File: url_canon_ip.h

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (600 lines) | stat: -rw-r--r-- 20,901 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/350788890): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif

#include <array>

#ifndef URL_URL_CANON_IP_H_
#define URL_URL_CANON_IP_H_

#include <cstdint>
#include <limits>
#include <type_traits>

#include "base/component_export.h"
#include "url/third_party/mozilla/url_parse.h"
#include "url/url_canon.h"
#include "url/url_canon_internal.h"

namespace url {

namespace internal {

// Converts one of the character types that represent a numerical base to the
// corresponding base.
constexpr uint8_t BaseForType(SharedCharTypes type) {
  switch (type) {
    case CHAR_HEX:
      return 16;
    case CHAR_DEC:
      return 10;
    case CHAR_OCT:
      return 8;
    default:
      return 0;
  }
}

// Converts an IPv4 component to a 32-bit number, while checking for overflow.
//
// Possible return values:
// - IPV4    - The number was valid, and did not overflow.
// - BROKEN  - The input was numeric, but too large for a 32-bit field.
// - NEUTRAL - Input was not numeric.
//
// The input is assumed to be ASCII. The components are assumed to be non-empty.
template <typename CHAR>
constexpr CanonHostInfo::Family IPv4ComponentToNumber(
    const CHAR* spec,
    const Component& component,
    uint32_t* number) {
  // Empty components are considered non-numeric.
  if (component.is_empty()) {
    return CanonHostInfo::NEUTRAL;
  }

  // Figure out the base
  SharedCharTypes base;
  int base_prefix_len = 0;  // Size of the prefix for this base.
  if (spec[component.begin] == '0') {
    // Either hex or dec, or a standalone zero.
    if (component.len == 1) {
      base = CHAR_DEC;
    } else if (spec[component.begin + 1] == 'X' ||
               spec[component.begin + 1] == 'x') {
      base = CHAR_HEX;
      base_prefix_len = 2;
    } else {
      base = CHAR_OCT;
      base_prefix_len = 1;
    }
  } else {
    base = CHAR_DEC;
  }

  // Extend the prefix to consume all leading zeros.
  while (base_prefix_len < component.len &&
         spec[component.begin + base_prefix_len] == '0') {
    base_prefix_len++;
  }

  // Put the component, minus any base prefix, into a NULL-terminated buffer so
  // we can call the standard library. Because leading zeros have already been
  // discarded, filling the entire buffer is guaranteed to trigger the 32-bit
  // overflow check.
  const int kMaxComponentLen = 16;
  char buf[kMaxComponentLen + 1];  // digits + '\0'
  int dest_i = 0;
  bool may_be_broken_octal = false;
  for (int i = component.begin + base_prefix_len; i < component.end(); i++) {
    if (spec[i] >= 0x80) {
      return CanonHostInfo::NEUTRAL;
    }

    // We know the input is 7-bit, so convert to narrow (if this is the wide
    // version of the template) by casting.
    auto input = static_cast<unsigned char>(spec[i]);

    // Validate that this character is OK for the given base.
    if (!IsCharOfType(input, base)) {
      if (IsCharOfType(input, CHAR_DEC)) {
        // Entirely numeric components with leading 0s that aren't octal are
        // considered broken.
        may_be_broken_octal = true;
      } else {
        return CanonHostInfo::NEUTRAL;
      }
    }

    // Fill the buffer, if there's space remaining. This check allows us to
    // verify that all characters are numeric, even those that don't fit.
    if (dest_i < kMaxComponentLen) {
      buf[dest_i++] = static_cast<char>(input);
    }
  }

  if (may_be_broken_octal) {
    return CanonHostInfo::BROKEN;
  }

  buf[dest_i] = '\0';

  // Use the 64-bit StringToUint64WithBase so we get a big number (no hex,
  // decimal, or octal number can overflow a 64-bit number in <= 16 characters).
  uint64_t num = StringToUint64WithBase(buf, BaseForType(base));

  // Check for 32-bit overflow.
  if (num > std::numeric_limits<uint32_t>::max()) {
    return CanonHostInfo::BROKEN;
  }

