear inside a macro expansion,
// this function produces an expression like:
// UNSAFE_TODO(MACRO(will_be_span.data()))
// where MACRO is defined as something like below:
// #define MACRO(arg) (arg + offset)
//
// Known issue:
// The following code implicitly assumes that the will_be_span object is a
// macro argument, and cannot handle the following case appropriately.
// #define MACRO() (will_be_span + offset)
//
// See test: 'span-frontier-macro-original.cc'
static void AdaptBinaryOpInMacro(const MatchFinder::MatchResult& result,
const std::string& key) {
const clang::SourceManager& source_manager = *result.SourceManager;
const clang::ASTContext& ast_context = *result.Context;
const auto& lang_opts = ast_context.getLangOpts();
const auto* decl_ref =
result.Nodes.getNodeAs<clang::DeclRefExpr>("declRefExpr");
if (!decl_ref) {
llvm::errs()
<< "\n"
"Error: In case of a binary operation in a macro expansion, "
"only `declRefExpr` is supported for now.\n";
DumpMatchResult(result);
return;
}
EmitReplacement(
key, GetReplacementDirective(
getExprRange(decl_ref, source_manager, lang_opts).getEnd(),
".data()", source_manager));
clang::CharSourceRange macro_range =
source_manager.getExpansionRange(decl_ref->getBeginLoc());
EmitReplacement(key, GetReplacementDirective(macro_range.getBegin(),
"UNSAFE_TODO(", source_manager));
// `macro_range.getEnd()` points to the last character of the macro call,
// i.e. the closing parenthesis of the macro call, so +1 offset is needed.
// Note that `macro_range` is a CharSourceRange, not a SourceRange.
EmitReplacement(
key, GetReplacementDirective(macro_range.getEnd().getLocWithOffset(1),
")", source_manager));
}
// Closes an open `base::span(` if present.
// Returns a `.subspan(` opener.
// Opens a `base::checked_cast(` if necessary.
static std::string CreateSubspanOpener(
std::string_view prefix,
const SubspanExprReplacement* subspan_expr_replacement) {
std::string_view maybe_checked_cast_opener = "";
if (const auto* replacement =
std::get_if<CheckedCastReplacement>(subspan_expr_replacement)) {
maybe_checked_cast_opener = replacement->opener.text;
}
return llvm::formatv("{0}.subspan({1}", prefix, maybe_checked_cast_opener);
}
// Returns a `.subspan(` closer.
// Closes an open `base::checked_cast(` if necessary,
// or appends a `u` to the integer literal expression.
static std::string CreateSubspanCloser(
const SubspanExprReplacement* subspan_expr_replacement) {
std::string_view maybe_closer = "";
if (const auto* replacement =
std::get_if<RangedReplacement>(subspan_expr_replacement)) {
maybe_closer = replacement->text;
} else if (const auto* replacement = std::get_if<CheckedCastReplacement>(
subspan_expr_replacement)) {
maybe_closer = replacement->closer.text;
}
return llvm::formatv("{0})", maybe_closer);
}
static void AdaptBinaryOperation(const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
const auto* binary_operation =
GetNodeOrCrash<clang::Expr>(result, "binary_operation", __FUNCTION__);
const auto* rhs_expr =
GetNodeOrCrash<clang::Expr>(result, "rhs_expr", __FUNCTION__);
const std::string key = GetRHS(result);
// If `binary_operation` and `rhs_expr` appear inside a macro expansion, then
// add ".data()" call in the call site instead of adding ".subspan(offset)".
if (binary_operation->getBeginLoc().isMacroID() &&
rhs_expr->getBeginLoc().isMacroID()) {
AdaptBinaryOpInMacro(result, key);
return;
}
// C-style arrays are rewritten to `std::array`, not `base::span`, so
// a binary operation on the rewritten array must explicitly construct
// a `base::span` of it before calling `.subspan()`.
//
// Emit a replacement to that effect:
// `base::span( <binary operation lhs> `
// ...but leave the closing right-parenthesis for the `).subspan()` call.
const auto* rhs_array_type =
result.Nodes.getNodeAs<clang::ArrayTypeLoc>("rhs_array_type_loc");
if (rhs_array_type) {
const auto* concrete_binary_operation =
GetNodeOrCrash<clang::BinaryOperator>(
result, "binary_operation",
"C-style array should not involve `CXXOperatorCallExpr` or "
"`CXXRewrittenBinaryOperator`");
EmitReplacement(
key, GetReplacementDirective(
concrete_binary_operation->getLHS()->getBeginLoc(),
llvm::formatv("base::span<{0}>(",
GetTypeAsString(rhs_array_type->getInnerType(),
*result.Context)),
source_manager, kAdaptBinaryOperationPrecedence));
// Emit the closing `)` of `base::span(...)` below.
}
// Rather than emit a pure "insertion" replacement (zero-length
// range), assume that the binary operation is a single char and
// manually construct a `SourceRange` that overwrites exactly that.
// `git cl format` later takes care of the errant whitespace. E.g.:
//
// a + b
// ^
//
// becomes
//
// a .subspan( b
const auto* binary_op_RHS =
GetNodeOrCrash<clang::Expr>(result, "binary_op_rhs", __FUNCTION__);
const auto subspan_expr_replacement =
GetSubspanExprReplacement(binary_op_RHS, result, key);
// Close the open `base::span(` expression if present.
std::string_view prefix = rhs_array_type ? ")" : "";
std::string subspan_opener =
CreateSubspanOpener(prefix, &subspan_expr_replacement);
const clang::SourceLocation binary_operator_begin =
GetBinaryOperationOperatorLoc(binary_operation, result);
EmitReplacement(
key,
GetReplacementDirective(
{binary_operator_begin, binary_operator_begin.getLocWithOffset(1)},
subspan_opener, source_manager, -kAdaptBinaryOperationPrecedence));
const clang::SourceRange operator_rhs_range = getExprRange(
binary_op_RHS, source_manager, result.Context->getLangOpts());
std::string subspan_closer = CreateSubspanCloser(&subspan_expr_replacement);
EmitReplacement(key, GetReplacementDirective(
operator_rhs_range.getEnd(), subspan_closer,
source_manager, -kAdaptBinaryOperationPrecedence));
// It's possible we emitted a rewrite that creates a temporary but
// unnamed `base::span` (issue 408018846). This could end up being
// the only reference in the file, and so it has to carry the
// `#include` directive itself.
EmitReplacement(key, GetIncludeDirective(binary_operation->getBeginLoc(),
source_manager));
}
static void AdaptBinaryPlusEqOperation(const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
const clang::ASTContext& ast_context = *result.Context;
const auto& lang_opts = ast_context.getLangOpts();
// This function handles binary plusEq operations such as:
// (lhs|rhs)_expr += offset_expr;
// This is equivalent to:
// lhs_expr = rhs_expr + offset_expr (lhs_expr == rhs_expr).
// While we used the `rhs_expr` matcher, for the propose of this
// rewrite, this is the left-hand side of
// buff += offset_expr.
// This is why we call the expr and its range as lhs_expr and lhs_expr_range
// respectively.
auto* lhs_expr = result.Nodes.getNodeAs<clang::Expr>("rhs_expr");
auto* binary_op_RHS = result.Nodes.getNodeAs<clang::Expr>("binary_op_RHS");
auto lhs_expr_range = getExprRange(lhs_expr, source_manager, lang_opts);
auto binary_op_rhs_range =
getExprRange(binary_op_RHS, source_manager, lang_opts);
auto source_range = clang::SourceRange(lhs_expr_range.getEnd(),
binary_op_rhs_range.getBegin());
const std::string& key = GetRHS(result);
auto subspan_arg_fixup =
GetSubspanExprReplacement(binary_op_RHS, result, key);
std::string lhs_expr_text =
clang::Lexer::getSourceText(
clang::CharSourceRange::getCharRange(lhs_expr_range), source_manager,
lang_opts)
.str();
EmitReplacement(key,
GetReplacementDirective(
source_range,
CreateSubspanOpener(
std::string(llvm::formatv("= {0}", lhs_expr_text)),
&subspan_arg_fixup),
source_manager, kAdaptBinaryPlusEqOperationPrecedence));
std::string subspan_closer = CreateSubspanCloser(&subspan_arg_fixup);
EmitReplacement(
key, GetReplacementDirective(
clang::SourceRange(binary_op_rhs_range.getEnd()), subspan_closer,
source_manager, -kAdaptBinaryPlusEqOperationPrecedence));
}
// Handles boolean operations that need to be adapted after a span rewrite.
// if(expr) => if(!expr.empty())
// if(!expr) => if(expr.empty())
// Tests are in: operator-bool-original.cc
static void DecaySpanToBooleanOp(const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
const std::string& key = GetRHS(result);
if (const auto* logical_not_op =
result.Nodes.getNodeAs<clang::UnaryOperator>("logical_not_op")) {
const clang::SourceRange logical_not_range{
logical_not_op->getBeginLoc(),
logical_not_op->getBeginLoc().getLocWithOffset(1)};
EmitReplacement(
key, GetReplacementDirective(logical_not_range, "", source_manager));
} else {
const auto* operand =
result.Nodes.getNodeAs<clang::Expr>("boolean_op_operand");
EmitReplacement(key, GetReplacementDirective(operand->getBeginLoc(), "!",
source_manager));
}
EmitReplacement(key, GetReplacementDirective(getSourceRange(result).getEnd(),
".empty()", source_manager));
}
// Erases the member call expression. For example:
// ... = member_.get();
// ^^^^^^^^^^^^^------ member_expr
// becomes:
// ... = member_;
//
// This supports both `->` and `.` operators to return the called expression in
// both cases.
//
// This is used to avoid decaying a container / raw_ptr to a pointer when the
// lhs expression is rewritten to a base::span.
void EraseMemberCall(const std::string& node,
const clang::MemberExpr* member_expr,
const clang::SourceManager& source_manager) {
// Add '*' before the member call, if needed.
if (member_expr->isArrow()) {
clang::SourceRange replacement_range(member_expr->getBase()->getBeginLoc(),
member_expr->getBeginLoc());
EmitReplacement(
node, GetReplacementDirective(replacement_range, "*", source_manager));
}
// Remove the member call: `->call()` or `.call()`.
{
clang::SourceRange replacement_range(
member_expr->getMemberLoc().getLocWithOffset(
member_expr->isArrow() ? -2 : -1),
member_expr->getMemberLoc().getLocWithOffset(
member_expr->getMemberDecl()->getName().size() + 2));
EmitReplacement(
node, GetReplacementDirective(replacement_range, "", source_manager));
}
}
// Return a replacement that appends `.data()` to the matched expression.
void AppendDataCall(const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
auto rep_range = clang::SourceRange(getSourceRange(result).getEnd());
std::string replacement_text = ".data()";
if (result.Nodes.getNodeAs<clang::Expr>("unaryOperator")) {
// Insert enclosing parenthesis for expressions with UnaryOperators
auto begin_range = clang::SourceRange(getSourceRange(result).getBegin());
EmitReplacement(GetRHS(result),
GetReplacementDirective(begin_range, "(", source_manager,
kAppendDataCallPrecedence));
replacement_text = ").data()";
}
EmitReplacement(
GetRHS(result),
GetReplacementDirective(rep_range, replacement_text, source_manager,
-kAppendDataCallPrecedence));
}
// Given that we want to emit `.subspan(expr)`,
// * if `expr` is observably unsigned, does nothing.
// * if `expr` is a signed int literal, appends `u`.
