1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cbor.h"
#include <array>
#include <clocale>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <string>
#include "json.h"
#include "parser_handler.h"
#include "span.h"
#include "status.h"
#include "status_test_support.h"
#include "test_platform.h"
using testing::ElementsAreArray;
using testing::Eq;
namespace v8_crdtp {
namespace cbor {
// =============================================================================
// Detecting CBOR content
// =============================================================================
TEST(IsCBORMessage, SomeSmokeTests) {
std::vector<uint8_t> empty;
EXPECT_FALSE(IsCBORMessage(SpanFrom(empty)));
std::vector<uint8_t> hello = {'H', 'e', 'l', 'o', ' ', 't',
'h', 'e', 'r', 'e', '!'};
EXPECT_FALSE(IsCBORMessage(SpanFrom(hello)));
std::vector<uint8_t> example = {0xd8, 0x5a, 0, 0, 0, 0};
EXPECT_TRUE(IsCBORMessage(SpanFrom(example)));
std::vector<uint8_t> one = {0xd8, 0x5a, 0, 0, 0, 1, 1};
EXPECT_TRUE(IsCBORMessage(SpanFrom(one)));
}
TEST(CheckCBORMessage, SmallestValidExample) {
// The smallest example that we consider valid for this lightweight check is
// an empty dictionary inside of an envelope.
std::vector<uint8_t> empty_dict = {
0xd8, 0x5a, 0, 0, 0, 2, EncodeIndefiniteLengthMapStart(), EncodeStop()};
Status status = CheckCBORMessage(SpanFrom(empty_dict));
EXPECT_THAT(status, StatusIsOk());
}
TEST(CheckCBORMessage, ValidCBORButNotValidMessage) {
// The CBOR parser supports parsing values that aren't messages. E.g., this is
// the encoded unsigned int 7 (CBOR really encodes it as a single byte with
// value 7).
std::vector<uint8_t> not_a_message = {7};
// Show that the parser (happily) decodes it into JSON
std::string json;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&json, &status);
ParseCBOR(SpanFrom(not_a_message), json_writer.get());
EXPECT_THAT(status, StatusIsOk());
EXPECT_EQ("7", json);
// ... but it's not a message.
EXPECT_THAT(CheckCBORMessage(SpanFrom(not_a_message)),
StatusIs(Error::CBOR_INVALID_START_BYTE, 0));
}
TEST(CheckCBORMessage, EmptyMessage) {
std::vector<uint8_t> empty;
Status status = CheckCBORMessage(SpanFrom(empty));
EXPECT_THAT(status, StatusIs(Error::CBOR_UNEXPECTED_EOF_IN_ENVELOPE, 0));
}
TEST(CheckCBORMessage, InvalidStartByte) {
// Here we test that some actual json, which usually starts with {, is not
// considered CBOR. CBOR messages must start with 0xd8, 0x5a, the envelope
// start bytes.
Status status = CheckCBORMessage(SpanFrom("{\"msg\": \"Hello, world.\"}"));
EXPECT_THAT(status, StatusIs(Error::CBOR_INVALID_START_BYTE, 0));
}
TEST(CheckCBORMessage, InvalidEnvelopes) {
std::vector<uint8_t> bytes = {0xd8, 0x5a};
EXPECT_THAT(CheckCBORMessage(SpanFrom(bytes)),
StatusIs(Error::CBOR_UNEXPECTED_EOF_IN_ENVELOPE, 2));
bytes = {0xd8, 0x5a, 0};
EXPECT_THAT(CheckCBORMessage(SpanFrom(bytes)),
StatusIs(Error::CBOR_UNEXPECTED_EOF_IN_ENVELOPE, 3));
bytes = {0xd8, 0x5a, 0, 0};
EXPECT_THAT(CheckCBORMessage(SpanFrom(bytes)),
StatusIs(Error::CBOR_UNEXPECTED_EOF_IN_ENVELOPE, 4));
bytes = {0xd8, 0x5a, 0, 0, 0};
EXPECT_THAT(CheckCBORMessage(SpanFrom(bytes)),
StatusIs(Error::CBOR_UNEXPECTED_EOF_IN_ENVELOPE, 5));
bytes = {0xd8, 0x5a, 0, 0, 0, 0};
EXPECT_THAT(CheckCBORMessage(SpanFrom(bytes)),
StatusIs(Error::CBOR_MAP_OR_ARRAY_EXPECTED_IN_ENVELOPE, 6));
}
TEST(CheckCBORMessage, MapStartExpected) {
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, 1};
EXPECT_THAT(CheckCBORMessage(SpanFrom(bytes)),
StatusIs(Error::CBOR_ENVELOPE_CONTENTS_LENGTH_MISMATCH, 6));
}
// =============================================================================
// Encoding individual CBOR items
// cbor::CBORTokenizer - for parsing individual CBOR items
// =============================================================================
//
// EncodeInt32 / CBORTokenTag::INT32
//
TEST(EncodeDecodeInt32Test, Roundtrips23) {
// This roundtrips the int32_t value 23 through the pair of EncodeInt32 /
// CBORTokenizer; this is interesting since 23 is encoded as a single byte.
std::vector<uint8_t> encoded;
EncodeInt32(23, &encoded);
// first three bits: major type = 0; remaining five bits: additional info =
// value 23.
EXPECT_THAT(encoded, ElementsAreArray(std::array<uint8_t, 1>{{23}}));
// Reverse direction: decode with CBORTokenizer.
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::INT32, tokenizer.TokenTag());
EXPECT_EQ(23, tokenizer.GetInt32());
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
TEST(EncodeDecodeInt32Test, RoundtripsUint8) {
// This roundtrips the int32_t value 42 through the pair of EncodeInt32 /
// CBORTokenizer. This is different from Roundtrip23 because 42 is encoded
// in an extra byte after the initial one.
std::vector<uint8_t> encoded;
EncodeInt32(42, &encoded);
// first three bits: major type = 0;
// remaining five bits: additional info = 24, indicating payload is uint8.
EXPECT_THAT(encoded, ElementsAreArray(std::array<uint8_t, 2>{{24, 42}}));
// Reverse direction: decode with CBORTokenizer.