  // No overflow. Success!
  *number = static_cast<uint32_t>(num);
  return CanonHostInfo::IPV4;
}

// See declaration of IPv4AddressToNumber for documentation.
template <typename CHAR, typename UCHAR>
constexpr CanonHostInfo::Family DoIPv4AddressToNumber(
    const CHAR* spec,
    Component host,
    unsigned char address[4],
    int* num_ipv4_components) {
  // Ignore terminal dot, if present.
  if (host.is_nonempty() && spec[host.end() - 1] == '.') {
    --host.len;
  }

  // Do nothing if empty.
  if (host.is_empty()) {
    return CanonHostInfo::NEUTRAL;
  }

  // Read component values.  The first `existing_components` of them are
  // populated front to back, with the first one corresponding to the last
  // component, which allows for early exit if the last component isn't a
  // number.
  std::array<uint32_t, 4> component_values;
  uint8_t existing_components = 0;
  // `existing_components` is used to index `component_values`.
  // All possible values must be in range.
  static_assert(std::numeric_limits<decltype(existing_components)>::max() >=
                sizeof(component_values) / sizeof(component_values[0]));

  int current_component_end = host.end();
  int current_position = current_component_end;
  while (true) {
    // If this is not the first character of a component, go to the next
    // component.
    if (current_position != host.begin && spec[current_position - 1] != '.') {
      --current_position;
      continue;
    }

    CanonHostInfo::Family family = IPv4ComponentToNumber(
        spec,
        Component(current_position, current_component_end - current_position),
        &component_values[existing_components]);

    // If `family` is NEUTRAL and this is the last component, return NEUTRAL. If
    // `family` is NEUTRAL but not the last component, this is considered a
    // BROKEN IPv4 address, as opposed to a non-IPv4 hostname.
    if (family == CanonHostInfo::NEUTRAL && existing_components == 0) {
      return CanonHostInfo::NEUTRAL;
    }

    if (family != CanonHostInfo::IPV4) {
      return CanonHostInfo::BROKEN;
    }

    ++existing_components;

    // If this is the final component, nothing else to do.
    if (current_position == host.begin) {
      break;
    }

    // If there are more than 4 components, fail.
    if (existing_components == 4) {
      return CanonHostInfo::BROKEN;
    }

    current_component_end = current_position - 1;
    --current_position;
  }

  // Use `component_values` to fill out the 4-component IP address.

  // First, process all components but the last, while making sure each fits
  // within an 8-bit field.
  for (decltype(existing_components) i = existing_components - 1; i > 0; --i) {
    if (component_values[i] > std::numeric_limits<uint8_t>::max()) {
      return CanonHostInfo::BROKEN;
    }
    address[existing_components - i - 1] =
        static_cast<unsigned char>(component_values[i]);
  }

  uint32_t last_value = component_values[0];
  for (int i = 3; i >= existing_components - 1; i--) {
    address[i] = static_cast<unsigned char>(last_value);
    last_value >>= 8;
  }

  // If the last component has residual bits, report overflow.
  if (last_value != 0) {
    return CanonHostInfo::BROKEN;
  }

  // Tell the caller how many components we saw.
  *num_ipv4_components = existing_components;