// * otherwise, wraps `expr` with `checked_cast`.
void RewriteExprForSubspan(const clang::Expr* expr,
const MatchFinder::MatchResult& result,
std::string_view key) {
const auto replacement = GetSubspanExprReplacement(expr, result, key);
if (const auto* u_suffix = std::get_if<RangedReplacement>(&replacement)) {
EmitReplacement(key,
GetReplacementDirective(u_suffix->range, u_suffix->text,
*result.SourceManager));
return;
}
if (const auto* checked_cast_replacement =
std::get_if<CheckedCastReplacement>(&replacement)) {
const auto& [opener, closer] = *checked_cast_replacement;
EmitReplacement(key, GetReplacementDirective(opener.range, opener.text,
*result.SourceManager));
EmitReplacement(key, GetReplacementDirective(closer.range, closer.text,
*result.SourceManager));
return;
}
if (!std::get_if<std::monostate>(&replacement)) {
llvm::errs() << "Unexpected variant in `RewriteExprForSubspan()`.";
DumpMatchResult(result);
return;
}
}
// Handle the case where we match `&container[<offset>]` being used as a buffer.
void EmitContainerPointerRewrites(const MatchFinder::MatchResult& result,
const std::string& key) {
auto replacement_range =
GetNodeOrCrash<clang::UnaryOperator>(
result, "container_buff_address",
"`container_buff_address` previously expected here")
->getSourceRange();
replacement_range.setEnd(replacement_range.getEnd().getLocWithOffset(1));
const auto& container_decl_ref = *GetNodeOrCrash<clang::DeclRefExpr>(
result, "container_decl_ref",
"`container_buff_address` implies `container_decl_ref`");
std::string container_name = container_decl_ref.getNameInfo().getAsString();
std::string replacement_text;
// Special case: we detected and bound a zero offset (`&buf[0]`).
// We need not emit a `.subspan(...)`.
if (result.Nodes.getNodeAs<clang::IntegerLiteral>("zero_container_offset")) {
replacement_text = container_name;
} else {
// Dance around the offset expression and emit one replacement on
// either side of it:
// `base::span<T>(container_decl_ref).subspan(` <offset> `)`
// Ready and emit the first replacement; pull the replacement
// range back to the opening bracket of the container.
replacement_range.setEnd(
container_decl_ref.getSourceRange().getBegin().getLocWithOffset(
container_name.length() + 1u));
const auto& contained_type = *GetNodeOrCrash<clang::QualType>(
result, "contained_type",
"`container_buff_address` implies `contained_type`");
replacement_text = llvm::formatv(
"base::span<{0}>({1}).subspan(",
GetTypeAsString(contained_type, *result.Context), container_name);
std::string replacement_directive = GetReplacementDirective(
replacement_range, std::move(replacement_text), *result.SourceManager);
EmitReplacement(key, replacement_directive);
// Ready the second replacement; advance the replacement range to
// the closing bracket (beyond the offset expression).
if (const auto* container_subscript =
result.Nodes.getNodeAs<clang::CXXOperatorCallExpr>(
"container_subscript")) {
// 1. implicit `this` arg and
// 2. the subscript expression.
if (container_subscript->getNumArgs() != 2u) {
llvm::errs() << "\nError: matched `operator[]`, expected exactly two "
"args, but got "
<< container_subscript->getNumArgs() << "!\n";
DumpMatchResult(result);
assert(false && "apparently bogus `operator[]`");
}
// Call `IgnoreImpCasts()` to see past the implicit promotion to
// `...::size_type` and look at the "original" type of the
// expression.
RewriteExprForSubspan(container_subscript->getArg(1u)->IgnoreImpCasts(),
result, key);
replacement_range = {
container_subscript->getRParenLoc(),
container_subscript->getRParenLoc().getLocWithOffset(1)};
} else {
// This is a C-style array.
const auto& c_style_array_with_subscript =
*GetNodeOrCrash<clang::ArraySubscriptExpr>(
result, "c_style_array_with_subscript",
"expected when `container_subscript` is not bound");
replacement_range = {
c_style_array_with_subscript.getEndLoc(),
c_style_array_with_subscript.getEndLoc().getLocWithOffset(1)};
const auto* subscript = GetNodeOrCrash<clang::Expr>(
result, "c_style_array_subscript",
"expected when `container_subscript` is not bound");
RewriteExprForSubspan(subscript, result, key);
}
// Close the call to `.subspan()`.
replacement_text = ")";
}
std::string replacement_directive = GetReplacementDirective(
replacement_range, std::move(replacement_text), *result.SourceManager);
EmitReplacement(key, replacement_directive);
}
// Handles code that passes address to a local variable as a single element
// buffer. Wrap it with a span of size=1. Tests are in
// single-element-buffer-original.cc.
static void EmitSingleVariableSpan(const std::string& key,
const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
const auto& lang_opts = result.Context->getLangOpts();
const auto* expr =
result.Nodes.getNodeAs<clang::UnaryOperator>("address_expr");
const auto* operand_expr =
result.Nodes.getNodeAs<clang::Expr>("address_expr_operand");
if (!expr || !operand_expr) {
llvm::errs()
<< "\n"
"Error: EmitSingleVariableSpan() encountered an unexpected match.\n";
DumpMatchResult(result);
assert(false && "Unexpected match in EmitSingleVariableSpan()");
}
// This range is just one character, covering the '&' symbol.
clang::SourceLocation ampersand_loc = expr->getOperatorLoc();
clang::SourceRange ampersand_range = {
ampersand_loc, clang::Lexer::getLocForEndOfToken(
ampersand_loc, 0u, source_manager, lang_opts)};
EmitReplacement(key, GetReplacementDirective(
ampersand_range, "base::SpanFromSingleElement(",
source_manager, kEmitSingleVariableSpanPrecedence));
EmitReplacement(
key, GetReplacementDirective(
getExprRange(operand_expr, source_manager, lang_opts).getEnd(),
")", source_manager, -kEmitSingleVariableSpanPrecedence));
// Include the header for `base::SpanFromSingleElement()`.
EmitReplacement(
key, GetIncludeDirective(operand_expr->getSourceRange(), source_manager,
kBaseAutoSpanificationHelperIncludePath));
}
// Rewrites unsafe third-party member function calls to helper macro calls.
//
// Example)
// SkBitmap sk_bitmap;
// uint32_t* image_row = sk_bitmap.getAddr32(x, y);
// will be rewritten to
// base::span<uint32_t> image_row =
// UNSAFE_SKBITMAP_GETADDR32(sk_bitmap, x, y);
// where the receiver expr "sk_bitmap" is moved into the macro call, and the
// macro performs essentially the following.
// uint32_t* tmp_row = sk_bitmap.getAddr32(x, y);
// int tmp_width = sk_bitmap.width();
// base::span<uint32_t> image_row(tmp_row, tmp_width - x);
//
// Tests are in: unsafe-function-to-macro-original.cc and
// //base/containers/auto_spanification_helper_unittest.cc
static std::string GetNodeFromUnsafeCxxMethodCall(
const clang::Expr* size_expr,
const clang::CXXMemberCallExpr* member_call_expr,
const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
const auto* method_decl = GetNodeOrCrash<clang::CXXMethodDecl>(
result, "unsafe_function_decl",
"`unsafe_function_call_expr` in clang::CXXMemberCallExpr implies "
"`unsafe_function_decl` in clang::CXXMethodDecl");
// The match with using `unsafeFunctionToBeRewrittenToMacro` guarantees that
// there exists an `UnsafeCxxMethodToMacro` instance, so the following
// "Find..." always succeeds.
const UnsafeCxxMethodToMacro entry =
FindUnsafeCxxMethodToBeRewrittenToMacro(method_decl).value();
// A CXXMemberCallExpr must have a MemberExpr as the callee.
const clang::MemberExpr* member_expr =
clang::dyn_cast<clang::MemberExpr>(member_call_expr->getCallee());
assert(member_expr);
// `key` is compatible with getNodeFromSizeExpr.
const std::string& key = NodeKey(size_expr, source_manager);
// Rewrite a method call into a macro call in two steps. The total rewrite we
// want is the following. Note that the receiver expression moves into the
// argument list.
//
// "receier.method(args...)" ==> "MACRO(receiver, args...)"
//
// Step 1) Prepend "MACRO(" to make it a macro call.
// "receiver.method(args...)"
// ==> "MACRO(" + "receiver.method(args...)"
//
// Step 2) Replace ".method(" with ", " to make a new argument list including
// the receiver expression.
// "receiver" + ".method(" + "args...)"
// ==> "receiver" + ", " + "args...)"
//
// The open parenthesis of the argument list is moved from the right after
// "method" to the right after "MACRO" while the close parenthesis doesn't
// change.
//
// The arrow operator "->" is supported in the same way as the dot operator
// ".".
EmitReplacement( // Step 1
key, GetReplacementDirective(
member_call_expr->getImplicitObjectArgument()->getBeginLoc(),
llvm::formatv("{0}(", entry.macro_name), source_manager));
const bool has_arg = member_call_expr->getNumArgs() > 0;
EmitReplacement( // Step 2
key,
GetReplacementDirective(
clang::SourceRange(member_expr->getOperatorLoc(), // "." or "->"
has_arg
? member_call_expr->getArg(0)->getBeginLoc()
: member_call_expr->getRParenLoc()),
has_arg ? ", " : "", source_manager));
EmitReplacement(
key, GetIncludeDirective(size_expr->getSourceRange(), source_manager,
kBaseAutoSpanificationHelperIncludePath));
EmitSink(key);
return key;
}
// Rewrites unsafe third-party free function calls to helper macro calls.
//
// Example)
// struct hb_glyph_position_t* positions =
// hb_buffer_get_glyph_positions(&buffer, &length);
// will be rewritten to
// base::span<hb_glyph_position_t> positions =
// UNSAFE_HB_BUFFER_GET_GLYPH_POSITIONS(&buffer, &length);
// where the macro performs essentially the following.
// hb_glyph_position_t* tmp_pos =
// hb_buffer_get_glyph_positions(&buffer, &length);
// base::span<hb_glyph_position_t> positions(tmp_pos, length);
//
// Tests are in: unsafe-function-to-macro-original.cc and
// //base/containers/auto_spanification_helper_unittest.cc
static std::string GetNodeFromUnsafeFreeFuncCall(
const clang::Expr* size_expr,
const clang::CallExpr* call_expr,
const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
const auto* function_decl = GetNodeOrCrash<clang::FunctionDecl>(
result, "unsafe_function_decl",
"`unsafe_function_call_expr` implies `unsafe_function_decl`");
// The match with using `unsafeFunctionToBeRewrittenToMacro` guarantees that
// there exists an `UnsafeFreeFuncToMacro` instance, so the following
// "Find..." always succeeds.
const UnsafeFreeFuncToMacro entry =
FindUnsafeFreeFuncToBeRewrittenToMacro(function_decl).value();
// `key` is compatible with getNodeFromSizeExpr.
const std::string& key = NodeKey(size_expr, source_manager);
// Replace the function name with the macro name.
const clang::SourceLocation& func_loc = call_expr->getCallee()->getBeginLoc();
EmitReplacement(
key, GetReplacementDirective(
clang::SourceRange(func_loc, func_loc.getLocWithOffset(
entry.function_name.length())),
std::string(entry.macro_name), source_manager));
EmitReplacement(
key, GetIncludeDirective(size_expr->getSourceRange(), source_manager,
kBaseAutoSpanificationHelperIncludePath));
EmitSink(key);
return key;
}
static std::string GetNodeFromUnsafeFunctionCall(
const clang::Expr* size_expr,
const clang::CallExpr* call_expr,
const MatchFinder::MatchResult& result) {
if (const clang::CXXMemberCallExpr* member_call_expr =
clang::dyn_cast<clang::CXXMemberCallExpr>(call_expr)) {
return GetNodeFromUnsafeCxxMethodCall(size_expr, member_call_expr, result);
}
return GetNodeFromUnsafeFreeFuncCall(size_expr, call_expr, result);
}
static std::string getNodeFromSizeExpr(const clang::Expr* size_expr,
const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
const std::string key = NodeKey(size_expr, source_manager);
auto replacement_range =
clang::SourceRange(size_expr->getSourceRange().getBegin(),
size_expr->getSourceRange().getBegin());
if (const auto* nullptr_expr =
result.Nodes.getNodeAs<clang::CXXNullPtrLiteralExpr>(
"nullptr_expr")) {
// The hardcoded offset corresponds to the length of "nullptr" keyword.
clang::SourceRange nullptr_range = {
nullptr_expr->getBeginLoc(),
nullptr_expr->getBeginLoc().getLocWithOffset(7)};
EmitReplacement(
key, GetReplacementDirective(nullptr_range, "{}", source_manager));
} else if (result.Nodes.getNodeAs<clang::Expr>("address_expr")) {
// This case occurs when an address to a variable is used as a buffer:
//
// void UsesBarAsFloatBuffer(size_t size, float* bar);
// float bar = 3.0;
// UsesBarAsFloatBuffer(1, &bar);
//
// In this case, we will rewrite `&bar` to `base::span<float, 1>(&bar)`.