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::INT32, tokenizer.TokenTag());
EXPECT_EQ(42, tokenizer.GetInt32());
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
TEST(EncodeDecodeInt32Test, RoundtripsUint16) {
// 500 is encoded as a uint16 after the initial byte.
std::vector<uint8_t> encoded;
EncodeInt32(500, &encoded);
// 1 for initial byte, 2 for uint16.
EXPECT_EQ(3u, encoded.size());
// first three bits: major type = 0;
// remaining five bits: additional info = 25, indicating payload is uint16.
EXPECT_EQ(25, encoded[0]);
EXPECT_EQ(0x01, encoded[1]);
EXPECT_EQ(0xf4, encoded[2]);
// Reverse direction: decode with CBORTokenizer.
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::INT32, tokenizer.TokenTag());
EXPECT_EQ(500, tokenizer.GetInt32());
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
TEST(EncodeDecodeInt32Test, RoundtripsInt32Max) {
// std::numeric_limits<int32_t> is encoded as a uint32 after the initial byte.
std::vector<uint8_t> encoded;
EncodeInt32(std::numeric_limits<int32_t>::max(), &encoded);
// 1 for initial byte, 4 for the uint32.
// first three bits: major type = 0;
// remaining five bits: additional info = 26, indicating payload is uint32.
EXPECT_THAT(
encoded,
ElementsAreArray(std::array<uint8_t, 5>{{26, 0x7f, 0xff, 0xff, 0xff}}));
// Reverse direction: decode with CBORTokenizer.
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::INT32, tokenizer.TokenTag());
EXPECT_EQ(std::numeric_limits<int32_t>::max(), tokenizer.GetInt32());
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
TEST(EncodeDecodeInt32Test, RoundtripsInt32Min) {
// std::numeric_limits<int32_t> is encoded as a uint32 (4 unsigned bytes)
// after the initial byte, which effectively carries the sign by
// designating the token as NEGATIVE.
std::vector<uint8_t> encoded;
EncodeInt32(std::numeric_limits<int32_t>::min(), &encoded);
// 1 for initial byte, 4 for the uint32.
// first three bits: major type = 1;
// remaining five bits: additional info = 26, indicating payload is uint32.
EXPECT_THAT(encoded, ElementsAreArray(std::array<uint8_t, 5>{
{1 << 5 | 26, 0x7f, 0xff, 0xff, 0xff}}));
// Reverse direction: decode with CBORTokenizer.
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::INT32, tokenizer.TokenTag());
EXPECT_EQ(std::numeric_limits<int32_t>::min(), tokenizer.GetInt32());
// It's nice to see how the min int32 value reads in hex:
// That is, -1 minus the unsigned payload (0x7fffffff, see above).
int32_t expected = -1 - 0x7fffffff;
EXPECT_EQ(expected, tokenizer.GetInt32());
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
TEST(EncodeDecodeInt32Test, CantRoundtripUint32) {
// 0xdeadbeef is a value which does not fit below
// std::numerical_limits<int32_t>::max(), so we can't encode
// it with EncodeInt32. However, CBOR does support this, so we
// encode it here manually with the internal routine, just to observe
// that it's considered an invalid int32 by CBORTokenizer.
std::vector<uint8_t> encoded;
internals::WriteTokenStart(MajorType::UNSIGNED, 0xdeadbeef, &encoded);
// 1 for initial byte, 4 for the uint32.
// first three bits: major type = 0;
// remaining five bits: additional info = 26, indicating payload is uint32.
EXPECT_THAT(
encoded,
ElementsAreArray(std::array<uint8_t, 5>{{26, 0xde, 0xad, 0xbe, 0xef}}));
// Now try to decode; we treat this as an invalid INT32.
CBORTokenizer tokenizer(SpanFrom(encoded));
// 0xdeadbeef is > std::numerical_limits<int32_t>::max().
EXPECT_EQ(CBORTokenTag::ERROR_VALUE, tokenizer.TokenTag());
EXPECT_THAT(tokenizer.Status(), StatusIs(Error::CBOR_INVALID_INT32, 0u));
}
TEST(EncodeDecodeInt32Test, DecodeErrorCases) {
struct TestCase {
std::vector<uint8_t> data;
std::string msg;
};
std::vector<TestCase> tests{{
TestCase{
{24},
"additional info = 24 would require 1 byte of payload (but it's 0)"},
TestCase{{27, 0xaa, 0xbb, 0xcc},
"additional info = 27 would require 8 bytes of payload (but "
"it's 3)"},
TestCase{{29}, "additional info = 29 isn't recognized"},
TestCase{{1 << 5 | 27, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
"Max UINT64 payload is outside the allowed range"},
TestCase{{1 << 5 | 26, 0xff, 0xff, 0xff, 0xff},
"Max UINT32 payload is outside the allowed range"},
TestCase{{1 << 5 | 26, 0x80, 0x00, 0x00, 0x00},
"UINT32 payload w/ high bit set is outside the allowed range"},
}};
for (const TestCase& test : tests) {
SCOPED_TRACE(test.msg);
CBORTokenizer tokenizer(SpanFrom(test.data));
EXPECT_EQ(CBORTokenTag::ERROR_VALUE, tokenizer.TokenTag());
EXPECT_THAT(tokenizer.Status(), StatusIs(Error::CBOR_INVALID_INT32, 0u));
}
}
TEST(EncodeDecodeInt32Test, RoundtripsMinus24) {
// This roundtrips the int32_t value -24 through the pair of EncodeInt32 /
// CBORTokenizer; this is interesting since -24 is encoded as
// a single byte as NEGATIVE, and it tests the specific encoding
// (note how for unsigned the single byte covers values up to 23).
// Additional examples are covered in RoundtripsAdditionalExamples.
std::vector<uint8_t> encoded;
EncodeInt32(-24, &encoded);
// first three bits: major type = 1; remaining five bits: additional info =
// value 23.
EXPECT_THAT(encoded, ElementsAreArray(std::array<uint8_t, 1>{{1 << 5 | 23}}));
// Reverse direction: decode with CBORTokenizer.