  // Success!
  return CanonHostInfo::IPV4;
}

// Helper class that describes the main components of an IPv6 input string.
// See the following examples to understand how it breaks up an input string:
//
// [Example 1]: input = "[::aa:bb]"
//  ==> num_hex_components = 2
//  ==> hex_components[0] = Component(3,2) "aa"
//  ==> hex_components[1] = Component(6,2) "bb"
//  ==> index_of_contraction = 0
//  ==> ipv4_component = Component(0, -1)
//
// [Example 2]: input = "[1:2::3:4:5]"
//  ==> num_hex_components = 5
//  ==> hex_components[0] = Component(1,1) "1"
//  ==> hex_components[1] = Component(3,1) "2"
//  ==> hex_components[2] = Component(6,1) "3"
//  ==> hex_components[3] = Component(8,1) "4"
//  ==> hex_components[4] = Component(10,1) "5"
//  ==> index_of_contraction = 2
//  ==> ipv4_component = Component(0, -1)
//
// [Example 3]: input = "[::ffff:192.168.0.1]"
//  ==> num_hex_components = 1
//  ==> hex_components[0] = Component(3,4) "ffff"
//  ==> index_of_contraction = 0
//  ==> ipv4_component = Component(8, 11) "192.168.0.1"
//
// [Example 4]: input = "[1::]"
//  ==> num_hex_components = 1
//  ==> hex_components[0] = Component(1,1) "1"
//  ==> index_of_contraction = 1
//  ==> ipv4_component = Component(0, -1)
//
// [Example 5]: input = "[::192.168.0.1]"
//  ==> num_hex_components = 0
//  ==> index_of_contraction = 0
//  ==> ipv4_component = Component(8, 11) "192.168.0.1"
//
struct IPv6Parsed {
  // Zero-out the parse information.
  constexpr void reset() {
    num_hex_components = 0;
    index_of_contraction = -1;
    ipv4_component.reset();
  }

  // There can be up to 8 hex components (colon separated) in the literal.
  std::array<Component, 8> hex_components;

  // The count of hex components present. Ranges from [0,8].
  uint8_t num_hex_components;
  static_assert(std::numeric_limits<decltype(num_hex_components)>::max() >=
                sizeof(hex_components) / sizeof(hex_components[0]));

  // The index of the hex component that the "::" contraction precedes, or
  // -1 if there is no contraction.
  int index_of_contraction;

  // The range of characters which are an IPv4 literal.
  Component ipv4_component;
};

// Parse the IPv6 input string. If parsing succeeded returns true and fills
// |parsed| with the information. If parsing failed (because the input is
// invalid) returns false.
template <typename CHAR, typename UCHAR>
constexpr bool DoParseIPv6(const CHAR* spec,
                           const Component& host,
                           IPv6Parsed* parsed) {
  // Zero-out the info.
  parsed->reset();

  if (host.is_empty()) {
    return false;
  }

  // The index for start and end of address range (no brackets).
  int begin = host.begin;
  int end = host.end();

  int cur_component_begin = begin;  // Start of the current component.

  // Scan through the input, searching for hex components, "::" contractions,
  // and IPv4 components.
  for (int i = begin; /* i <= end */; i++) {
    bool is_colon = spec[i] == ':';
    bool is_contraction = is_colon && i < end - 1 && spec[i + 1] == ':';

    // We reached the end of the current component if we encounter a colon
    // (separator between hex components, or start of a contraction), or end of
    // input.
    if (is_colon || i == end) {
      int component_len = i - cur_component_begin;

      // A component should not have more than 4 hex digits.
      if (component_len > 4) {
        return false;
      }

      // Don't allow empty components.
      if (component_len == 0) {
        // The exception is when contractions appear at beginning of the
        // input or at the end of the input.
        if (!((is_contraction && i == begin) ||
              (i == end &&
               parsed->index_of_contraction == parsed->num_hex_components))) {
          return false;
        }
      }

      // Add the hex component we just found to running list.
      if (component_len > 0) {
        // Can't have more than 8 components!
        if (parsed->num_hex_components >= 8) {
          return false;
        }

        parsed->hex_components[parsed->num_hex_components++] =
            Component(cur_component_begin, component_len);
      }
    }

    if (i == end) {
      break;  // Reached the end of the input, DONE.
    }

    // We found a "::" contraction.
    if (is_contraction) {
      // There can be at most one contraction in the literal.
      if (parsed->index_of_contraction != -1) {
        return false;
      }
      parsed->index_of_contraction = parsed->num_hex_components;
      ++i;  // Consume the colon we peeked.
    }

    if (is_colon) {
      // Colons are separators between components, keep track of where the
      // current component started (after this colon).
      cur_component_begin = i + 1;
    } else {
      if (static_cast<UCHAR>(spec[i]) >= 0x80) {
        return false;  // Not ASCII.
      }