EmitSingleVariableSpan(key, result);
}
if (result.Nodes.getNodeAs<clang::UnaryOperator>("container_buff_address")) {
EmitContainerPointerRewrites(result, key);
}
EmitReplacement(key, GetIncludeDirective(replacement_range, source_manager));
EmitSink(key);
return key;
}
// Rewrite:
// `ptr++` or `++ptr`
// Into:
// `base::PreIncrementSpan(span)` or `base::PostIncrementSpan(span)`.
void RewriteUnaryOperation(const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
const auto& lang_opts = result.Context->getLangOpts();
const clang::Expr* operand = nullptr;
bool is_prefix = false;
clang::SourceLocation operator_loc;
if (const auto* unary_op =
result.Nodes.getNodeAs<clang::UnaryOperator>("unaryOperator")) {
operand = unary_op->getSubExpr();
is_prefix = unary_op->isPrefix();
operator_loc = unary_op->getOperatorLoc();
} else if (const auto* cxx_op_call =
result.Nodes.getNodeAs<clang::CXXOperatorCallExpr>(
"raw_ptr_operator++")) {
operand = cxx_op_call->getArg(0);
const auto* method_decl =
clang::dyn_cast<clang::CXXMethodDecl>(cxx_op_call->getCalleeDecl());
assert(method_decl);
// For CXXOperatorCallExpr, prefix increment has 0 parameters (e.g.,
// operator++()) postfix increment has 1 parameter (e.g., operator++(int)).
is_prefix = (method_decl->getNumParams() == 0);
operator_loc = cxx_op_call->getOperatorLoc();
}
if (!operand) {
// This block should ideally not be reached if matchers are well-defined.
llvm::errs()
<< "\n"
<< "Error: RewriteUnaryOperation() encountered an unexpected match.\n"
<< "Expected a unaryOperator or raw_ptr_operator++ to be bound.\n";
DumpMatchResult(result);
assert(false && "Unexpected match in RewriteUnaryOperation()");
return;
}
assert(operator_loc.isValid());
// Get the source range of the operand (the 'ptr' part).
clang::SourceRange operand_range =
getExprRange(operand->IgnoreParenImpCasts(), source_manager, lang_opts);
assert(operand_range.isValid());
clang::SourceLocation operator_end_loc = clang::Lexer::getLocForEndOfToken(
operator_loc, 0, source_manager, lang_opts);
assert(operator_end_loc.isValid());
clang::SourceRange op_token_range(operator_loc, operator_end_loc);
std::string begin_insert_text;
clang::SourceRange begin_replacement_range;
clang::SourceRange end_replacement_range;
if (is_prefix) {
begin_insert_text = "base::preIncrementSpan(";
// Replace the '++' with "base::preIncrementSpan(".
begin_replacement_range = op_token_range;
// Insert ")" at the end of the operand.
end_replacement_range =
clang::SourceRange(operand_range.getEnd(), operand_range.getEnd());
} else {
begin_insert_text = "base::postIncrementSpan(";
// Insert "base::postIncrementSpan(" at the beginning of the operand.
begin_replacement_range =
clang::SourceRange(operand_range.getBegin(), operand_range.getBegin());
// Replace "++"" with ")".
end_replacement_range = op_token_range;
}
assert(begin_replacement_range.isValid());
assert(end_replacement_range.isValid());
const std::string key = GetRHS(result);
EmitReplacement(key, GetReplacementDirective(
begin_replacement_range, begin_insert_text,
source_manager, kRewriteUnaryOperationPrecedence));
EmitReplacement(
key, GetReplacementDirective(end_replacement_range, ")", source_manager,
-kRewriteUnaryOperationPrecedence));
EmitReplacement(key,
GetIncludeDirective(operand_range, source_manager,
kBaseAutoSpanificationHelperIncludePath));
}
// Rewrite:
// `sizeof(c_array)`
// Into:
// `base::SpanificationSizeofForStdArray(std_array)`
// Tests are in: array-tests-original.cc
void RewriteArraySizeof(const MatchFinder::MatchResult& result) {
clang::SourceManager& source_manager = *result.SourceManager;
const auto* sizeof_expr =
result.Nodes.getNodeAs<clang::UnaryExprOrTypeTraitExpr>("sizeof_expr");
const std::string& array_decl_as_string =
result.Nodes.getNodeAs<clang::DeclaratorDecl>("rhs_begin")
->getNameAsString();
// sizeof_expr matches with "sizeof(c_array)" in case of
// `sizeof(c_array)`, and "sizeof " in case of `sizeof c_array`. In the
// latter case, we need to include "c_array" in the replacement range.
int end_offset = 1;
if (const auto* decl_ref = clang::dyn_cast_or_null<clang::DeclRefExpr>(
sizeof_expr->getArgumentExpr())) {
// Unfortunately decl_ref matches with "" (the empty string) at the
// beginning of "c_array", so we cannot use decl_ref->getSourceRange().
// Count the length of "c_array" (variable name) instead.
const clang::DeclarationNameInfo& name_info = decl_ref->getNameInfo();
const clang::DeclarationName& name = name_info.getName();
end_offset = name.getAsString().length();
}
const std::string& key = GetRHS(result);
const clang::SourceRange replacement_range = {
sizeof_expr->getBeginLoc(),
sizeof_expr->getEndLoc().getLocWithOffset(end_offset)};
EmitReplacement(key,
GetReplacementDirective(
replacement_range,
llvm::formatv("base::SpanificationSizeofForStdArray({0})",
array_decl_as_string),
source_manager));
EmitReplacement(key,
GetIncludeDirective(replacement_range, source_manager,
kBaseAutoSpanificationHelperIncludePath));
}
// Add `.data()` at the frontier of a span change. This is applied if the node
// identified by `lhs_key` is not rewritten, but `rhs_key` is.
//
// This decays the span to a pointer.
void AddSpanFrontierChange(const std::string& lhs_key,
const std::string& rhs_key,
const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
const clang::ASTContext& ast_context = *result.Context;
const auto& lang_opts = ast_context.getLangOpts();
auto rep_range = clang::SourceRange(getSourceRange(result).getEnd());
// If we're inside a macro the rep_range computed above is going to be
// incorrect because it will point into the file where the macro is defined.
// We need to get the "SpellingLocation", and then we figure out the end of
// the parameter so we can insert .data() at the end if needed.
maybeUpdateSourceRangeIfInMacro(source_manager, result, rep_range);
std::string initial_text =
clang::Lexer::getSourceText(
clang::CharSourceRange::getCharRange(rep_range), source_manager,
lang_opts)
.str();
std::string replacement_text = ".data()";
if (result.Nodes.getNodeAs<clang::Expr>("unaryOperator")) {
// Insert enclosing parenthesis for expressions with UnaryOperators
auto begin_range = clang::SourceRange(getSourceRange(result).getBegin());
EmitFrontier(lhs_key, rhs_key,
GetReplacementDirective(begin_range, "(", source_manager,
kAppendDataCallPrecedence));
replacement_text = ").data()";
}
// Use kAppendDataCallPrecedence because some rewrites will be duplicates of
// the ones in AppendDataCall().
EmitFrontier(
lhs_key, rhs_key,
GetReplacementDirective(rep_range, replacement_text, source_manager,
-kAppendDataCallPrecedence));
}
// Generate a class name for rewriting unnamed struct/class types. This is
// based on the `var_name` which is the name of the array variable.
std::string GenerateClassName(std::string var_name) {
// Chrome coding style is either:
// - snake_case for variables.
// - kCamelCase for constants.
//
// Variables are rewritten in CamelCase. Same for constants, but we need to
// drop the 'k'.
const bool is_constant =
var_name.size() > 2 && var_name[0] == 'k' &&
std::isupper(static_cast<unsigned char>(var_name[1])) &&
var_name.find('_') == std::string::npos;
if (is_constant) {
var_name = var_name.substr(1);
}
// Convert to CamelCase:
char prev = '_'; // Force the first character to be uppercase.
for (char& c : var_name) {
if (prev == '_') {
c = llvm::toUpper(c);
}
prev = c;
}
// Now we need to remove the '_'s from the string.
llvm::erase(var_name, '_');
return var_name;
}
// Checks if the given array definition involves an unnamed struct type
// or is declared inline within a struct/class definition.
//
// These cases currently pose challenges for the C array to std::array
// conversion and are therefore skipped by the tool.
//
// Examples of problematic definitions:
// - Unnamed struct:
// `struct { int x, y; } point_array[10];`
// - Inline definition:
// `struct Point { int x, y; } inline_points[5];`
//
// Returns the pair of a suggested type name (if unnamed struct, empty string
// otherwise) and the inline definition with a semi-colon ';' added to split it
// away from the declaration (empty string otherwise).
// I.E.:
// - {"", ""} -> If this is not one of the problematic definitions above.
// - {"", "struct Point { int x, y; };"} -> for the inline definition case.
// - {"PointArray", "struct PointArray { ... };"} -> for the unnamed struct
// case.
std::pair<std::string, std::string> maybeGetUnnamedAndDefinition(
const clang::QualType element_type,
const clang::DeclaratorDecl* array_decl,
const std::string& array_variable_as_string,
const clang::ASTContext& ast_context) {
std::string new_class_name_string;
std::string class_definition;
// Structs/classes can be defined alongside an option list of variable
// declarations.
//
// struct <OptionalName> { ... } var1[3];
//
// In this case we need the class_definition and in the case of unnamed
// types, we have to construct a name to use instead of the compiler
// generated one.
if (auto record_decl = element_type->getAsRecordDecl()) {
// If the `VarDecl` contains the `RecordDecl`'s {}, the `VarDecl` contains
// the struct/class definition.
bool has_definition = array_decl->getSourceRange().fullyContains(
record_decl->getBraceRange());
bool is_unnamed = record_decl->getDeclName().isEmpty();
// If the struct/class has an empty name (=unnamed) and has its
// definition, we will temporariliy assign a new name to the `RecordDecl`
// and invoke `getAsString()` to obtain the definition with the new name.
clang::DeclarationName original_name = record_decl->getDeclName();
clang::DeclarationName temporal_class_name;
if (is_unnamed) {
new_class_name_string = GenerateClassName(array_variable_as_string);
clang::StringRef new_class_name(new_class_name_string);
clang::IdentifierInfo& new_class_name_identifier =
ast_context.Idents.get(new_class_name);
temporal_class_name = ast_context.DeclarationNames.getIdentifier(
&new_class_name_identifier);
record_decl->setDeclName(temporal_class_name);
}
if (has_definition) {
// Use `SourceManager` to capture the `{ ... }` part of the struct
// definition.
const clang::SourceManager& source_manager =
ast_context.getSourceManager();
llvm::StringRef struct_body_with_braces = clang::Lexer::getSourceText(
clang::CharSourceRange::getTokenRange(record_decl->getBraceRange()),
source_manager, ast_context.getLangOpts());
// Create new class definition.
if (is_unnamed) {
std::string type_keyword;
if (record_decl->isClass()) {
type_keyword = "class";
} else if (record_decl->isUnion()) {
type_keyword = "union";
} else if (record_decl->isEnum()) {
type_keyword = "enum";
} else {
assert(record_decl->isStruct());
type_keyword = "struct";
}
class_definition = type_keyword + " " + new_class_name_string + " " +
struct_body_with_braces.str() + ";\n";
} else {
// Because of class/struct definition, drop any qualifiers from
// `element_type`. E.g. `const struct { int val; }` must be
// `struct { int val; }`.
clang::QualType unqualified_type = element_type.getUnqualifiedType();
std::string unqualified_type_str = unqualified_type.getAsString();
class_definition =
unqualified_type_str + " " + struct_body_with_braces.str() + ";\n";
}
}
if (is_unnamed) {
record_decl->setDeclName(original_name);
}
}
return std::make_pair(new_class_name_string, class_definition);
}
// Gets the array size as written in the source code if it's explicitly
// specified. Otherwise, returns the empty string.
std::string GetArraySize(const clang::ArrayTypeLoc& array_type_loc,
const clang::SourceManager& source_manager,
const clang::ASTContext& ast_context) {
assert(!array_type_loc.isNull());
clang::SourceRange source_range(
array_type_loc.getLBracketLoc().getLocWithOffset(1),
array_type_loc.getRBracketLoc());
return clang::Lexer::getSourceText(
clang::CharSourceRange::getCharRange(source_range), source_manager,
ast_context.getLangOpts())
.str();
}
// Produces a std::array type from the given (potentially nested) C array type.