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::INT32, tokenizer.TokenTag());
EXPECT_EQ(-24, tokenizer.GetInt32());
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
TEST(EncodeDecodeInt32Test, RoundtripsAdditionalNegativeExamples) {
std::vector<int32_t> examples = {-1,
-10,
-24,
-25,
-300,
-30000,
-300 * 1000,
-1000 * 1000,
-1000 * 1000 * 1000,
std::numeric_limits<int32_t>::min()};
for (int32_t example : examples) {
SCOPED_TRACE(std::string("example ") + std::to_string(example));
std::vector<uint8_t> encoded;
EncodeInt32(example, &encoded);
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::INT32, tokenizer.TokenTag());
EXPECT_EQ(example, tokenizer.GetInt32());
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
}
//
// EncodeString16 / CBORTokenTag::STRING16
//
TEST(EncodeDecodeString16Test, RoundtripsEmpty) {
// This roundtrips the empty utf16 string through the pair of EncodeString16 /
// CBORTokenizer.
std::vector<uint8_t> encoded;
EncodeString16(span<uint16_t>(), &encoded);
EXPECT_EQ(1u, encoded.size());
// first three bits: major type = 2; remaining five bits: additional info =
// size 0.
EXPECT_EQ(2 << 5, encoded[0]);
// Reverse direction: decode with CBORTokenizer.
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::STRING16, tokenizer.TokenTag());
span<uint8_t> decoded_string16_wirerep = tokenizer.GetString16WireRep();
EXPECT_TRUE(decoded_string16_wirerep.empty());
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
// On the wire, we STRING16 is encoded as little endian (least
// significant byte first). The host may or may not be little endian,
// so this routine follows the advice in
// https://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html.
std::vector<uint16_t> String16WireRepToHost(span<uint8_t> in) {
// must be even number of bytes.
CHECK_EQ(in.size() & 1, 0u);
std::vector<uint16_t> host_out;
for (size_t ii = 0; ii < in.size(); ii += 2)
host_out.push_back(in[ii + 1] << 8 | in[ii]);
return host_out;
}
TEST(EncodeDecodeString16Test, RoundtripsHelloWorld) {
// This roundtrips the hello world message which is given here in utf16
// characters. 0xd83c, 0xdf0e: UTF16 encoding for the "Earth Globe Americas"
// character, 🌎.
std::array<uint16_t, 10> msg{
{'H', 'e', 'l', 'l', 'o', ',', ' ', 0xd83c, 0xdf0e, '.'}};
std::vector<uint8_t> encoded;
EncodeString16(span<uint16_t>(msg.data(), msg.size()), &encoded);
// This will be encoded as BYTE_STRING of length 20, so the 20 is encoded in
// the additional info part of the initial byte. Payload is two bytes for each
// UTF16 character.
uint8_t initial_byte = /*major type=*/2 << 5 | /*additional info=*/20;
std::array<uint8_t, 21> encoded_expected = {
{initial_byte, 'H', 0, 'e', 0, 'l', 0, 'l', 0, 'o', 0,
',', 0, ' ', 0, 0x3c, 0xd8, 0x0e, 0xdf, '.', 0}};
EXPECT_THAT(encoded, ElementsAreArray(encoded_expected));
// Now decode to complete the roundtrip.
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::STRING16, tokenizer.TokenTag());
std::vector<uint16_t> decoded =
String16WireRepToHost(tokenizer.GetString16WireRep());
EXPECT_THAT(decoded, ElementsAreArray(msg));
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
// For bonus points, we look at the decoded message in UTF8 as well so we can
// easily see it on the terminal screen.
std::string utf8_decoded = UTF16ToUTF8(SpanFrom(decoded));
EXPECT_EQ("Hello, 🌎.", utf8_decoded);
}
TEST(EncodeDecodeString16Test, Roundtrips500) {
// We roundtrip a message that has 250 16 bit values. Each of these are just
// set to their index. 250 is interesting because the cbor spec uses a
// BYTE_STRING of length 500 for one of their examples of how to encode the
// start of it (section 2.1) so it's easy for us to look at the first three
// bytes closely.
std::vector<uint16_t> two_fifty;
for (uint16_t ii = 0; ii < 250; ++ii)
two_fifty.push_back(ii);
std::vector<uint8_t> encoded;
EncodeString16(span<uint16_t>(two_fifty.data(), two_fifty.size()), &encoded);
EXPECT_EQ(3u + 250u * 2, encoded.size());
// Now check the first three bytes:
// Major type: 2 (BYTE_STRING)
// Additional information: 25, indicating size is represented by 2 bytes.
// Bytes 1 and 2 encode 500 (0x01f4).
EXPECT_EQ(2 << 5 | 25, encoded[0]);
EXPECT_EQ(0x01, encoded[1]);
EXPECT_EQ(0xf4, encoded[2]);
// Now decode to complete the roundtrip.
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::STRING16, tokenizer.TokenTag());
std::vector<uint16_t> decoded =
String16WireRepToHost(tokenizer.GetString16WireRep());
EXPECT_THAT(decoded, ElementsAreArray(two_fifty));
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
TEST(EncodeDecodeString16Test, ErrorCases) {
struct TestCase {
std::vector<uint8_t> data;
std::string msg;
};
std::vector<TestCase> tests{
{TestCase{{2 << 5 | 1, 'a'},
"length must be divisible by 2 (but it's 1)"},
TestCase{{2 << 5 | 29}, "additional info = 29 isn't recognized"},
TestCase{{2 << 5 | 9, 1, 2, 3, 4, 5, 6, 7, 8},
"length (9) points just past the end of the test case"},
TestCase{{2 << 5 | 27, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
'a', 'b', 'c'},
"large length pointing past the end of the test case"}}};
for (const TestCase& test : tests) {
SCOPED_TRACE(test.msg);
CBORTokenizer tokenizer(SpanFrom(test.data));
EXPECT_EQ(CBORTokenTag::ERROR_VALUE, tokenizer.TokenTag());
EXPECT_THAT(tokenizer.Status(), StatusIs(Error::CBOR_INVALID_STRING16, 0u));
}
}
//
// EncodeString8 / CBORTokenTag::STRING8
//
TEST(EncodeDecodeString8Test, RoundtripsHelloWorld) {
// This roundtrips the hello world message which is given here in utf8
// characters. 🌎 is a four byte utf8 character.