      if (!IsHexChar(static_cast<unsigned char>(spec[i]))) {
        // Regular components are hex numbers. It is also possible for
        // a component to be an IPv4 address in dotted form.
        if (IsIPv4Char(static_cast<unsigned char>(spec[i]))) {
          // Since IPv4 address can only appear at the end, assume the rest
          // of the string is an IPv4 address. (We will parse this separately
          // later).
          parsed->ipv4_component =
              Component(cur_component_begin, end - cur_component_begin);
          break;
        } else {
          // The character was neither a hex digit, nor an IPv4 character.
          return false;
        }
      }
    }
  }

  return true;
}

// Verifies the parsed IPv6 information, checking that the various components
// add up to the right number of bits (hex components are 16 bits, while
// embedded IPv4 formats are 32 bits, and contractions are placeholdes for
// 16 or more bits). Returns true if sizes match up, false otherwise. On
// success writes the length of the contraction (if any) to
// |out_num_bytes_of_contraction|.
constexpr bool CheckIPv6ComponentsSize(const IPv6Parsed& parsed,
                                       int* out_num_bytes_of_contraction) {
  // Each group of four hex digits contributes 16 bits.
  int num_bytes_without_contraction = parsed.num_hex_components * 2;

  // If an IPv4 address was embedded at the end, it contributes 32 bits.
  if (parsed.ipv4_component.is_valid()) {
    num_bytes_without_contraction += 4;
  }

  // If there was a "::" contraction, its size is going to be:
  // MAX([16bits], [128bits] - num_bytes_without_contraction).
  int num_bytes_of_contraction = 0;
  if (parsed.index_of_contraction != -1) {
    num_bytes_of_contraction = 16 - num_bytes_without_contraction;
    if (num_bytes_of_contraction < 2) {
      num_bytes_of_contraction = 2;
    }
  }

  // Check that the numbers add up.
  if (num_bytes_without_contraction + num_bytes_of_contraction != 16) {
    return false;
  }

  *out_num_bytes_of_contraction = num_bytes_of_contraction;
  return true;
}

// Converts a hex component into a number. This cannot fail since the caller has
// already verified that each character in the string was a hex digit, and
// that there were no more than 4 characters.
template <typename CHAR>
constexpr uint16_t IPv6HexComponentToNumber(const CHAR* spec,
                                            const Component& component) {
  DCHECK(component.len <= 4);

  // Copy the hex string into a C-string.
  char buf[5];
  for (int i = 0; i < component.len; ++i) {
    buf[i] = static_cast<char>(spec[component.begin + i]);
  }
  buf[component.len] = '\0';

  // Convert it to a number (overflow is not possible, since with 4 hex
  // characters we can at most have a 16 bit number).
  return static_cast<uint16_t>(StringToUint64WithBase(buf, 16));
}

// Converts an IPv6 address to a 128-bit number (network byte order), returning
// true on success. False means that the input was not a valid IPv6 address.
template <typename CHAR, typename UCHAR>
constexpr bool DoIPv6AddressToNumber(const CHAR* spec,
                                     const Component& host,
                                     unsigned char address[16]) {
  // Make sure the component is bounded by '[' and ']'.
  int end = host.end();
  if (host.is_empty() || spec[host.begin] != '[' || spec[end - 1] != ']') {
    return false;
  }

  // Exclude the square brackets.
  Component ipv6_comp(host.begin + 1, host.len - 2);

  // Parse the IPv6 address -- identify where all the colon separated hex
  // components are, the "::" contraction, and the embedded IPv4 address.
  IPv6Parsed ipv6_parsed;
  if (!DoParseIPv6<CHAR, UCHAR>(spec, ipv6_comp, &ipv6_parsed)) {
    return false;
  }

  // Do some basic size checks to make sure that the address doesn't
  // specify more than 128 bits or fewer than 128 bits. This also resolves
  // how may zero bytes the "::" contraction represents.
  int num_bytes_of_contraction;
  if (!CheckIPv6ComponentsSize(ipv6_parsed, &num_bytes_of_contraction)) {
    return false;
  }

  int cur_index_in_address = 0;

