1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
#!/usr/bin/env vpython3
# Copyright 2016 The Chromium Authors
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
""" Generates legacy perf dashboard json from non-telemetry based perf tests.
Taken from chromium/build/scripts/slave/performance_log_processory.py
(https://goo.gl/03SQRk)
"""
import collections
import json
import math
import logging
import re
class LegacyResultsProcessor(object):
"""Class for any log processor expecting standard data to be graphed.
The log will be parsed looking for any lines of the forms:
<*>RESULT <graph_name>: <trace_name>= <value> <units>
or
<*>RESULT <graph_name>: <trace_name>= [<value>,value,value,...] <units>
or
<*>RESULT <graph_name>: <trace_name>= {<mean>, <std deviation>} <units>
For example,
*RESULT vm_final_browser: OneTab= 8488 kb
RESULT startup: ref= [167.00,148.00,146.00,142.00] ms
RESULT TabCapturePerformance_foo: Capture= {30.7, 1.45} ms
The leading * is optional; it indicates that the data from that line should
be considered "important", which may mean for example that it's graphed by
default.
If multiple values are given in [], their mean and (sample) standard
deviation will be written; if only one value is given, that will be written.
A trailing comma is permitted in the list of values.
NOTE: All lines except for RESULT lines are ignored, including the Avg and
Stddev lines output by Telemetry!
Any of the <fields> except <value> may be empty, in which case the
not-terribly-useful defaults will be used. The <graph_name> and <trace_name>
should not contain any spaces, colons (:) nor equals-signs (=). Furthermore,
the <trace_name> will be used on the waterfall display, so it should be kept
short. If the trace_name ends with '_ref', it will be interpreted as a
reference value, and shown alongside the corresponding main value on the
waterfall.
Semantic note: The terms graph and chart are used interchangeably here.
"""
RESULTS_REGEX = re.compile(r'(?P<IMPORTANT>\*)?RESULT '
r'(?P<GRAPH>[^:]*): (?P<TRACE>[^=]*)= '
r'(?P<VALUE>[\{\[]?[-\d\., ]+[\}\]]?)('
r' ?(?P<UNITS>.+))?')
# TODO(eyaich): Determine if this format is still used by any perf tests
HISTOGRAM_REGEX = re.compile(r'(?P<IMPORTANT>\*)?HISTOGRAM '
r'(?P<GRAPH>[^:]*): (?P<TRACE>[^=]*)= '
r'(?P<VALUE_JSON>{.*})(?P<UNITS>.+)?')
def __init__(self):
# A dict of Graph objects, by name.
self._graphs = {}
# A dict mapping output file names to lists of lines in a file.
self._output = {}
self._percentiles = [.1, .25, .5, .75, .90, .95, .99]
class Trace(object):
"""Encapsulates data for one trace. Here, this means one point."""
def __init__(self):
self.important = False
self.values = []
self.mean = 0.0
self.stddev = 0.0
def __str__(self):
result = _FormatHumanReadable(self.mean)
if self.stddev:
result += '+/-%s' % _FormatHumanReadable(self.stddev)
return result
class Graph(object):
"""Encapsulates a set of points that should appear on the same graph."""
def __init__(self):
self.units = None
self.traces = {}
def IsImportant(self):
"""A graph is considered important if any of its traces is important."""
for trace in self.traces.values():
if trace.important:
return True
return False
def BuildTracesDict(self):
"""Returns a dictionary mapping trace names to [value, stddev]."""
traces_dict = {}
for name, trace in self.traces.items():
traces_dict[name] = [str(trace.mean), str(trace.stddev)]
return traces_dict
def GenerateJsonResults(self, filename):
# Iterate through the file and process each output line
with open(filename) as f:
for line in f.readlines():
self.ProcessLine(line)
# After all results have been seen, generate the graph json data
return self.GenerateGraphJson()
def _PrependLog(self, filename, data):
"""Prepends some data to an output file."""
self._output[filename] = data + self._output.get(filename, [])
def ProcessLine(self, line):
"""Processes one result line, and updates the state accordingly."""
results_match = self.RESULTS_REGEX.search(line)
histogram_match = self.HISTOGRAM_REGEX.search(line)
if results_match:
self._ProcessResultLine(results_match)
elif histogram_match:
raise Exception("Error: Histogram results parsing not supported yet")
def _ProcessResultLine(self, line_match):
"""Processes a line that matches the standard RESULT line format.