// Returns a string representation of the std::array type.
std::string RewriteCArrayToStdArray(const clang::QualType& type,
const clang::TypeLoc& type_loc,
const clang::SourceManager& source_manager,
const clang::ASTContext& ast_context) {
const clang::ArrayType* array_type = ast_context.getAsArrayType(type);
if (!array_type) {
return GetTypeAsString(type, ast_context);
}
const clang::ArrayTypeLoc& array_type_loc =
type_loc.getUnqualifiedLoc().getAs<clang::ArrayTypeLoc>();
assert(!array_type_loc.isNull());
const clang::QualType& element_type = array_type->getElementType();
const clang::TypeLoc& element_type_loc = array_type_loc.getElementLoc();
const std::string& element_type_as_string = RewriteCArrayToStdArray(
element_type, element_type_loc, source_manager, ast_context);
const std::string& size_as_string =
GetArraySize(array_type_loc, source_manager, ast_context);
std::ostringstream result;
result << "std::array<" << element_type_as_string << ", " << size_as_string
<< ">";
return result.str();
}
static const clang::Expr* GetInitExpr(const clang::DeclaratorDecl* decl) {
const clang::Expr* init_expr = nullptr;
if (auto* var_decl = clang::dyn_cast_or_null<clang::VarDecl>(decl)) {
init_expr = var_decl->getInit();
} else if (auto* field_decl =
clang::dyn_cast_or_null<clang::FieldDecl>(decl)) {
init_expr = field_decl->getInClassInitializer();
}
return init_expr;
}
// Returns an initializer list(`initListExpr`) of the given
// `decl`(`clang::VarDecl` OR `clang::FieldDecl`) if exists. Otherwise, returns
// `nullptr`.
const clang::InitListExpr* GetArrayInitList(const clang::DeclaratorDecl* decl) {
const clang::Expr* init_expr = GetInitExpr(decl);
if (!init_expr) {
return nullptr;
}
const clang::InitListExpr* init_list_expr =
clang::dyn_cast_or_null<clang::InitListExpr>(init_expr);
if (init_list_expr) {
return init_list_expr;
}
// If we have the following array of std::vector<>:
// `std::vector<Quad> quad[2] = {{...},{...}};`
// we may not be able to use `dyn_cast` with `init_expr` to obtain
// `InitListExpr`:
// ExprWithCleanups 0x557ea7bdc860 'std::vector<Quad>[2]'
// `-InitListExpr 0x557ea7ba3950 'std::vector<Quad>[2]'
// |-CXXConstructExpr 0x557ea7bdc750 ...
// ...
// `-CXXConstructExpr
// ...
// `init_expr` is an instance of `ExprWithCleanups`.
const clang::ExprWithCleanups* expr_with_cleanups =
clang::dyn_cast_or_null<clang::ExprWithCleanups>(init_expr);
if (!expr_with_cleanups) {
return nullptr;
}
auto first_child = expr_with_cleanups->child_begin();
if (first_child == expr_with_cleanups->child_end()) {
return nullptr;
}
return clang::dyn_cast_or_null<clang::InitListExpr>(*first_child);
}
std::string GetStringViewType(const clang::QualType element_type,
const clang::ASTContext& ast_context) {
if (element_type->isCharType()) {
return "std::string_view"; // c++17
}
if (element_type->isWideCharType()) {
return "std::wstring_view"; // c++17
}
if (element_type->isChar8Type()) {
return "std::u8string_view"; // c++20
}
if (element_type->isChar16Type()) {
return "std::u16string_view"; // c++17
}
if (element_type->isChar32Type()) {
return "std::u32string_view"; // c++17
}
clang::QualType element_type_without_qualifiers(element_type.getTypePtr(), 0);
return llvm::formatv(
"std::basic_string_view<{0}>",
GetTypeAsString(element_type_without_qualifiers, ast_context))
.str();
}
// Determines whether a trailing comma should be inserted after the
// `init_list_expr` to make the code more readable. Adding a trailing comma
// makes clang-format put each element on a new line. Everything is aligned
// nicely, and the output is more readable. This is particularly helpful when
// the original code is not formatted with clang-format, and isn't using a
// trailing comma, but was originally formatted on multiple lines.
bool ShouldInsertTrailingComma(const clang::InitListExpr* init_list_expr,
const clang::SourceManager& source_manager) {
// To allow for one-liner, we don't add the trailing comma when the size is
// below 3 or the content length is below 40.
const int length =
source_manager.getFileOffset(init_list_expr->getRBraceLoc()) -
source_manager.getFileOffset(init_list_expr->getLBraceLoc());
if (init_list_expr->getNumInits() < 3 || length < 40) {
return false;
}
const clang::Expr* last_element =
init_list_expr->getInit(init_list_expr->getNumInits() - 1);
// Conservatively search for the trailing comma. If it's already there, we do
// not need to insert another one.
for (auto loc = last_element->getEndLoc().getLocWithOffset(1);
loc != init_list_expr->getRBraceLoc(); loc = loc.getLocWithOffset(1)) {
if (source_manager.getCharacterData(loc)[0] == ',') {
return false;
}
}
return true;
}
// Return if braces can be elided when initializing an std::array of type
// `element_type` from an `init_list_expr`.
//
// This is also known as avoiding the "double braces" std::array initialization.
//
// Explanation:
// ============
// `std::array` is a struct that encapsulates a fixed-size array as its only
// member variable. It's an aggregate type, meaning it can be initialized using
// aggregate initialization (like plain arrays and structs). Unlike
// `std::vector` or other containers, `std::array` doesn't have constructors
// that explicitly take initializer lists.
//
// For instance, the following code initializes an `std::array` of one
// `Aggregate`.
// > std::array<Aggregate, 1> buffer =
// > { // Initialization of std::array<Aggregate,1>
// > { // Initialization of std::array<Aggregate,1>::inner_ C-style array.
// > { // Initialization of Aggregate
// > 1,2,3
// > }
// > }
// > }
//
// Thanks to: https://cplusplus.github.io/CWG/issues/1270.html
// the extra braces can be elided under certain conditions. The rules are
// complexes, but they can be conservatively summarized by the need for extra
// braces when the elements themselves are initialized with braces.
bool CanElideBracesForStdArrayInitialization(
const clang::InitListExpr* init_list_expr,
const clang::SourceManager& source_manager) {
// If the init list contains brace-enclosed elements, we can't always elide
// the braces.
for (const clang::Expr* expr : init_list_expr->inits()) {
const clang::SourceLocation& begin_loc = expr->getBeginLoc();
if (source_manager.getCharacterData(begin_loc)[0] == '{') {
return false;
}
}
return true;
}
// Returns a pair of replacements necessary to rewrite a C-style array
// with an initializer list to a std::array.
// The replacement is split into two, the first being a textual rewrite to an
// std::array up and until the start of the initializer list, and the second
// being a full replacement directive format (created with
// GetReplacementDirective) pointing to the end of the initializer list to
// handle closing brackets. This way, we don't need to include the initializer
// list test and don't need to escape special characters.
std::pair<std::string, std::string> RewriteStdArrayWithInitList(
const clang::ArrayType* array_type,
const std::string& type,
const std::string& var,
const std::string& size,
const clang::InitListExpr* init_list_expr,
const clang::SourceManager& source_manager,
const clang::ASTContext& ast_context) {
bool needs_trailing_comma =
ShouldInsertTrailingComma(init_list_expr, source_manager);
clang::SourceRange init_list_closing_brackets_range = {
init_list_expr->getSourceRange().getEnd(),
init_list_expr->getSourceRange().getEnd().getLocWithOffset(1)};
// Implicitly sized arrays are rewritten to std::to_array. This is because the
// std::array constructor does not allow the size to be omitted.
if (size.empty()) {
auto closing_brackets_replacement_directive = GetReplacementDirective(
init_list_closing_brackets_range, needs_trailing_comma ? ",})" : "})",
source_manager);
return std::make_pair(
llvm::formatv("auto {0} = std::to_array<{1}>(", var, type),
closing_brackets_replacement_directive);
}
// Warn for array and initializer list size mismatch, except for empty lists.
if (const auto* constant_array_type =
llvm::dyn_cast<clang::ConstantArrayType>(array_type)) {
if (init_list_expr->getNumInits() != 0 &&
constant_array_type->getSize().getZExtValue() !=
init_list_expr->getNumInits()) {
const clang::SourceLocation& location = init_list_expr->getBeginLoc();
llvm::errs() << "Array and initializer list size mismatch in file "
<< source_manager.getFilename(location) << ":"
<< source_manager.getSpellingLineNumber(location) << "\n";
}
}
const bool elide_braces =
CanElideBracesForStdArrayInitialization(init_list_expr, source_manager);
if (elide_braces) {
return std::make_pair(
llvm::formatv("std::array<{0}, {1}> {2} = ", type, size, var), "");
}
auto closing_brackets_replacement_directive = GetReplacementDirective(
init_list_closing_brackets_range, needs_trailing_comma ? ",}}" : "}}",
source_manager);
return std::make_pair(
llvm::formatv("std::array<{0}, {1}> {2} = {{", type, size, var),
closing_brackets_replacement_directive);
}
static bool IsMutable(const clang::DeclaratorDecl* decl) {
if (const auto* field_decl =
clang::dyn_cast_or_null<clang::FieldDecl>(decl)) {
return field_decl->isMutable();
}
return false;
}
static bool IsConstexpr(const clang::DeclaratorDecl* decl) {
if (const auto* var_decl = clang::dyn_cast_or_null<clang::VarDecl>(decl)) {
return var_decl->isConstexpr();
}
return false;
}
static bool IsInlineVarDecl(const clang::DeclaratorDecl* decl) {
if (const auto* var_decl = clang::dyn_cast_or_null<clang::VarDecl>(decl)) {
return var_decl->isInlineSpecified();
}
return false;
}
static bool IsStaticLocalOrStaticStorageClass(
const clang::DeclaratorDecl* decl) {
if (const auto* var_decl = clang::dyn_cast_or_null<clang::VarDecl>(decl)) {
return var_decl->isStaticLocal() ||
var_decl->getStorageClass() == clang::SC_Static;
}
return false;
}
// This function handles local c-style array variables and field decls.
// It creates a proxy_node (marked as a sink) that all other nodes are linked
// to.
// In the case of an unsafe buffer access on the array decl, it emits the
// necessary replacements to rewrite the array type to a std::array.
std::string getNodeFromArrayDecl(const clang::TypeLoc* type_loc,
const clang::DeclaratorDecl* array_decl,
const clang::ArrayType* array_type,
const MatchFinder::MatchResult& result) {
clang::SourceManager& source_manager = *result.SourceManager;
const clang::ASTContext& ast_context = *result.Context;
// C-style arrays only need to be rewritten when there's an unsafe buffer
// access on the array decl itself.
// Example1:
// int a[10]; // => a is never directly used with an unsafe access
// // => no need to rewrite a to std::array.
// int* b = a;
// b[UnsafeIndex()]; // => b is used as an usafe buffer
// // => rewrite b's type to base::span.
// Example 2:
// int a[10]; // => a is directly used with an unsafe access
// a[UnsafeIndex()]; // => rewrite a's type to std::array.
// int* b = a;
// b[UnsafeIndex()]; // => b is used as an usafe buffer
// // => rewrite b's type to base::span.
// Example 3:
// struct Foo {
// int a[10];
// };
// Foo foo;
// foo.a[UnsafeIndex()]; // => Foo::a is directly used as an unsafe buffer
// // => rewrite Foo::a's type to std::array.
//
// To handle this:
// - We create a proxy_node for array decl.