  // Loop through each hex components, and contraction in order.
  for (decltype(ipv6_parsed.num_hex_components) i = 0;
       i <= ipv6_parsed.num_hex_components; ++i) {
    // Append the contraction if it appears before this component.
    if (i == ipv6_parsed.index_of_contraction) {
      for (int j = 0; j < num_bytes_of_contraction; ++j) {
        address[cur_index_in_address++] = 0;
      }
    }
    // Append the hex component's value.
    if (i != ipv6_parsed.num_hex_components) {
      // Get the 16-bit value for this hex component.
      uint16_t number =
          IPv6HexComponentToNumber<CHAR>(spec, ipv6_parsed.hex_components[i]);
      // Append to |address|, in network byte order.
      address[cur_index_in_address++] = (number & 0xFF00) >> 8;
      address[cur_index_in_address++] = (number & 0x00FF);
    }
  }

  // If there was an IPv4 section, convert it into a 32-bit number and append
  // it to |address|.
  if (ipv6_parsed.ipv4_component.is_valid()) {
    // Append the 32-bit number to |address|.
    int num_ipv4_components = 0;
    // IPv4AddressToNumber will remove the trailing dot from the component.
    bool trailing_dot = ipv6_parsed.ipv4_component.is_nonempty() &&
                        spec[ipv6_parsed.ipv4_component.end() - 1] == '.';
    // The URL standard requires the embedded IPv4 address to be concisely
    // composed of 4 parts and disallows terminal dots.
    // See https://url.spec.whatwg.org/#concept-ipv6-parser
    if (CanonHostInfo::IPV4 !=
        IPv4AddressToNumber(spec, ipv6_parsed.ipv4_component,
                            &address[cur_index_in_address],
                            &num_ipv4_components)) {
      return false;
    }
    if ((num_ipv4_components != 4 || trailing_dot)) {
      return false;
    }
  }

  return true;
}

}  // namespace internal

// Writes the given IPv4 address to |output|.
COMPONENT_EXPORT(URL)
void AppendIPv4Address(const unsigned char address[4], CanonOutput* output);

// Writes the given IPv6 address to |output|.
COMPONENT_EXPORT(URL)
void AppendIPv6Address(const unsigned char address[16], CanonOutput* output);

// Converts an IPv4 address to a 32-bit number (network byte order).
//
// Possible return values:
//   IPV4    - IPv4 address was successfully parsed.
//   BROKEN  - Input was formatted like an IPv4 address, but overflow occurred
//             during parsing.
//   NEUTRAL - Input couldn't possibly be interpreted as an IPv4 address.
//             It might be an IPv6 address, or a hostname.
//
// On success, |num_ipv4_components| will be populated with the number of
// components in the IPv4 address.
COMPONENT_EXPORT(URL)
constexpr CanonHostInfo::Family IPv4AddressToNumber(const char* spec,
                                                    const Component& host,
                                                    unsigned char address[4],
                                                    int* num_ipv4_components) {
  return internal::DoIPv4AddressToNumber<char, unsigned char>(
      spec, host, address, num_ipv4_components);
}

COMPONENT_EXPORT(URL)
constexpr CanonHostInfo::Family IPv4AddressToNumber(const char16_t* spec,
                                                    const Component& host,
                                                    unsigned char address[4],
                                                    int* num_ipv4_components) {
  return internal::DoIPv4AddressToNumber<char16_t, char16_t>(
      spec, host, address, num_ipv4_components);
}

// Converts an IPv6 address to a 128-bit number (network byte order), returning
// true on success. False means that the input was not a valid IPv6 address.
//
// NOTE that |host| is expected to be surrounded by square brackets.
// i.e. "[::1]" rather than "::1".
COMPONENT_EXPORT(URL)
constexpr bool IPv6AddressToNumber(const char* spec,
                                   const Component& host,
                                   unsigned char address[16]) {
  return internal::DoIPv6AddressToNumber<char, unsigned char>(spec, host,
                                                              address);
}

COMPONENT_EXPORT(URL)
constexpr bool IPv6AddressToNumber(const char16_t* spec,
                                   const Component& host,
                                   unsigned char address[16]) {
  return internal::DoIPv6AddressToNumber<char16_t, char16_t>(spec, host,
                                                             address);
}

}  // namespace url

#endif  // URL_URL_CANON_IP_H_