std::string utf8_msg = "Hello, 🌎.";
std::vector<uint8_t> msg(utf8_msg.begin(), utf8_msg.end());
std::vector<uint8_t> encoded;
EncodeString8(SpanFrom(utf8_msg), &encoded);
// This will be encoded as STRING of length 12, so the 12 is encoded in
// the additional info part of the initial byte. Payload is one byte per
// utf8 byte.
uint8_t initial_byte = /*major type=*/3 << 5 | /*additional info=*/12;
std::array<uint8_t, 13> encoded_expected = {{initial_byte, 'H', 'e', 'l', 'l',
'o', ',', ' ', 0xF0, 0x9f, 0x8c,
0x8e, '.'}};
EXPECT_THAT(encoded, ElementsAreArray(encoded_expected));
// Now decode to complete the roundtrip.
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::STRING8, tokenizer.TokenTag());
std::vector<uint8_t> decoded(tokenizer.GetString8().begin(),
tokenizer.GetString8().end());
EXPECT_THAT(decoded, ElementsAreArray(msg));
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
TEST(EncodeDecodeString8Test, ErrorCases) {
struct TestCase {
std::vector<uint8_t> data;
std::string msg;
};
std::vector<TestCase> tests{
{TestCase{{3 << 5 | 29}, "additional info = 29 isn't recognized"},
TestCase{{3 << 5 | 9, 1, 2, 3, 4, 5, 6, 7, 8},
"length (9) points just past the end of the test case"},
TestCase{{3 << 5 | 27, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
'a', 'b', 'c'},
"large length pointing past the end of the test case"}}};
for (const TestCase& test : tests) {
SCOPED_TRACE(test.msg);
CBORTokenizer tokenizer(SpanFrom(test.data));
EXPECT_EQ(CBORTokenTag::ERROR_VALUE, tokenizer.TokenTag());
EXPECT_THAT(tokenizer.Status(), StatusIs(Error::CBOR_INVALID_STRING8, 0u));
}
}
TEST(EncodeFromLatin1Test, ConvertsToUTF8IfNeeded) {
std::vector<std::pair<std::string, std::string>> examples = {
{"Hello, world.", "Hello, world."},
{"Above: \xDC"
"ber",
"Above: Über"},
{"\xA5 500 are about \xA3 3.50; a y with umlaut is \xFF",
"¥ 500 are about £ 3.50; a y with umlaut is ÿ"}};
for (const auto& example : examples) {
const std::string& latin1 = example.first;
const std::string& expected_utf8 = example.second;
std::vector<uint8_t> encoded;
EncodeFromLatin1(SpanFrom(latin1), &encoded);
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::STRING8, tokenizer.TokenTag());
std::vector<uint8_t> decoded(tokenizer.GetString8().begin(),
tokenizer.GetString8().end());
std::string decoded_str(decoded.begin(), decoded.end());
EXPECT_THAT(decoded_str, testing::Eq(expected_utf8));
}
}
TEST(EncodeFromUTF16Test, ConvertsToUTF8IfEasy) {
std::vector<uint16_t> ascii = {'e', 'a', 's', 'y'};
std::vector<uint8_t> encoded;
EncodeFromUTF16(span<uint16_t>(ascii.data(), ascii.size()), &encoded);
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::STRING8, tokenizer.TokenTag());
std::vector<uint8_t> decoded(tokenizer.GetString8().begin(),
tokenizer.GetString8().end());
std::string decoded_str(decoded.begin(), decoded.end());
EXPECT_THAT(decoded_str, testing::Eq("easy"));
}
TEST(EncodeFromUTF16Test, EncodesAsString16IfNeeded) {
// Since this message contains non-ASCII characters, the routine is
// forced to encode as UTF16. We see this below by checking that the
// token tag is STRING16.
std::vector<uint16_t> msg = {'H', 'e', 'l', 'l', 'o',
',', ' ', 0xd83c, 0xdf0e, '.'};
std::vector<uint8_t> encoded;
EncodeFromUTF16(span<uint16_t>(msg.data(), msg.size()), &encoded);
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::STRING16, tokenizer.TokenTag());
std::vector<uint16_t> decoded =
String16WireRepToHost(tokenizer.GetString16WireRep());
std::string utf8_decoded = UTF16ToUTF8(SpanFrom(decoded));
EXPECT_EQ("Hello, 🌎.", utf8_decoded);
}
//
// EncodeBinary / CBORTokenTag::BINARY
//
TEST(EncodeDecodeBinaryTest, RoundtripsHelloWorld) {
std::vector<uint8_t> binary = {'H', 'e', 'l', 'l', 'o', ',', ' ',
'w', 'o', 'r', 'l', 'd', '.'};
std::vector<uint8_t> encoded;
EncodeBinary(span<uint8_t>(binary.data(), binary.size()), &encoded);
// So, on the wire we see that the binary blob travels unmodified.
EXPECT_THAT(
encoded,
ElementsAreArray(std::array<uint8_t, 15>{
{(6 << 5 | 22), // tag 22 indicating base64 interpretation in JSON
(2 << 5 | 13), // BYTE_STRING (type 2) of length 13
'H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd', '.'}}));
std::vector<uint8_t> decoded;
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::BINARY, tokenizer.TokenTag());
EXPECT_THAT(tokenizer.Status(), StatusIsOk());
decoded = std::vector<uint8_t>(tokenizer.GetBinary().begin(),
tokenizer.GetBinary().end());
EXPECT_THAT(decoded, ElementsAreArray(binary));
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
TEST(EncodeDecodeBinaryTest, ErrorCases) {
struct TestCase {
std::vector<uint8_t> data;
std::string msg;
};
std::vector<TestCase> tests{{TestCase{
{6 << 5 | 22, // tag 22 indicating base64 interpretation in JSON
2 << 5 | 27, // BYTE_STRING (type 2), followed by 8 bytes length
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
"large length pointing past the end of the test case"}}};
for (const TestCase& test : tests) {
SCOPED_TRACE(test.msg);
CBORTokenizer tokenizer(SpanFrom(test.data));
EXPECT_EQ(CBORTokenTag::ERROR_VALUE, tokenizer.TokenTag());
EXPECT_THAT(tokenizer.Status(), StatusIs(Error::CBOR_INVALID_BINARY, 0u));
}
}
//
// EncodeDouble / CBORTokenTag::DOUBLE
//
TEST(EncodeDecodeDoubleTest, RoundtripsWikipediaExample) {
// https://en.wikipedia.org/wiki/Double-precision_floating-point_format
// provides the example of a hex representation 3FD5 5555 5555 5555, which
// approximates 1/3.