// - All other nodes are linked to the proxy node.
// - The proxy_node is marked as a sink.
// In the case of unsafe_buffer_access on the array decl:
// - We create an edge from the node n to the proxy_node(n -> proxy_node).
// - Emit n as a source node.
// - This leads n to be rewritten since the proxy_node is a sink.
auto proxy_node = NodeKeyFromRange(
clang::SourceRange(array_decl->getBeginLoc(), array_decl->getBeginLoc()),
*result.SourceManager);
EmitSink(proxy_node);
if (!result.Nodes.getNodeAs<clang::Expr>("unsafe_buffer_access")) {
// Early return to avoid uselessly determining the array replacement.
return proxy_node;
}
// Unsafe Buffer Access => Need to rewrite the array's type.
std::string key = NodeKey(array_decl, *result.SourceManager);
EmitEdge(key, proxy_node);
EmitSource(key);
const clang::ArrayTypeLoc& array_type_loc =
type_loc->getUnqualifiedLoc().getAs<clang::ArrayTypeLoc>();
assert(!array_type_loc.isNull());
const std::string& array_variable_as_string = array_decl->getNameAsString();
const std::string& array_size_as_string =
GetArraySize(array_type_loc, source_manager, ast_context);
const clang::QualType& original_element_type = array_type->getElementType();
std::stringstream qualifier_string;
if (IsInlineVarDecl(array_decl)) {
qualifier_string << "inline ";
}
if (IsMutable(array_decl)) {
// While 'mutable' is a storage class specifier, include it with other
// declaration specifiers that precede the type in source code.
qualifier_string << "mutable ";
}
if (IsStaticLocalOrStaticStorageClass(array_decl)) {
qualifier_string << "static ";
}
if (IsConstexpr(array_decl)) {
qualifier_string << "constexpr ";
}
// Move const qualifier from the element type to the array type.
// This is equivalent, because std::array provides a 'const' overload for the
// operator[].
// - reference operator[](size_type pos);
// - const_reference operator[](size_type pos) const;
//
// Note 1: The `volatile` qualifier is not moved to the array type. It is kept
// in the element type. This is correct. Anyway, Chrome doesn't have
// any volatile arrays at the moment.
//
// Note 2: Since 'constexpr' implies 'const', we don't need to add 'const' to
// the element type if the array is 'constexpr'.
clang::QualType new_element_type = original_element_type;
new_element_type.removeLocalConst();
if (original_element_type.isConstant(ast_context) &&
!IsConstexpr(array_decl)) {
qualifier_string << "const ";
}
// TODO(yukishiino): Currently we support only simple cases like:
// - Unnamed struct/class
// - Redundant struct/class keyword
// and
// - Multi-dimensional array
// But we need to support combinations of above:
// - Multi-dimensional array of unnamed struct/class
// - Multi-dimensional array with redundant struct/class keyword
std::string element_type_as_string;
const auto& [unnamed_class, class_definition] = maybeGetUnnamedAndDefinition(
new_element_type, array_decl, array_variable_as_string, ast_context);
if (!unnamed_class.empty()) {
element_type_as_string = unnamed_class;
} else if (original_element_type->isElaboratedTypeSpecifier()) {
// If the `original_element_type` is an elaborated type with a keyword, i.e.
// `struct`, `class`, `union`, we will create another ElaboratedType
// without the keyword. So `struct funcHasName` will be `funcHasHame`.
auto* original_type = new_element_type->getAs<clang::ElaboratedType>();
// Create a new ElaboratedType without 'struct', 'class', 'union'
// keywords.
auto new_element_type = ast_context.getElaboratedType(
// Use `None` to suppress tag names.
clang::ElaboratedTypeKeyword::None,
// Keep the same as the original.
original_type->getQualifier(),
// Keep the same as the original.
original_type->getNamedType(),
// Remove `OwnedTagDecl`. We don't need IncludeTagDefinition.
nullptr);
element_type_as_string = GetTypeAsString(new_element_type, ast_context);
} else {
element_type_as_string = RewriteCArrayToStdArray(
new_element_type, array_type_loc.getElementLoc(), source_manager,
ast_context);
}
const clang::InitListExpr* init_list_expr = GetArrayInitList(array_decl);
const clang::StringLiteral* init_string_literal =
clang::dyn_cast_or_null<clang::StringLiteral>(GetInitExpr(array_decl));
// static const char* array[] = {...};
// | |
// | +-- type_loc->getSourceRange().getBegin()
// |
// +---- array_decl->getSourceRange().getBegin()
//
// The `static` is a part of `VarDecl`, but the `const` is a part of
// the element type, i.e. `const char*`.
//
// The array must be rewritten into:
//
// static auto array = std::to_array<const char*>({...});
//
// So the `replacement_range` needs to include the `const` and
// `init_list_expr` if any.
clang::SourceRange replacement_range = {
array_decl->getSourceRange().getBegin(),
init_list_expr ? init_list_expr->getBeginLoc()
: type_loc->getSourceRange().getEnd().getLocWithOffset(1)};
const char* include_path = kArrayIncludePath;
std::string replacement_text;
std::string additional_replacement;
if (init_string_literal) {
assert(original_element_type->isAnyCharacterType());
if (original_element_type.isConstant(ast_context)) {
replacement_text = llvm::formatv(
"{0} {1}", GetStringViewType(new_element_type, ast_context),
array_variable_as_string);
include_path = kStringViewIncludePath;
} else {
// In case of a non-const array initialized with a string literal, we
// need to explicitly specify the element type and size of the std::array
// (i.e. they're not deducible) because the deduced element type will be
// a const type. Hence,
//
// char arr[] = "abc";
//
// is rewritten to
//
// std::array<char, 4> arr{"abc"};
//
// Note that `std::array<char, 4> arr = "abc";` doesn't compile.
replacement_range.setEnd(init_string_literal->getBeginLoc());
replacement_text = llvm::formatv(
"std::array<{0}, {1}> {2}{{", element_type_as_string,
!array_size_as_string.empty()
? array_size_as_string
: llvm::formatv("{0}", init_string_literal->getLength() +
1 /* nul-terminator */),
array_variable_as_string);
const clang::SourceLocation& end_of_string_literal =
init_string_literal
->getLocationOfByte(init_string_literal->getByteLength(),
source_manager, ast_context.getLangOpts(),
ast_context.getTargetInfo())
.getLocWithOffset(1); // The last closing quote
EmitReplacement(key, GetReplacementDirective(
clang::SourceRange(end_of_string_literal), "}",
source_manager));
}
} else if (init_list_expr) {
auto replacements = RewriteStdArrayWithInitList(
array_type, element_type_as_string, array_variable_as_string,
array_size_as_string, init_list_expr, source_manager, ast_context);
replacement_text = replacements.first;
if (!replacements.second.empty()) {
EmitReplacement(key, replacements.second);
}
} else {
replacement_text =
llvm::formatv("std::array<{0}, {1}> {2}", element_type_as_string,
array_size_as_string, array_variable_as_string);
}
replacement_text =
class_definition + qualifier_string.str() + replacement_text;
EmitReplacement(key,
GetReplacementDirective(replacement_range, replacement_text,
source_manager));
EmitReplacement(
key, GetIncludeDirective(replacement_range, source_manager, include_path,
/*is_system_include_header=*/true));
// All the other replacements are tied to the proxy_node.
return proxy_node;
}
std::string getArrayNode(bool is_lhs, const MatchFinder::MatchResult& result) {
std::string array_type_loc_id =
(is_lhs) ? "lhs_array_type_loc" : "rhs_array_type_loc";
std::string begin_id = (is_lhs) ? "lhs_begin" : "rhs_begin";
std::string array_type_id = (is_lhs) ? "lhs_array_type" : "rhs_array_type";
auto* type_loc = result.Nodes.getNodeAs<clang::TypeLoc>(array_type_loc_id);
if (auto* array_param =
result.Nodes.getNodeAs<clang::ParmVarDecl>(begin_id)) {
return getNodeFromFunctionArrayParameter(type_loc, array_param, result);
}
auto* array_decl = result.Nodes.getNodeAs<clang::DeclaratorDecl>(begin_id);
auto* array_type = result.Nodes.getNodeAs<clang::ArrayType>(array_type_id);
if (array_decl) {
return getNodeFromArrayDecl(type_loc, array_decl, array_type, result);
}
// Not supposed to get here.
llvm::errs() << "\n"
"Error: getArrayNode() encountered an unexpected match.\n"
"Expected a clang::DeclaratorDecl \n";
DumpMatchResult(result);
assert(false && "Unexpected match in getArrayNode()");
}
// Spanifies the matched function parameter/return type, and connects relevant
// function declarations (forward declarations and overridden methods) to each
// other bidirectionally per the matched function parameter/return type. Note
// that a function definition is a function declaration by definition.
// Tests are in: fct-decl-tests-original.cc
//
// Example) Given the following C++ code,
//
// void F(short* arg1, long* arg2); // [1] First declaration
// void F(short* arg1, long* arg2) { ... } // [2] Second declaration
// // Only arg1 is connected to a source and sinks.
//
// we build the following node graph:
//
// node_arg1_1st <==> replace_arg1_1st
// ^|
// ||
// |v
// node_arg1_2nd <==> replace_arg1_2nd <==> a source-to-sink graph
//
// node_arg2_1st <==> replace_arg2_1st
// ^|
// ||
// |v
// node_arg2_2nd <==> replace_arg2_2nd
//
// where
//
// replace_arg1_1st = `replacement_key` for arg1 at [1]
// = GetRHS(arg1 at [1])
// replace_arg1_2nd = `replacement_key` for arg1 at [2]
// = GetRHS(arg1 at [2])
// node_arg1_1st = `previous_key`
// = NodeKey(F at [1], source_manager, "1-th parm type")
// node_arg1_2nd = `current_key`
// = NodeKey(F at [2], source_manager, "1-th parm type")
// and the same for arg2.
// (`var` is a local variable name in the implementation.)
//
// Then, arg1 will be rewritten while arg2 will not be rewritten because only
// the arg1 graph is connected to a source-to-sink graph.
//
// Q: Why do we create node_arg1_{1st,2nd} in addition to
// replace_arg1_{1st,2nd}? Does the following graph suffice?
//
// replace_arg1_1st <==> a source-to-sink graph
// ^|
// ||
// |v
// replace_arg1_2nd
//
// A: Yes, it does suffice. But it's hard to build because GetRHS takes
// `result` as the argument. When we find a match for arg1 at [2], we no longer
// have `result` for arg1 at [1]. It's easier to create node_arg1_{1st,2nd] than
// saving the results of GetRHS somewhere and retrieving it.
void RewriteFunctionParamAndReturnType(const MatchFinder::MatchResult& result) {
const clang::SourceManager& source_manager = *result.SourceManager;
const clang::FunctionDecl* fct_decl =
result.Nodes.getNodeAs<clang::FunctionDecl>("fct_decl");
// This node spanifies the matched function parameter/return type.
const std::string& replacement_key = GetRHS(result);
// `parm_or_return_id` (passed in to NodeKey() as `optional_seed` argument) is
// used to identify the matched parameter/return type so that the spanifier
// tool can partially spanify some of (not necessarily all of) function
// parameter types and return type.
//
// With the example in the function header comment, we'd like to build two
// independent graphs for arg1 and arg2.
//
// Note: It's easier to make a unique node key from `fct_decl` +
// `parm_or_return_id` than making a unique node key from the clang::Decl
// that matches the function parameter/return type of each forward
// declaration or overridden method.
std::string parm_or_return_id;
if (const clang::ParmVarDecl* parm_var_decl =
result.Nodes.getNodeAs<clang::ParmVarDecl>("rhs_begin")) {
parm_or_return_id = llvm::formatv("{0}-th parm type",
parm_var_decl->getFunctionScopeIndex());
} else {
parm_or_return_id = "return type";
}
// `current_key` (node_arg1_2nd in the example in the function header comment)
// is just a helper node to be identical to `replacement_key`, so connect them
// bi-directionally to each other.
const std::string& current_key =
NodeKey(fct_decl, source_manager, parm_or_return_id);
EmitEdge(current_key, replacement_key);
EmitEdge(replacement_key, current_key);
// Connect to the previous function decl, which is already connected to the
// previous previous function decl.
if (const clang::Decl* previous_decl = fct_decl->getPreviousDecl()) {
const std::string& previous_key =
NodeKey(previous_decl, source_manager, parm_or_return_id);
if (raw_ptr_plugin::isNodeInThirdPartyLocation(*previous_decl,
source_manager)) {
// A declaration in third party codebase is found, so we do not want to
// rewrite the parameter/return type in a third party function. This one-
// way edge prevents making a flow from a source to a sink, hence the
// rewriting will be cancelled.
