1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
#!/usr/bin/env python3
# Copyright 2022 The Chromium Authors
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
"""Maps the superpage occupancy, and the allocated object sizes on the heap.
To run this:
1. Build pa_dump_heap at a close-enough revision to the Chrome instance you're
interested in.
2. Run pa_dump_heap --pid=PID_OF_RUNNING_CHROME_PROCESS --json=output.json
3. Run plot_superpages.py --json=output.json --output=output.png
"""
import argparse
import bisect
import math
import json
import matplotlib
from matplotlib import pylab as plt
import numpy as np
# Valid for the "before slot" variant.
_BRP_OVERHEAD = 4
def ParseJson(filename: str) -> dict:
with open(filename, 'r') as f:
data = json.load(f)
return data
def PlotSuperPageData(data: dict, output_filename: str):
num_superpages = len(data)
num_partition_pages = len(data[0]['partition_pages'])
data_np = np.zeros((num_superpages, num_partition_pages, 3))
address_to_superpage = {superpage['address']: superpage for superpage in data}
addresses = sorted(address_to_superpage.keys())
BLACK = (0., 0., 0.)
GRAY = (.5, .5, .5)
RED = (1., 0., 0.)
GREEN = (0., .8, 0.)
WHITE = (1., 1., 1.)
cmap = matplotlib.cm.get_cmap('coolwarm')
for superpage_index in range(len(addresses)):
superpage = address_to_superpage[addresses[superpage_index]]
for index, partition_page in enumerate(superpage['partition_pages']):
value = None
if partition_page['type'] == 'metadata':
value = BLACK
elif partition_page['type'] == 'guard':
value = GRAY
elif partition_page['all_zeros'] and not 'is_active' in partition_page:
# Otherwise it may be the subsequent partition page of a decommitted
# slot span.
if partition_page['page_index_in_span'] == 0:
value = WHITE
if value is not None:
data_np[superpage_index, index] = value
continue
assert partition_page['type'] == 'payload'
if partition_page['page_index_in_span'] == 0:
num_partition_pages_in_slot_span = math.ceil(
partition_page['num_system_pages_per_slot_span'] / 4)
if partition_page['is_decommitted'] or partition_page['is_empty']:
value = GREEN
else:
fullness = (partition_page['num_allocated_slots'] /
partition_page['slots_per_span'])
value = cmap(fullness)[:3]
data_np[superpage_index, index:index +
num_partition_pages_in_slot_span, :] = value
plt.figure(figsize=(20, len(address_to_superpage) / 2))
plt.imshow(data_np)
plt.title('Super page map')
plt.yticks(ticks=range(len(addresses)), labels=addresses)
plt.xlabel('PartitionPage index')
handles = [
matplotlib.patches.Patch(facecolor=BLACK, edgecolor='k',
label='Metadata'),
matplotlib.patches.Patch(facecolor=GRAY, edgecolor='k', label='Guard'),
matplotlib.patches.Patch(facecolor=WHITE, edgecolor='k', label='Empty'),
matplotlib.patches.Patch(facecolor=GREEN,
edgecolor='k',
label='Decommitted'),
matplotlib.patches.Patch(facecolor=cmap(0.),
edgecolor='k',
label='Committed Empty'),
matplotlib.patches.Patch(facecolor=cmap(1.),
edgecolor='k',
label='Committed Full'),
]
plt.legend(handles=handles, loc='lower left', fontsize=12, framealpha=.7)
plt.savefig(output_filename, bbox_inches='tight')
def PlotSuperPageCompressionData(data: dict, output_filename: str):
num_superpages = len(data)
num_pages = len(data[0]['page_sizes'])
data_np = np.zeros((num_superpages, num_pages, 3))
address_to_superpage = {superpage['address']: superpage for superpage in data}
addresses = sorted(address_to_superpage.keys())
WHITE = (1., 1., 1.)