const double kOriginalValue = 1.0 / 3;
std::vector<uint8_t> encoded;
EncodeDouble(kOriginalValue, &encoded);
// first three bits: major type = 7; remaining five bits: additional info =
// value 27. This is followed by 8 bytes of payload (which match Wikipedia).
EXPECT_THAT(
encoded,
ElementsAreArray(std::array<uint8_t, 9>{
{7 << 5 | 27, 0x3f, 0xd5, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55}}));
// Reverse direction: decode and compare with original value.
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::DOUBLE, tokenizer.TokenTag());
EXPECT_THAT(tokenizer.GetDouble(), testing::DoubleEq(kOriginalValue));
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
TEST(EncodeDecodeDoubleTest, RoundtripsAdditionalExamples) {
std::vector<double> examples = {0.0,
1.0,
-1.0,
3.1415,
std::numeric_limits<double>::min(),
std::numeric_limits<double>::max(),
std::numeric_limits<double>::infinity(),
std::numeric_limits<double>::quiet_NaN()};
for (double example : examples) {
SCOPED_TRACE(std::string("example ") + std::to_string(example));
std::vector<uint8_t> encoded;
EncodeDouble(example, &encoded);
CBORTokenizer tokenizer(SpanFrom(encoded));
EXPECT_EQ(CBORTokenTag::DOUBLE, tokenizer.TokenTag());
if (std::isnan(example))
EXPECT_TRUE(std::isnan(tokenizer.GetDouble()));
else
EXPECT_THAT(tokenizer.GetDouble(), testing::DoubleEq(example));
tokenizer.Next();
EXPECT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
}
TEST(EncodeDecodeEnvelopesTest, MessageWithNestingAndEnvelopeContentsAccess) {
// This encodes and decodes the following message, which has some nesting
// and therefore envelopes.
// { "inner": { "foo" : "bar" } }
// The decoding is done with the Tokenizer,
// and we test both ::GetEnvelopeContents and GetEnvelope here.
std::vector<uint8_t> message;
EnvelopeEncoder envelope;
envelope.EncodeStart(&message);
size_t pos_after_header = message.size();
message.push_back(EncodeIndefiniteLengthMapStart());
EncodeString8(SpanFrom("inner"), &message);
size_t pos_inside_inner = message.size();
EnvelopeEncoder inner_envelope;
inner_envelope.EncodeStart(&message);
size_t pos_inside_inner_contents = message.size();
message.push_back(EncodeIndefiniteLengthMapStart());
EncodeString8(SpanFrom("foo"), &message);
EncodeString8(SpanFrom("bar"), &message);
message.push_back(EncodeStop());
size_t pos_after_inner = message.size();
inner_envelope.EncodeStop(&message);
message.push_back(EncodeStop());
envelope.EncodeStop(&message);
CBORTokenizer tokenizer(SpanFrom(message));
ASSERT_EQ(CBORTokenTag::ENVELOPE, tokenizer.TokenTag());
EXPECT_EQ(message.size(), tokenizer.GetEnvelope().size());
EXPECT_EQ(message.data(), tokenizer.GetEnvelope().data());
EXPECT_EQ(message.data() + pos_after_header,
tokenizer.GetEnvelopeContents().data());
EXPECT_EQ(message.size() - pos_after_header,
tokenizer.GetEnvelopeContents().size());
tokenizer.EnterEnvelope();
ASSERT_EQ(CBORTokenTag::MAP_START, tokenizer.TokenTag());
tokenizer.Next();
ASSERT_EQ(CBORTokenTag::STRING8, tokenizer.TokenTag());
EXPECT_EQ("inner", std::string(tokenizer.GetString8().begin(),
tokenizer.GetString8().end()));
tokenizer.Next();
ASSERT_EQ(CBORTokenTag::ENVELOPE, tokenizer.TokenTag());
EXPECT_EQ(message.data() + pos_inside_inner, tokenizer.GetEnvelope().data());
EXPECT_EQ(pos_after_inner - pos_inside_inner, tokenizer.GetEnvelope().size());
EXPECT_EQ(message.data() + pos_inside_inner_contents,
tokenizer.GetEnvelopeContents().data());
EXPECT_EQ(pos_after_inner - pos_inside_inner_contents,
tokenizer.GetEnvelopeContents().size());
tokenizer.EnterEnvelope();
ASSERT_EQ(CBORTokenTag::MAP_START, tokenizer.TokenTag());
tokenizer.Next();
ASSERT_EQ(CBORTokenTag::STRING8, tokenizer.TokenTag());
EXPECT_EQ("foo", std::string(tokenizer.GetString8().begin(),
tokenizer.GetString8().end()));
tokenizer.Next();
ASSERT_EQ(CBORTokenTag::STRING8, tokenizer.TokenTag());
EXPECT_EQ("bar", std::string(tokenizer.GetString8().begin(),
tokenizer.GetString8().end()));
tokenizer.Next();
ASSERT_EQ(CBORTokenTag::STOP, tokenizer.TokenTag());
tokenizer.Next();
ASSERT_EQ(CBORTokenTag::STOP, tokenizer.TokenTag());
tokenizer.Next();
ASSERT_EQ(CBORTokenTag::DONE, tokenizer.TokenTag());
}
// =============================================================================
// cbor::NewCBOREncoder - for encoding from a streaming parser
// =============================================================================
TEST(JSONToCBOREncoderTest, SevenBitStrings) {
// When a string can be represented as 7 bit ASCII, the encoder will use the
// STRING (major Type 3) type, so the actual characters end up as bytes on the
// wire.
std::vector<uint8_t> encoded;
Status status;
std::unique_ptr<ParserHandler> encoder = NewCBOREncoder(&encoded, &status);
std::vector<uint16_t> utf16 = {'f', 'o', 'o'};
encoder->HandleString16(span<uint16_t>(utf16.data(), utf16.size()));
EXPECT_THAT(status, StatusIsOk());
// Here we assert that indeed, seven bit strings are represented as
// bytes on the wire, "foo" is just "foo".