//
// Example)
//
// node_arg1_1st (No replace_arg1_1st because it's in third_party/)
// ^
// | (one-way edge)
// |
// node_arg1_2nd <==> replace_arg1_2nd <==> a source-to-sink graph
//
// where node_arg1_1st is not a sink node, so the source node reaches a
// non-sink end node. Hence, the rewriting will be cancelled.
EmitEdge(current_key, previous_key);
} else {
EmitEdge(current_key, previous_key);
EmitEdge(previous_key, current_key);
}
}
// Connect to the overridden methods.
if (const clang::CXXMethodDecl* method_decl =
clang::dyn_cast<clang::CXXMethodDecl>(fct_decl)) {
for (auto* overridden_method_decl : method_decl->overridden_methods()) {
const std::string& overridden_method_key =
NodeKey(overridden_method_decl, source_manager, parm_or_return_id);
if (raw_ptr_plugin::isNodeInThirdPartyLocation(*overridden_method_decl,
source_manager)) {
// A declaration in third party codebase is found, so we do not want to
// rewrite the parameter/return type in a third party function. This
// one-way edge prevents making a flow from a source to a sink, hence
// the rewriting will be cancelled.
EmitEdge(current_key, overridden_method_key);
} else {
EmitEdge(current_key, overridden_method_key);
EmitEdge(overridden_method_key, current_key);
}
}
}
}
// Extracts the lhs node from the match result.
std::string GetLHS(const MatchFinder::MatchResult& result) {
if (auto* type_loc =
result.Nodes.getNodeAs<clang::PointerTypeLoc>("lhs_type_loc")) {
return getNodeFromPointerTypeLoc(type_loc, result);
}
if (auto* raw_ptr_type_loc =
result.Nodes.getNodeAs<clang::TemplateSpecializationTypeLoc>(
"lhs_raw_ptr_type_loc")) {
return getNodeFromRawPtrTypeLoc(raw_ptr_type_loc, result);
}
if (result.Nodes.getNodeAs<clang::TypeLoc>("lhs_array_type_loc")) {
return getArrayNode(/*is_lhs=*/true, result);
}
if (auto* lhs_begin =
result.Nodes.getNodeAs<clang::DeclaratorDecl>("lhs_begin")) {
return getNodeFromDecl(lhs_begin, result);
}
// Not supposed to get here.
llvm::errs() << "\n"
"Error: getLHS() encountered an unexpected match.\n"
"Expected one of : \n"
" - lhs_type_loc\n"
" - lhs_raw_ptr_type_loc\n"
" - lhs_array_type_loc\n"
" - lhs_begin\n"
"\n";
DumpMatchResult(result);
assert(false && "Unexpected match in getLHS()");
}
// If we rewrite a node, we generally don't want `reinterpret_cast`
// involved. We might replace it with
// * `base::as_byte_span()`.
// * some other spanification helper that computes a different-width
// "view" of the underlying type.
// * nothing, causing a compile error, letting a human deal with it.
//
// TODO(crbug.com/414914153): This currently only emits
// `base::as_byte_span()`. Have it do the other stuff, too.
void RemoveReinterpretCastExpr(const MatchFinder::MatchResult& result,
std::string_view node_key) {
auto* cast_expr =
result.Nodes.getNodeAs<clang::CXXReinterpretCastExpr>("reinterpret_cast");
if (!cast_expr) {
return;
}
// Repurpose the parentheses of `reinterpret_cast()` for our edit,
// i.e. rewrite only this range:
//
// reinterpret_cast<T*>(...);
// |------------------|
const clang::SourceRange replacement_range = {
cast_expr->getBeginLoc(),
cast_expr->getAngleBrackets().getEnd().getLocWithOffset(1u)};
if (result.Nodes.getNodeAs<clang::QualType>("reinterpret_cast_to_bytes")) {
const bool target_type_is_const =
GetNodeOrCrash<clang::QualType>(
result, "target_type", "`reinterpret_cast` implies `target_type`")
->isConstQualified();
std::string replacement = target_type_is_const
? "base::as_byte_span"
: "base::as_writable_byte_span";
return EmitReplacement(
node_key, GetReplacementDirective(replacement_range, replacement,
*result.SourceManager));
}
}
std::string GetRHSImpl(const MatchFinder::MatchResult& result) {
if (auto* type_loc =
result.Nodes.getNodeAs<clang::PointerTypeLoc>("rhs_type_loc")) {
return getNodeFromPointerTypeLoc(type_loc, result);
}
if (auto* raw_ptr_type_loc =
result.Nodes.getNodeAs<clang::TemplateSpecializationTypeLoc>(
"rhs_raw_ptr_type_loc")) {
return getNodeFromRawPtrTypeLoc(raw_ptr_type_loc, result);
}
if (result.Nodes.getNodeAs<clang::TypeLoc>("rhs_array_type_loc")) {
return getArrayNode(/*is_lhs=*/false, result);
}
if (auto* rhs_begin =
result.Nodes.getNodeAs<clang::DeclaratorDecl>("rhs_begin")) {
return getNodeFromDecl(rhs_begin, result);
}
if (result.Nodes.getNodeAs<clang::CXXMemberCallExpr>("member_data_call")) {
clang::SourceManager& source_manager = *result.SourceManager;
const clang::MemberExpr* data_member_expr =
result.Nodes.getNodeAs<clang::MemberExpr>("data_member_expr");
// Create a node representing the member .data() call.
// This node can be rewritten (e.g. it's a sink), from the span, by removing
// the `.data()` call.
const std::string key = NodeKey(data_member_expr, source_manager);
EmitSink(key); // This node can be rewritten, because the span can.
EraseMemberCall(key, data_member_expr, source_manager);
return key;
}
if (const clang::Expr* size_expr =
result.Nodes.getNodeAs<clang::Expr>("size_node")) {
// "size_node" assumes that third party functions that return a buffer
// provide some way to know the size, however special handling is required
// to extract that, thus here we add support for functions returning a
// buffer that also have size support.
if (const auto* unsafe_call_expr = result.Nodes.getNodeAs<clang::CallExpr>(
"unsafe_function_call_expr")) {
return GetNodeFromUnsafeFunctionCall(size_expr, unsafe_call_expr, result);
}
return getNodeFromSizeExpr(size_expr, result);
}
// Not supposed to get here.
llvm::errs() << "\n"
"Error: getRHS() encountered an unexpected match.\n"
"Expected one of : \n"
" - rhs_type_loc\n"
" - rhs_raw_ptr_type_loc\n"
" - rhs_array_type_loc\n"
" - rhs_begin\n"
" - member_data_call\n"
" - size_node\n"
"\n";
DumpMatchResult(result);
assert(false && "Unexpected match in getRHS()");
}
// Extracts the rhs node from the match result.
std::string GetRHS(const MatchFinder::MatchResult& result) {
std::string node_key = GetRHSImpl(result);
RemoveReinterpretCastExpr(result, node_key);
return node_key;
}
// Called when it exist a dependency in between `lhs` and `rhs` nodes. To apply
// the rewrite of `lhs`, the rewrite of `rhs` is required.
void MatchAdjacency(const MatchFinder::MatchResult& result) {
std::string lhs = GetLHS(result);
std::string rhs = GetRHS(result);
if (result.Nodes.getNodeAs<clang::Expr>("span_frontier")) {
AddSpanFrontierChange(lhs, rhs, result);
}
EmitEdge(lhs, rhs);
}
raw_ptr_plugin::FilterFile PathsToExclude() {
std::vector<std::string> paths_to_exclude_lines;
paths_to_exclude_lines.insert(paths_to_exclude_lines.end(),
kSpanifyManualPathsToIgnore.begin(),
kSpanifyManualPathsToIgnore.end());
paths_to_exclude_lines.insert(paths_to_exclude_lines.end(),
kSeparateRepositoryPaths.begin(),
kSeparateRepositoryPaths.end());
return raw_ptr_plugin::FilterFile(paths_to_exclude_lines);
}
class ExprVisitor
: public clang::ast_matchers::internal::BoundNodesTreeBuilder::Visitor {
public:
void visitMatch(
const clang::ast_matchers::BoundNodes& BoundNodesView) override {
assert(expr_ == nullptr &&
"Encountered more than one expression with match id 'LHS'.");
expr_ = BoundNodesView.getNodeAs<clang::Expr>("LHS");
}
const clang::Expr* expr_ = nullptr;
};
const clang::Expr* FindLHSExpr(
clang::ast_matchers::internal::BoundNodesTreeBuilder& matches) {
ExprVisitor v;
matches.visitMatches(&v);
return v.expr_;
}
// This allows us to unpack binaryOperations recursively until we reach the node
// matching InnerMatcher. This is necessary to handle expressions of the form:
// buf + expr1 - expr2 + expr3;
// which need to be rewritten to:
// buf.subspan(expr1 - expr2 + expr3);
AST_MATCHER_P(clang::Expr,
binary_plus_or_minus_operation,
clang::ast_matchers::internal::Matcher<clang::Expr>,
InnerMatcher) {
auto bin_op_matcher = expr(ignoringParenCasts(
binaryOperation(anyOf(hasOperatorName("+"), hasOperatorName("-")),
hasLHS(expr(binaryOperation(anyOf(hasOperatorName("+"),
hasOperatorName("-"))))
.bind("LHS")))));
clang::ast_matchers::internal::BoundNodesTreeBuilder matches;
if (bin_op_matcher.matches(Node, Finder, &matches)) {
const clang::Expr* n = FindLHSExpr(matches);
auto matcher = binary_plus_or_minus_operation(InnerMatcher);
return matcher.matches(*n, Finder, Builder);
}
return InnerMatcher.matches(Node, Finder, Builder);
}
class Spanifier {
public:
explicit Spanifier(MatchFinder& finder) : match_finder_(finder) {
// `raw_ptr` or `span` should not have `.data()` applied.
auto frontier_exclusions = anyOf(
isExpansionInSystemHeader(), raw_ptr_plugin::isInExternCContext(),
raw_ptr_plugin::isInThirdPartyLocation(),
raw_ptr_plugin::isInGeneratedLocation(),
raw_ptr_plugin::ImplicitFieldDeclaration(),
raw_ptr_plugin::isInMacroLocation(),
raw_ptr_plugin::isInLocationListedInFilterFile(&paths_to_exclude_));
// Standard exclusions include `raw_ptr` and `span`.