Args:
line_match: A MatchObject as returned by re.search.
"""
match_dict = line_match.groupdict()
graph_name = match_dict['GRAPH'].strip()
trace_name = match_dict['TRACE'].strip()
graph = self._graphs.get(graph_name, self.Graph())
graph.units = (match_dict['UNITS'] or '').strip()
trace = graph.traces.get(trace_name, self.Trace())
value = match_dict['VALUE']
trace.important = match_dict['IMPORTANT'] or False
# Compute the mean and standard deviation for a list or a histogram,
# or the numerical value of a scalar value.
if value.startswith('['):
try:
value_list = [float(x) for x in value.strip('[],').split(',')]
except ValueError:
# Report, but ignore, corrupted data lines. (Lines that are so badly
# broken that they don't even match the RESULTS_REGEX won't be
# detected.)
logging.warning("Bad test output: '%s'" % value.strip())
return
trace.values += value_list
trace.mean, trace.stddev, filedata = self._CalculateStatistics(
trace.values, trace_name)
assert filedata is not None
for filename in filedata:
self._PrependLog(filename, filedata[filename])
elif value.startswith('{'):
stripped = value.strip('{},')
try:
trace.mean, trace.stddev = [float(x) for x in stripped.split(',')]
except ValueError:
logging.warning("Bad test output: '%s'" % value.strip())
return
else:
try:
trace.values.append(float(value))
trace.mean, trace.stddev, filedata = self._CalculateStatistics(
trace.values, trace_name)
assert filedata is not None
for filename in filedata:
self._PrependLog(filename, filedata[filename])
except ValueError:
logging.warning("Bad test output: '%s'" % value.strip())
return
graph.traces[trace_name] = trace
self._graphs[graph_name] = graph
def GenerateGraphJson(self):
"""Writes graph json for each graph seen.
"""
charts = {}
for graph_name, graph in self._graphs.items():
traces = graph.BuildTracesDict()
# Traces should contain exactly two elements: [mean, stddev].
for _, trace in traces.items():
assert len(trace) == 2
graph_dict = collections.OrderedDict([
('traces', traces),
('units', str(graph.units)),
])
# Include a sorted list of important trace names if there are any.
important = [t for t in graph.traces.keys() if graph.traces[t].important]
if important:
graph_dict['important'] = sorted(important)
charts[graph_name] = graph_dict
return json.dumps(charts)
# _CalculateStatistics needs to be a member function.
# pylint: disable=R0201
# Unused argument value_list.
# pylint: disable=W0613
def _CalculateStatistics(self, value_list, trace_name):
"""Returns a tuple with some statistics based on the given value list.
This method may be overridden by subclasses wanting a different standard
deviation calcuation (or some other sort of error value entirely).
Args:
value_list: the list of values to use in the calculation
trace_name: the trace that produced the data (not used in the base
implementation, but subclasses may use it)
Returns:
A 3-tuple - mean, standard deviation, and a dict which is either
empty or contains information about some file contents.
"""
n = len(value_list)
if n == 0:
return 0.0, 0.0, {}
mean = float(sum(value_list)) / n
variance = sum([(element - mean)**2 for element in value_list]) / n
stddev = math.sqrt(variance)
return mean, stddev, {}
def _FormatHumanReadable(number):
"""Formats a float into three significant figures, using metric suffixes.
Only m, k, and M prefixes (for 1/1000, 1000, and 1,000,000) are used.
Examples:
0.0387 => 38.7m
1.1234 => 1.12
10866 => 10.8k
682851200 => 683M
"""
metric_prefixes = {-3: 'm', 0: '', 3: 'k', 6: 'M'}
scientific = '%.2e' % float(number) # 6.83e+005
e_idx = scientific.find('e') # 4, or 5 if negative
digits = float(scientific[:e_idx]) # 6.83
exponent = int(scientific[e_idx + 1:]) # int('+005') = 5
while exponent % 3:
digits *= 10
exponent -= 1
while exponent > 6:
digits *= 10
exponent -= 1
while exponent < -3:
digits /= 10
exponent += 1
if digits >= 100:
# Don't append a meaningless '.0' to an integer number.
digits = int(digits)
# Exponent is now divisible by 3, between -3 and 6 inclusive: (-3, 0, 3, 6).
return '%s%s' % (digits, metric_prefixes[exponent])
|