EXPECT_THAT(encoded,
ElementsAreArray(std::array<uint8_t, 4>{
{/*major type 3*/ 3 << 5 | /*length*/ 3, 'f', 'o', 'o'}}));
}
TEST(JsonCborRoundtrip, EncodingDecoding) {
// Hits all the cases except binary and error in ParserHandler, first
// parsing a JSON message into CBOR, then parsing it back from CBOR into JSON.
std::string json =
"{"
"\"string\":\"Hello, \\ud83c\\udf0e.\","
"\"double\":3.1415,"
"\"int\":1,"
"\"negative int\":-1,"
"\"bool\":true,"
"\"null\":null,"
"\"array\":[1,2,3]"
"}";
std::vector<uint8_t> encoded;
Status status;
std::unique_ptr<ParserHandler> encoder = NewCBOREncoder(&encoded, &status);
span<uint8_t> ascii_in = SpanFrom(json);
json::ParseJSON(ascii_in, encoder.get());
std::vector<uint8_t> expected = {
0xd8, 0x18, // envelope
0x5a, // byte string with 32 bit length
0, 0, 0, 95, // length is 95 bytes
};
expected.push_back(0xbf); // indef length map start
EncodeString8(SpanFrom("string"), &expected);
// This is followed by the encoded string for "Hello, 🌎."
// So, it's the same bytes that we tested above in
// EncodeDecodeString16Test.RoundtripsHelloWorld.
expected.push_back(/*major type=*/2 << 5 | /*additional info=*/20);
for (uint8_t ch : std::array<uint8_t, 20>{
{'H', 0, 'e', 0, 'l', 0, 'l', 0, 'o', 0,
',', 0, ' ', 0, 0x3c, 0xd8, 0x0e, 0xdf, '.', 0}})
expected.push_back(ch);
EncodeString8(SpanFrom("double"), &expected);
EncodeDouble(3.1415, &expected);
EncodeString8(SpanFrom("int"), &expected);
EncodeInt32(1, &expected);
EncodeString8(SpanFrom("negative int"), &expected);
EncodeInt32(-1, &expected);
EncodeString8(SpanFrom("bool"), &expected);
expected.push_back(7 << 5 | 21); // RFC 7049 Section 2.3, Table 2: true
EncodeString8(SpanFrom("null"), &expected);
expected.push_back(7 << 5 | 22); // RFC 7049 Section 2.3, Table 2: null
EncodeString8(SpanFrom("array"), &expected);
expected.push_back(0xd8); // envelope (tag first byte)
expected.push_back(0x18); // envelope (tag second byte)
expected.push_back(0x5a); // byte string with 32 bit length
// the length is 5 bytes (that's up to end indef length array below).
for (uint8_t ch : std::array<uint8_t, 4>{{0, 0, 0, 5}})
expected.push_back(ch);
expected.push_back(0x9f); // RFC 7049 Section 2.2.1, indef length array start
expected.push_back(1); // Three UNSIGNED values (easy since Major Type 0)
expected.push_back(2);
expected.push_back(3);
expected.push_back(0xff); // End indef length array
expected.push_back(0xff); // End indef length map
EXPECT_TRUE(status.ok());
EXPECT_THAT(encoded, ElementsAreArray(expected));
// And now we roundtrip, decoding the message we just encoded.
std::string decoded;
std::unique_ptr<ParserHandler> json_encoder =
json::NewJSONEncoder(&decoded, &status);
ParseCBOR(span<uint8_t>(encoded.data(), encoded.size()), json_encoder.get());
EXPECT_THAT(status, StatusIsOk());
EXPECT_EQ(json, decoded);
}
TEST(JsonCborRoundtrip, MoreRoundtripExamples) {
std::vector<std::string> examples = {
// Tests that after closing a nested objects, additional key/value pairs
// are considered.
"{\"foo\":{\"bar\":1},\"baz\":2}", "{\"foo\":[1,2,3],\"baz\":2}"};
for (const std::string& json : examples) {
SCOPED_TRACE(std::string("example: ") + json);
std::vector<uint8_t> encoded;
Status status;
std::unique_ptr<ParserHandler> encoder = NewCBOREncoder(&encoded, &status);
span<uint8_t> ascii_in = SpanFrom(json);
json::ParseJSON(ascii_in, encoder.get());
std::string decoded;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&decoded, &status);
ParseCBOR(span<uint8_t>(encoded.data(), encoded.size()), json_writer.get());
EXPECT_THAT(status, StatusIsOk());
EXPECT_EQ(json, decoded);
}
}
TEST(JSONToCBOREncoderTest, HelloWorldBinary_WithTripToJson) {
// The ParserHandler::HandleBinary is a special case: The JSON parser
// will never call this method, because JSON does not natively support the
// binary type. So, we can't fully roundtrip. However, the other direction
// works: binary will be rendered in JSON, as a base64 string. So, we make
// calls to the encoder directly here, to construct a message, and one of
// these calls is ::HandleBinary, to which we pass a "binary" string
// containing "Hello, world.".
std::vector<uint8_t> encoded;
Status status;
std::unique_ptr<ParserHandler> encoder = NewCBOREncoder(&encoded, &status);
encoder->HandleMapBegin();
// Emit a key.
std::vector<uint16_t> key = {'f', 'o', 'o'};
encoder->HandleString16(SpanFrom(key));
// Emit the binary payload, an arbitrary array of bytes that happens to
// be the ascii message "Hello, world.".
encoder->HandleBinary(SpanFrom(std::vector<uint8_t>{
'H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd', '.'}));
encoder->HandleMapEnd();
EXPECT_THAT(status, StatusIsOk());
// Now drive the json writer via the CBOR decoder.
std::string decoded;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&decoded, &status);
ParseCBOR(SpanFrom(encoded), json_writer.get());
EXPECT_THAT(status, StatusIsOk());
// "Hello, world." in base64 is "SGVsbG8sIHdvcmxkLg==".