auto exclusions = anyOf(
frontier_exclusions,
hasAncestor(cxxRecordDecl(anyOf(hasName("raw_ptr"), hasName("span")))));
// Exclude literal strings as these need to become string_view
auto pointer_type = pointerType(pointee(qualType(unless(
anyOf(qualType(hasDeclaration(
cxxRecordDecl(raw_ptr_plugin::isAnonymousStructOrUnion()))),
hasUnqualifiedDesugaredType(
anyOf(functionType(), memberPointerType(), voidType())),
hasCanonicalType(
anyOf(asString("const char"), asString("const wchar_t"),
asString("const char8_t"), asString("const char16_t"),
asString("const char32_t"))))))));
auto raw_ptr_type = qualType(
hasDeclaration(classTemplateSpecializationDecl(hasName("raw_ptr"))));
auto raw_ptr_type_loc = templateSpecializationTypeLoc(loc(raw_ptr_type));
auto lhs_type_loc = anyOf(
hasType(pointer_type),
allOf(hasType(raw_ptr_type),
hasDescendant(raw_ptr_type_loc.bind("lhs_raw_ptr_type_loc"))),
hasTypeLoc(loc(qualType(arrayType().bind("lhs_array_type")))
.bind("lhs_array_type_loc")));
auto rhs_type_loc = anyOf(
hasType(pointer_type),
allOf(hasType(raw_ptr_type),
hasDescendant(raw_ptr_type_loc.bind("rhs_raw_ptr_type_loc"))),
hasTypeLoc(loc(qualType(arrayType())).bind("rhs_array_type_loc")));
auto lhs_field =
fieldDecl(raw_ptr_plugin::hasExplicitFieldDecl(lhs_type_loc),
unless(exclusions),
unless(hasParent(cxxRecordDecl(hasName("raw_ptr")))))
.bind("lhs_begin");
auto rhs_field =
fieldDecl(raw_ptr_plugin::hasExplicitFieldDecl(rhs_type_loc),
unless(exclusions),
unless(hasParent(cxxRecordDecl(hasName("raw_ptr")))))
.bind("rhs_begin");
auto lhs_var =
varDecl(lhs_type_loc, unless(anyOf(exclusions, hasExternalStorage())))
.bind("lhs_begin");
auto rhs_var =
varDecl(rhs_type_loc, unless(anyOf(exclusions, hasExternalStorage())))
.bind("rhs_begin");
auto lhs_param =
parmVarDecl(lhs_type_loc, unless(exclusions)).bind("lhs_begin");
auto rhs_param =
parmVarDecl(rhs_type_loc, unless(exclusions)).bind("rhs_begin");
// Exclude functions returning literal strings as these need to become
// string_view.
auto exclude_literal_strings =
unless(returns(qualType(pointsTo(qualType(hasCanonicalType(
anyOf(asString("const char"), asString("const wchar_t"),
asString("const char8_t"), asString("const char16_t"),
asString("const char32_t"))))))));
auto rhs_call_expr = callExpr(callee(
functionDecl(hasReturnTypeLoc(pointerTypeLoc().bind("rhs_type_loc")),
exclude_literal_strings, unless(exclusions))));
auto lhs_call_expr = callExpr(callee(
functionDecl(hasReturnTypeLoc(pointerTypeLoc().bind("lhs_type_loc")),
exclude_literal_strings, unless(exclusions))));
auto lhs_expr = expr(anyOf(declRefExpr(to(anyOf(lhs_var, lhs_param))),
memberExpr(member(lhs_field)), lhs_call_expr));
// Matches statements of the form: &buf[n] where buf is a container type
// (span, std::vector, std::array, C-style array...).
auto buff_address_from_container =
unaryOperator(
hasOperatorName("&"),
hasUnaryOperand(anyOf(
cxxOperatorCallExpr(
callee(functionDecl(
hasName("operator[]"),
hasParent(cxxRecordDecl(hasMethod(hasName("size")))))),
hasDescendant(
declRefExpr(
to(varDecl(hasType(classTemplateSpecializationDecl(
hasTemplateArgument(
0, refersToType(qualType().bind(
"contained_type"))))))))
.bind("container_decl_ref")),
optionally(
hasDescendant(integerLiteral(equals(0u))
.bind("zero_container_offset"))))
.bind("container_subscript"),
arraySubscriptExpr(
hasBase(
declRefExpr(to(varDecl(hasType(arrayType(hasElementType(
qualType().bind("contained_type")))))))
.bind("container_decl_ref")),
hasIndex(expr().bind("c_style_array_subscript")),
optionally(hasIndex(integerLiteral(equals(0u))
.bind("zero_container_offset"))))
.bind("c_style_array_with_subscript"))))
.bind("container_buff_address");
// T* a = buf.data();
auto member_data_call =
cxxMemberCallExpr(
callee(functionDecl(
hasName("data"),
hasParent(cxxRecordDecl(hasMethod(hasName("size")))))),
has(memberExpr().bind("data_member_expr")))
.bind("member_data_call");
auto has_std_array_type = hasType(hasCanonicalType(hasDeclaration(
classTemplateSpecializationDecl(hasName("::std::array")))));
// Array excluded because it might be used as a buffer with >1 size.
auto single_var_span_exclusions =
unless(anyOf(exclusions, hasType(arrayType()), hasType(functionType()),
has_std_array_type));
// Matches |&var| where |var| is a local variable, a parameter or member
// field. Doesn't match when |var| is a function or an array.
auto buff_address_from_single_var =
unaryOperator(
hasOperatorName("&"),
hasUnaryOperand(anyOf(
declRefExpr(to(anyOf(varDecl(single_var_span_exclusions),
parmVarDecl(single_var_span_exclusions))))
.bind("address_expr_operand"),
memberExpr(member(fieldDecl(single_var_span_exclusions)))
.bind("address_expr_operand"))))
.bind("address_expr");
// Used to look "outward" one layer from other expressions matched
// below s.t. we can remove `reinterpret_cast` from spanified
// things.
//
// Attached to matchers that compose into others, not just
// `rhs_expr_variations`.
//
// TODO(414914153): this ought to work when attached directly to
// `rhs_expr_variations`, but empirically we observe that it does
// not. Investigate?
const auto reinterpret_cast_wrapper = optionally(hasParent(
cxxReinterpretCastExpr(
hasDestinationType(qualType(pointsTo(
qualType(anyOf(qualType(asString("uint8_t"))
.bind("reinterpret_cast_to_bytes"),
qualType(isAnyCharacter())
.bind("reinterpret_cast_to_bytes"),
qualType(isInteger())
.bind("reinterpret_cast_to_integral_type")))
.bind("target_type")))),
unless(raw_ptr_plugin::isInMacroLocation()))
.bind("reinterpret_cast")));
// Defines nodes that contain size information, these include:
// - nullptr => size is zero
// - calls to new/new[n] => size is 1/n
// - calls to third_party functions that we can't rewrite (they should
// provide a size for the pointer returned)
// - address to local variable (e.g. `&foo`) => size is 1
// TODO(353710304): Consider handling functions taking in/out args ex:
// void alloc(**ptr);
// TODO(353710304): Consider making member_data_call and size_node mutually
// exclusive. We rely here on the ordering of expressions
// in the anyOf matcher to first match member_data_call
// which is a subset of size_node.
//
// This is put under the `reinterpret_cast` wrapper to handle the
// case where we would end up with:
//
// base::span foo = reinterpret_cast<...>(bar.data());
//
// where `bar` has size information available, putting it under
// this matcher.
auto size_node_matcher = expr(
anyOf(
member_data_call,
expr(anyOf(callExpr(callee(functionDecl(
unsafeFunctionToBeRewrittenToMacro())
.bind("unsafe_function_decl")))
.bind("unsafe_function_call_expr"),
callExpr(callee(functionDecl(
hasReturnTypeLoc(pointerTypeLoc()),
anyOf(raw_ptr_plugin::isInThirdPartyLocation(),
isExpansionInSystemHeader(),
raw_ptr_plugin::isInExternCContext())))),
cxxNullPtrLiteralExpr().bind("nullptr_expr"),
cxxNewExpr(), buff_address_from_container,
buff_address_from_single_var))
.bind("size_node")),
reinterpret_cast_wrapper);
auto rhs_expr =
expr(ignoringParenCasts(anyOf(
declRefExpr(to(anyOf(rhs_var, rhs_param))).bind("declRefExpr"),
memberExpr(member(rhs_field)).bind("memberExpr"),
rhs_call_expr.bind("callExpr"))))
.bind("rhs_expr");
auto get_calls_on_raw_ptr = cxxMemberCallExpr(
callee(cxxMethodDecl(hasName("get"), ofClass(hasName("raw_ptr")))),
has(memberExpr(has(rhs_expr))));
auto rhs_exprs_without_size_nodes =
expr(ignoringParenCasts(anyOf(
rhs_expr,
binaryOperation(
binary_plus_or_minus_operation(binaryOperation(
hasLHS(rhs_expr), hasOperatorName("+"),
unless(raw_ptr_plugin::isInMacroLocation()))),
hasRHS(expr(hasType(isInteger())).bind("binary_op_rhs")),
unless(hasParent(binaryOperation(
anyOf(hasOperatorName("+"), hasOperatorName("-"))))))
.bind("binaryOperator"),
unaryOperator(hasOperatorName("++"), hasUnaryOperand(rhs_expr))
.bind("unaryOperator"),
cxxOperatorCallExpr(
callee(cxxMethodDecl(ofClass(hasName("raw_ptr")))),
hasOperatorName("++"), hasArgument(0, rhs_expr))
.bind("raw_ptr_operator++"),
get_calls_on_raw_ptr)),
reinterpret_cast_wrapper)
.bind("span_frontier");
// This represents the forms under which an expr could appear on the right
// hand side of an assignment operation, var construction, or an expr passed
// as callExpr argument. Examples:
// rhs_expr, rhs_expr++, ++rhs_expr, rhs_expr + n, cast(rhs_expr);
auto rhs_expr_variations = expr(ignoringParenCasts(
anyOf(size_node_matcher, rhs_exprs_without_size_nodes)));
auto lhs_expr_variations = expr(ignoringParenCasts(lhs_expr));
// Expressions used to decide the pointer/array is unsafely used as a
// buffer including:
// expr[n], expr++, ++expr, expr + n, expr += n
auto unsafe_buffer_access = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
expr(ignoringParenCasts(anyOf(
// Unsafe pointer subscript:
arraySubscriptExpr(hasLHS(lhs_expr_variations),
unless(isSafeArraySubscript())),
// Unsafe pointer arithmetic:
binaryOperation(
anyOf(hasOperatorName("+="), hasOperatorName("+")),
hasLHS(lhs_expr_variations)),
unaryOperator(hasOperatorName("++"),
hasUnaryOperand(lhs_expr_variations)),
// Unsafe base::raw_ptr arithmetic:
cxxOperatorCallExpr(anyOf(hasOverloadedOperatorName("[]"),
hasOperatorName("++")),
hasArgument(0, lhs_expr_variations)))))
.bind("unsafe_buffer_access"));
Match(unsafe_buffer_access, [](const auto& result) {
EmitSource(GetLHS(result)); // Declare unsafe buffer access.
});
// `sizeof(c_array)` is rewritten to
// `std_array.size() * sizeof(element_size)`.
auto sizeof_array_expr = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
sizeOfExpr(has(rhs_exprs_without_size_nodes)).bind("sizeof_expr"));
Match(sizeof_array_expr, RewriteArraySizeof);
auto deref_expression = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
expr(anyOf(unaryOperator(hasOperatorName("*"),
hasUnaryOperand(rhs_exprs_without_size_nodes)),
cxxOperatorCallExpr(
hasOverloadedOperatorName("*"),
hasArgument(0, rhs_exprs_without_size_nodes))),
unless(raw_ptr_plugin::isInMacroLocation()))
.bind("deref_expr"));
Match(deref_expression, DecaySpanToPointer);
// Handles boolean operations that need to be adapted after a span rewrite.
// if(expr) => if(!expr.empty())
// if(!expr) => if(expr.empty())
// Notice here that the implicit cast part of the expression is traversed
// using the default traversal mode `clang::TK_AsIs`, while the expression
// variation matcher is traversed using
// `clang::TK_IgnoreUnlessSpelledInSource`. The traversal mode
// `clang::TK_IgnoreUnlessSpelledInSource`, while very useful in simplifying
// the matchers, wouldn't detect boolean operations on pointers hence the
// need for a hybrid traversal mode in this matcher.
auto boolean_op_operand =
traverse(clang::TK_IgnoreUnlessSpelledInSource,
expr(rhs_exprs_without_size_nodes).bind("boolean_op_operand"));
auto raw_ptr_op_bool_call_expr =
cxxMemberCallExpr(on(boolean_op_operand),
callee(cxxMethodDecl(hasName("operator bool"),
ofClass(hasName("raw_ptr")))));
auto boolean_op = traverse(
clang::TK_AsIs,
expr(anyOf(implicitCastExpr(
hasCastKind(clang::CastKind::CK_PointerToBoolean),
hasSourceExpression(boolean_op_operand)),
implicitCastExpr(has(raw_ptr_op_bool_call_expr))),
optionally(hasParent(
unaryOperator(hasOperatorName("!")).bind("logical_not_op")))));
Match(boolean_op, DecaySpanToBooleanOp);
// This is needed to remove the `.get()` call on raw_ptr from rewritten
// expressions. Example: raw_ptr<T> member; auto* temp = member.get(); if
// member's type is rewritten to a raw_span<T>, this matcher is used to
// remove the `.get()` call.
auto raw_ptr_get_call = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
cxxMemberCallExpr(
callee(cxxMethodDecl(hasName("get"), ofClass(hasName("raw_ptr")))),
has(memberExpr(has(rhs_expr)).bind("get_member_expr"))));
Match(raw_ptr_get_call, [](const MatchFinder::MatchResult& result) {
clang::SourceManager& source_manager = *result.SourceManager;
EraseMemberCall(
GetRHS(result),
result.Nodes.getNodeAs<clang::MemberExpr>("get_member_expr"),
source_manager);
});
// When passing now-span buffers to third_party functions as parameters, we
// need to add `.data()` to extract the pointer and keep things compiling.