cmap = matplotlib.cm.get_cmap('coolwarm')
total_compressed_size = 0
total_uncompressed_size = 0
for superpage_index in range(len(addresses)):
superpage = address_to_superpage[addresses[superpage_index]]
for index, page in enumerate(superpage['page_sizes']):
total_uncompressed_size += page['uncompressed']
total_compressed_size += page['compressed']
if page['uncompressed'] == 0:
value = WHITE
else:
value = cmap(page['compressed'] / page['uncompressed'])[:3]
data_np[superpage_index, index] = value
overall_compression_ratio = (
100. * total_compressed_size /
(total_uncompressed_size)) if total_uncompressed_size else 0
plt.figure(figsize=(20, len(address_to_superpage)))
plt.imshow(data_np, aspect=8)
plt.title('Super page compression ratio map - Ratio = %.1f%% '
'- Compressed Size = %.1fMiB' %
(overall_compression_ratio, total_compressed_size / (1 << 20)))
plt.yticks(ticks=range(len(addresses)), labels=addresses)
plt.xlabel('Page index in SuperPage')
handles = [
matplotlib.patches.Patch(facecolor=WHITE,
edgecolor='k',
label='Empty / Decommitted'),
matplotlib.patches.Patch(facecolor=cmap(0.),
edgecolor='k',
label='Compressible'),
matplotlib.patches.Patch(facecolor=cmap(1.),
edgecolor='k',
label='Incompressible'),
]
plt.legend(handles=handles, loc='lower left', fontsize=12, framealpha=.7)
plt.savefig(output_filename, bbox_inches='tight')
def _PlotFragmentationCommon(bucket_to_allocated: dict, output_filename: str):
slot_sizes = sorted(bucket_to_allocated.keys())
allocated = []
waste = []
for slot_size in slot_sizes:
slots = np.array(bucket_to_allocated[slot_size])
allocated.append(np.sum(slots))
waste.append(np.sum(slot_size - slots))
plt.figure(figsize=(18, 8))
indices = range(len(slot_sizes))
plt.bar(indices, allocated, label='Requested Memory')
b = plt.bar(indices,
waste,
bottom=allocated,
label='Waste due to padding + bucketing')
waste_percentage = [('%d%%' % (int(100. * w / (w + a)))) if a else ''
for (w, a) in zip(waste, allocated)]
plt.bar_label(b, labels=waste_percentage)
plt.xticks(indices, slot_sizes, rotation='vertical')
plt.xlim(left=-.5, right=len(indices))
plt.xlabel('Bucket size')
plt.ylabel('Memory (bytes)')
plt.legend()
total_allocated = np.sum(allocated)
total_waste = np.sum(waste)
plt.title('Absolute and relative waste due to bucketing and padding'
' per bucket - Total Allocated = %dMiB, Waste = %d%%' %
(total_allocated /
(1 << 20), int(100 * total_waste /
(total_allocated + total_waste))))
plt.savefig(output_filename, bbox_inches='tight')
def _AdjustSizes(data: dict, bucket_sizes: list, adjustment_size: int) -> dict:
requested_sizes = []
for slot_span in data:
requested_sizes += slot_span['allocated_sizes']
# Assumes that all buckets have *some* live allocations.
bucket_sizes = sorted(bucket_sizes)
bucket_to_allocated = {slot_size: list() for slot_size in bucket_sizes}
# Map the requested sizes without paddingb to buckets.
for requested_size in requested_sizes:
adjusted_size = requested_size + adjustment_size
bucket_index = bisect.bisect_left(bucket_sizes, adjusted_size)
slot_size = bucket_sizes[bucket_index]
assert bucket_sizes[bucket_index] >= adjusted_size
bucket_to_allocated[slot_size].append(adjusted_size)
return bucket_to_allocated
def PlotSimulatedFragmentationData(data: dict, bucket_sizes: list,
output_filename: str):
# No adjustment, want to check waste without any padding.
bucket_to_allocated = _AdjustSizes(data, bucket_sizes, 0)
_PlotFragmentationCommon(bucket_to_allocated, output_filename)
def PlotFragmentationData(data: dict, bucket_sizes: list, output_filename: str):
# "Before allocation" takes only 4 bytes, but the instrumentation added
# expands this to 8 bytes. To reconstruct what it would have been without it,
# take the requested size and add 4 bytes to it.
bucket_to_allocated = _AdjustSizes(data, bucket_sizes, _BRP_OVERHEAD)
_PlotFragmentationCommon(bucket_to_allocated, output_filename)
def PlotDelta(data: dict, bucket_sizes: list, output_filename: str):
bucket_to_allocated_brp = _AdjustSizes(data, bucket_sizes, _BRP_OVERHEAD)
bucket_to_allocated_no_brp = _AdjustSizes(data, bucket_sizes, 0)
slot_sizes = sorted(bucket_to_allocated_no_brp)
allocated_per_bucket_brp = {
slot_size: len(bucket_to_allocated_brp[slot_size]) * slot_size
for slot_size in bucket_to_allocated_brp
}
allocated_per_bucket_no_brp = {
slot_size: len(bucket_to_allocated_no_brp[slot_size]) * slot_size
for slot_size in bucket_to_allocated_no_brp
}
delta = [
allocated_per_bucket_brp[slot_size] -
allocated_per_bucket_no_brp[slot_size] for slot_size in slot_sizes
]
plt.figure(figsize=(18, 8))
indices = range(len(slot_sizes))
plt.bar(indices, delta, label='Delta')
plt.xticks(indices, slot_sizes, rotation='vertical')
plt.xlim(left=-.5, right=len(indices))
plt.xlabel('Bucket size')
plt.ylabel('Memory delta (bytes)')
plt.title('Per-bucket size difference BRP/No-BRP - Total = %.1fMiB' %
(sum(delta) / (1 << 20)))
plt.savefig(output_filename, bbox_inches='tight')
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--json',
help='JSON dump from pa_tcache_inspect',
required=True)
parser.add_argument('--output', help='Output filename prefix', required=True)
args = parser.parse_args()
data = ParseJson(args.json)
PlotSuperPageData(data['superpages'], args.output + '_superpage.png')
PlotSuperPageCompressionData(data['superpages'],
args.output + '_compression.png')
# Allocated object data is not always available.
if 'allocated_sizes' in data:
bucket_sizes = [x['slot_size'] for x in data['buckets']]
PlotFragmentationData(data['allocated_sizes'], bucket_sizes,
args.output + '_waste.png')
PlotSimulatedFragmentationData(data['allocated_sizes'], bucket_sizes,
args.output + '_waste_simulated.png')
PlotDelta(data['allocated_sizes'], bucket_sizes, args.output + '_delta.png')
if __name__ == '__main__':
main()
|