EXPECT_EQ("{\"foo\":\"SGVsbG8sIHdvcmxkLg==\"}", decoded);
}
// =============================================================================
// cbor::ParseCBOR - for receiving streaming parser events for CBOR messages
// =============================================================================
TEST(ParseCBORTest, ParseEmptyCBORMessage) {
// An envelope starting with 0xd8, 0x5a, with the byte length
// of 2, containing a map that's empty (0xbf for map
// start, and 0xff for map end).
std::vector<uint8_t> in = {0xd8, 0x5a, 0, 0, 0, 2, 0xbf, 0xff};
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(in.data(), in.size()), json_writer.get());
EXPECT_THAT(status, StatusIsOk());
EXPECT_EQ("{}", out);
}
TEST(ParseCBORTest, ParseCBORHelloWorld) {
const uint8_t kPayloadLen = 27;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen};
bytes.push_back(0xbf); // start indef length map.
EncodeString8(SpanFrom("msg"), &bytes); // key: msg
// Now write the value, the familiar "Hello, 🌎." where the globe is expressed
// as two utf16 chars.
bytes.push_back(/*major type=*/2 << 5 | /*additional info=*/20);
for (uint8_t ch : std::array<uint8_t, 20>{
{'H', 0, 'e', 0, 'l', 0, 'l', 0, 'o', 0,
',', 0, ' ', 0, 0x3c, 0xd8, 0x0e, 0xdf, '.', 0}})
bytes.push_back(ch);
bytes.push_back(0xff); // stop byte
EXPECT_EQ(kPayloadLen, bytes.size() - 6);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIsOk());
EXPECT_EQ("{\"msg\":\"Hello, \\ud83c\\udf0e.\"}", out);
}
TEST(ParseCBORTest, UTF8IsSupportedInKeys) {
const uint8_t kPayloadLen = 11;
std::vector<uint8_t> bytes = {0xd8, 0x5a, // envelope
0, 0, 0, kPayloadLen};
bytes.push_back(cbor::EncodeIndefiniteLengthMapStart());
// Two UTF16 chars.
EncodeString8(SpanFrom("🌎"), &bytes);
// Can be encoded as a single UTF16 char.
EncodeString8(SpanFrom("☾"), &bytes);
bytes.push_back(cbor::EncodeStop());
EXPECT_EQ(kPayloadLen, bytes.size() - 6);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIsOk());
EXPECT_EQ("{\"\\ud83c\\udf0e\":\"\\u263e\"}", out);
}
TEST(ParseCBORTest, NoInputError) {
std::vector<uint8_t> in = {};
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(in.data(), in.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_UNEXPECTED_EOF_IN_ENVELOPE, 0u));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, UnexpectedEofExpectedValueError) {
constexpr uint8_t kPayloadLen = 5;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen, // envelope
0xbf}; // map start
// A key; so value would be next.
EncodeString8(SpanFrom("key"), &bytes);
EXPECT_EQ(kPayloadLen, bytes.size() - 6);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_UNEXPECTED_EOF_EXPECTED_VALUE,
bytes.size()));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, UnexpectedEofInArrayError) {
constexpr uint8_t kPayloadLen = 8;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen, // envelope
0xbf}; // The byte for starting a map.
// A key; so value would be next.
EncodeString8(SpanFrom("array"), &bytes);
bytes.push_back(0x9f); // byte for indefinite length array start.
EXPECT_EQ(kPayloadLen, bytes.size() - 6);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status,
StatusIs(Error::CBOR_UNEXPECTED_EOF_IN_ARRAY, bytes.size()));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, UnexpectedEofInMapError) {
constexpr uint8_t kPayloadLen = 1;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen, // envelope
0xbf}; // The byte for starting a map.
EXPECT_EQ(kPayloadLen, bytes.size() - 6);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_UNEXPECTED_EOF_IN_MAP, 7u));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, EnvelopeEncodingLegacy) {
constexpr uint8_t kPayloadLen = 8;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen}; // envelope
bytes.push_back(cbor::EncodeIndefiniteLengthMapStart());
EncodeString8(SpanFrom("foo"), &bytes);
EncodeInt32(42, &bytes);
bytes.emplace_back(EncodeStop());
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIsOk());
EXPECT_EQ(out, "{\"foo\":42}");
}
TEST(ParseCBORTest, EnvelopeEncodingBySpec) {
constexpr uint8_t kPayloadLen = 8;
std::vector<uint8_t> bytes = {0xd8, 0x18, 0x5a, 0,
0, 0, kPayloadLen}; // envelope
bytes.push_back(cbor::EncodeIndefiniteLengthMapStart());
EncodeString8(SpanFrom("foo"), &bytes);
EncodeInt32(42, &bytes);
bytes.emplace_back(EncodeStop());
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIsOk());
EXPECT_EQ(out, "{\"foo\":42}");
}
TEST(ParseCBORTest, NoEmptyEnvelopesAllowed) {
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, 0}; // envelope
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_MAP_OR_ARRAY_EXPECTED_IN_ENVELOPE,
bytes.size()));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, OnlyMapsAndArraysSupportedInsideEnvelopes) {
// The top level is a map with key "foo", and the value
// is an envelope that contains just a number (1). We don't
// allow numbers to be contained in an envelope though, only
// maps and arrays.
constexpr uint8_t kPayloadLen = 8;
std::vector<uint8_t> bytes = {0xd8,
0x5a,
0,
0,
0,
kPayloadLen, // envelope
EncodeIndefiniteLengthMapStart()};
EncodeString8(SpanFrom("foo"), &bytes);
for (uint8_t byte : {0xd8, 0x5a, 0, 0, 0, /*payload_len*/ 1})
bytes.emplace_back(byte);
size_t error_pos = bytes.size();
bytes.push_back(1); // Envelope contents / payload = number 1.