// See test: 'array-external-call-original.cc'
//
// TODO(crbug.com/419598098): we had trouble exercising the "add
// `.data()` to frontier calls" logic in our test harness. This
// might imply that the exclude logic is broken or works differently
// from prod. If we could figure this out, we could test it.
auto buffer_to_external_func = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
expr(anyOf(
callExpr(callee(functionDecl(
frontier_exclusions,
unless(matchesName(
"std::(size|begin|end|empty|swap|ranges::)")))),
forEachArgumentWithParam(
expr(rhs_exprs_without_size_nodes), parmVarDecl())),
cxxConstructExpr(
hasDeclaration(cxxConstructorDecl(frontier_exclusions)),
forEachArgumentWithParam(expr(rhs_exprs_without_size_nodes),
parmVarDecl())))));
Match(buffer_to_external_func, AppendDataCall);
// Handles unary arithmetic operations (pre/post increment)
auto unary_op = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
expr(ignoringParenCasts(anyOf(
unaryOperator(hasOperatorName("++"), hasUnaryOperand(rhs_expr))
.bind("unaryOperator"),
cxxOperatorCallExpr(
callee(cxxMethodDecl(ofClass(hasName("raw_ptr")))),
hasOperatorName("++"), hasArgument(0, rhs_expr))
.bind("raw_ptr_operator++"))))
.bind("unary_op"));
Match(unary_op, RewriteUnaryOperation);
// Handles expressions of the form:
// a + m, a + n + m, ...
// which need to be rewritten to:
// a.subspan(m), a.subspan(n + m), ...
// These expressions always appear on the right-hand side.
// Consider the following example:
// lhs_expr = rhs_expr + offset_expr
// ^--------------------^ = BinaryOperation
// ^------^ = BinaryOperations' LHS expr
// ^---------^ = BinaryOperation's RHS expr
// ^ = BinaryOperation's Operator
// Note that BinaryOperations's LHS and RHS expressions refer to what's
// before and after the binary operator (+) (Not to be confused with
// lhs_expr and rhs_expr).
auto binary_op =
traverse(clang::TK_IgnoreUnlessSpelledInSource,
expr(ignoringParenCasts(binaryOperation(
binary_plus_or_minus_operation(
binaryOperation(hasLHS(rhs_expr), hasOperatorName("+"),
hasRHS(expr(hasType(isInteger()))))
.bind("binary_operation")),
hasRHS(expr().bind("binary_op_rhs")),
unless(hasParent(binaryOperation(anyOf(
hasOperatorName("+"), hasOperatorName("-")))))))));
Match(binary_op, AdaptBinaryOperation);
// Handles expressions of the form:
// expr += offset_expr;
// which is equivalent to:
// lhs_expr = rhs_expr + offset_expr (Note: lhs_expr == rhs_expr)
auto binary_plus_eq_op = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
expr(ignoringParenCasts(binaryOperation(
hasLHS(rhs_expr), hasOperatorName("+="),
hasRHS(expr(hasType(isInteger())).bind("binary_op_RHS")))))
.bind("binary_plus_eq_op"));
Match(binary_plus_eq_op, AdaptBinaryPlusEqOperation);
// Handles assignment:
// a = b;
// a = fct();
// a = reinterpret_cast<>(b);
// a = (cond) ? expr1 : expr2;
auto assignement_relationship = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
binaryOperation(hasOperatorName("="),
hasOperands(lhs_expr_variations,
anyOf(rhs_expr_variations,
conditionalOperator(hasTrueExpression(
rhs_expr_variations)))),
unless(isExpansionInSystemHeader())));
Match(assignement_relationship, MatchAdjacency);
// Creates the edge from lhs to false_expr in a ternary conditional
// operator.
auto assignement_relationship2 = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
binaryOperation(hasOperatorName("="),
hasOperands(lhs_expr_variations,
conditionalOperator(hasFalseExpression(
rhs_expr_variations))),
unless(isExpansionInSystemHeader())));
Match(assignement_relationship2, MatchAdjacency);
// Supports:
// T* temp = member;
// T* temp = init();
// T* temp = (cond) ? expr1 : expr2;
// T* temp = reinterpret_cast<>(b);
auto var_construction = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
varDecl(
lhs_var,
has(expr(anyOf(
rhs_expr_variations,
conditionalOperator(hasTrueExpression(rhs_expr_variations)),
cxxConstructExpr(has(expr(anyOf(
rhs_expr_variations, conditionalOperator(hasTrueExpression(
rhs_expr_variations))))))))),
unless(isExpansionInSystemHeader())));
Match(var_construction, MatchAdjacency);
// Creates the edge from lhs to false_expr in a ternary conditional
// operator.
auto var_construction2 = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
varDecl(
lhs_var,
has(expr(anyOf(
conditionalOperator(hasFalseExpression(rhs_expr_variations)),
cxxConstructExpr(has(expr(conditionalOperator(
hasFalseExpression(rhs_expr_variations)))))))),
unless(isExpansionInSystemHeader())));
Match(var_construction2, MatchAdjacency);
// Supports:
// return member;
// return fct();
// return reinterpret_cast(expr);
// return (cond) ? expr1 : expr2;
auto returned_var_or_member = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
returnStmt(
hasReturnValue(expr(anyOf(
rhs_expr_variations,
conditionalOperator(hasTrueExpression(rhs_expr_variations))))),
unless(isExpansionInSystemHeader()),
forFunction(functionDecl(
hasReturnTypeLoc(pointerTypeLoc().bind("lhs_type_loc")),
unless(exclusions))))
.bind("lhs_stmt"));
Match(returned_var_or_member, MatchAdjacency);
// Creates the edge from lhs to false_expr in a ternary conditional
// operator.
auto returned_var_or_member2 = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
returnStmt(hasReturnValue(conditionalOperator(
hasFalseExpression(rhs_expr_variations))),
unless(isExpansionInSystemHeader()),
forFunction(functionDecl(
hasReturnTypeLoc(pointerTypeLoc().bind("lhs_type_loc")),
unless(exclusions))))
.bind("lhs_stmt"));
Match(returned_var_or_member2, MatchAdjacency);
// Handles expressions of the form member(arg).
// A(const T* arg): member(arg){}
// member(init());
// member(fct());
auto ctor_initilizer = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
cxxCtorInitializer(withInitializer(anyOf(
cxxConstructExpr(has(expr(rhs_expr_variations))),
rhs_expr_variations)),
forField(lhs_field)));
Match(ctor_initilizer, MatchAdjacency);
// Supports:
// S* temp;
// Obj o(temp); Obj o{temp};
// This links temp to the parameter in Obj's constructor.
auto var_passed_in_constructor = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
cxxConstructExpr(forEachArgumentWithParam(
expr(anyOf(
rhs_expr_variations,
conditionalOperator(hasTrueExpression(rhs_expr_variations)))),
lhs_param)));
Match(var_passed_in_constructor, MatchAdjacency);
// Creates the edge from lhs to false_expr in a ternary conditional
// operator.
auto var_passed_in_constructor2 = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
cxxConstructExpr(forEachArgumentWithParam(
expr(conditionalOperator(hasFalseExpression(rhs_expr_variations))),
lhs_param)));
Match(var_passed_in_constructor2, MatchAdjacency);
// Handles member field initializers.
auto field_init = fieldDecl(lhs_field, has(rhs_expr_variations),
unless(isExpansionInSystemHeader()));
Match(field_init, MatchAdjacency);
// handles Obj o{temp} when Obj has no constructor.
// This creates a link between the expr and the underlying field.
auto var_passed_in_initlistExpr = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
initListExpr(raw_ptr_plugin::forEachInitExprWithFieldDecl(
expr(anyOf(
rhs_expr_variations,
conditionalOperator(hasTrueExpression(rhs_expr_variations)))),
lhs_field)));
Match(var_passed_in_initlistExpr, MatchAdjacency);
auto var_passed_in_initlistExpr2 = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
initListExpr(raw_ptr_plugin::forEachInitExprWithFieldDecl(
expr(conditionalOperator(hasFalseExpression(rhs_expr_variations))),
lhs_field)));
Match(var_passed_in_initlistExpr2, MatchAdjacency);
// Link var/field passed as function arguments to function parameter
// This handles func(var/member/param), func(func2())
// cxxOpCallExprs excluded here since operator= can be invoked as a call
// expr for classes/structs.
auto call_expr = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
callExpr(forEachArgumentWithParam(
expr(anyOf(rhs_expr_variations,
conditionalOperator(
hasTrueExpression(rhs_expr_variations)))),
lhs_param),
unless(isExpansionInSystemHeader()),
unless(cxxOperatorCallExpr(hasOperatorName("=")))));
Match(call_expr, MatchAdjacency);
// Map function declaration signature to function definition signature;
// This is problematic in the case of callbacks defined in function.
auto fct_decls_params =
traverse(clang::TK_IgnoreUnlessSpelledInSource,
functionDecl(forEachParmVarDecl(rhs_param), unless(exclusions))
.bind("fct_decl"));
Match(fct_decls_params, RewriteFunctionParamAndReturnType);
auto fct_decls_returns = traverse(
clang::TK_IgnoreUnlessSpelledInSource,
functionDecl(hasReturnTypeLoc(pointerTypeLoc().bind("rhs_type_loc")),
unless(exclusions))
.bind("fct_decl"));
Match(fct_decls_returns, RewriteFunctionParamAndReturnType);
}
private:
// An adapter class to execute a callback on a match.
//
// This allows developers to pass a regular function as callbacks. It avoids
// the need of creating a new class for each callback. This promotes more
// localized code, as it avoids the temptation of reusing a previously
// created class.
class MatchCallback : public MatchFinder::MatchCallback {
public:
explicit MatchCallback(
std::function<void(const MatchFinder::MatchResult&)> callback)
: callback_(callback) {}
void run(const MatchFinder::MatchResult& result) override {
callback_(result);
}
private:
std::function<void(const MatchFinder::MatchResult&)> callback_;
};
// Registers a matcher and a callback to be executed on a match.
template <typename Matcher>
void Match(const Matcher& matcher,
std::function<void(const MatchFinder::MatchResult&)> fn) {
auto match_callback = std::make_unique<MatchCallback>(std::move(fn));
match_finder_.addMatcher(matcher, match_callback.get());
match_callbacks_.push_back(std::move(match_callback));
}
raw_ptr_plugin::FilterFile paths_to_exclude_ = PathsToExclude();
MatchFinder& match_finder_;
std::vector<std::unique_ptr<MatchCallback>> match_callbacks_;
};
} // namespace
int main(int argc, const char* argv[]) {
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmParser();
llvm::cl::OptionCategory category(
"spanifier: changes"
" 1- |T* var| to |base::span<T> var|."
" 2- |raw_ptr<T> var| to |base::raw_span<T> var|");
llvm::Expected<clang::tooling::CommonOptionsParser> options =
clang::tooling::CommonOptionsParser::create(argc, argv, category);
assert(static_cast<bool>(options)); // Should not return an error.
clang::tooling::ClangTool tool(options->getCompilations(),
options->getSourcePathList());
MatchFinder match_finder;
Spanifier rewriter(match_finder);
// Prepare and run the tool.
std::unique_ptr<clang::tooling::FrontendActionFactory> factory =
clang::tooling::newFrontendActionFactory(&match_finder);
int result = tool.run(factory.get());
return result;
}
|