bytes.emplace_back(EncodeStop());
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_MAP_OR_ARRAY_EXPECTED_IN_ENVELOPE,
error_pos));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, InvalidMapKeyError) {
constexpr uint8_t kPayloadLen = 2;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0,
0, 0, kPayloadLen, // envelope
0xbf, // map start
7 << 5 | 22}; // null (not a valid map key)
EXPECT_EQ(kPayloadLen, bytes.size() - 6);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_INVALID_MAP_KEY, 7u));
EXPECT_EQ("", out);
}
std::vector<uint8_t> MakeNestedCBOR(int depth) {
std::vector<uint8_t> bytes;
std::vector<EnvelopeEncoder> envelopes;
for (int ii = 0; ii < depth; ++ii) {
envelopes.emplace_back();
envelopes.back().EncodeStart(&bytes);
bytes.push_back(0xbf); // indef length map start
EncodeString8(SpanFrom("key"), &bytes);
}
EncodeString8(SpanFrom("innermost_value"), &bytes);
for (int ii = 0; ii < depth; ++ii) {
bytes.push_back(0xff); // stop byte, finishes map.
envelopes.back().EncodeStop(&bytes);
envelopes.pop_back();
}
return bytes;
}
TEST(ParseCBORTest, StackLimitExceededError) {
{ // Depth 3: no stack limit exceeded error and is easy to inspect.
std::vector<uint8_t> bytes = MakeNestedCBOR(3);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIsOk());
EXPECT_EQ("{\"key\":{\"key\":{\"key\":\"innermost_value\"}}}", out);
}
{ // Depth 300: no stack limit exceeded.
std::vector<uint8_t> bytes = MakeNestedCBOR(300);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIsOk());
}
// We just want to know the length of one opening map so we can compute
// where the error is encountered. So we look at a small example and find
// the second envelope start.
std::vector<uint8_t> small_example = MakeNestedCBOR(3);
size_t opening_segment_size = 1; // Start after the first envelope start.
while (opening_segment_size < small_example.size() &&
small_example[opening_segment_size] != 0xd8)
opening_segment_size++;
{ // Depth 301: limit exceeded.
std::vector<uint8_t> bytes = MakeNestedCBOR(301);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_STACK_LIMIT_EXCEEDED,
opening_segment_size * 301));
}
{ // Depth 320: still limit exceeded, and at the same pos as for 1001
std::vector<uint8_t> bytes = MakeNestedCBOR(320);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_STACK_LIMIT_EXCEEDED,
opening_segment_size * 301));
}
}
TEST(ParseCBORTest, UnsupportedValueError) {
constexpr uint8_t kPayloadLen = 6;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen, // envelope
0xbf}; // map start
EncodeString8(SpanFrom("key"), &bytes);
size_t error_pos = bytes.size();
bytes.push_back(6 << 5 | 5); // tags aren't supported yet.
EXPECT_EQ(kPayloadLen, bytes.size() - 6);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_UNSUPPORTED_VALUE, error_pos));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, InvalidString16Error) {
constexpr uint8_t kPayloadLen = 11;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen, // envelope
0xbf}; // map start
EncodeString8(SpanFrom("key"), &bytes);
size_t error_pos = bytes.size();
// a BYTE_STRING of length 5 as value; since we interpret these as string16,
// it's going to be invalid as each character would need two bytes, but
// 5 isn't divisible by 2.
bytes.push_back(2 << 5 | 5);
for (int ii = 0; ii < 5; ++ii)
bytes.push_back(' ');
EXPECT_EQ(kPayloadLen, bytes.size() - 6);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_INVALID_STRING16, error_pos));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, InvalidString8Error) {
constexpr uint8_t kPayloadLen = 6;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen, // envelope
0xbf}; // map start
EncodeString8(SpanFrom("key"), &bytes);
size_t error_pos = bytes.size();
// a STRING of length 5 as value, but we're at the end of the bytes array
// so it can't be decoded successfully.
bytes.push_back(3 << 5 | 5);
EXPECT_EQ(kPayloadLen, bytes.size() - 6);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_INVALID_STRING8, error_pos));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, InvalidBinaryError) {
constexpr uint8_t kPayloadLen = 9;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen, // envelope
0xbf}; // map start
EncodeString8(SpanFrom("key"), &bytes);
size_t error_pos = bytes.size();
bytes.push_back(6 << 5 | 22); // base64 hint for JSON; indicates binary
bytes.push_back(2 << 5 | 10); // BYTE_STRING (major type 2) of length 10
// Just two garbage bytes, not enough for the binary.
bytes.push_back(0x31);
bytes.push_back(0x23);
EXPECT_EQ(kPayloadLen, bytes.size() - 6);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_INVALID_BINARY, error_pos));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, InvalidDoubleError) {
constexpr uint8_t kPayloadLen = 8;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen, // envelope
0xbf}; // map start
EncodeString8(SpanFrom("key"), &bytes);
size_t error_pos = bytes.size();
bytes.push_back(7 << 5 | 27); // initial byte for double
// Just two garbage bytes, not enough to represent an actual double.
bytes.push_back(0x31);
bytes.push_back(0x23);
EXPECT_EQ(kPayloadLen, bytes.size() - 6);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_INVALID_DOUBLE, error_pos));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, InvalidSignedError) {
constexpr uint8_t kPayloadLen = 14;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen, // envelope
0xbf}; // map start
EncodeString8(SpanFrom("key"), &bytes);
size_t error_pos = bytes.size();
// uint64_t max is a perfectly fine value to encode as CBOR unsigned,
// but we don't support this since we only cover the int32_t range.
internals::WriteTokenStart(MajorType::UNSIGNED,
std::numeric_limits<uint64_t>::max(), &bytes);
EXPECT_EQ(kPayloadLen, bytes.size() - 6);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_INVALID_INT32, error_pos));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, TrailingJunk) {
constexpr uint8_t kPayloadLen = 12;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen, // envelope
0xbf}; // map start
EncodeString8(SpanFrom("key"), &bytes);
EncodeString8(SpanFrom("value"), &bytes);
bytes.push_back(0xff); // Up to here, it's a perfectly fine msg.
ASSERT_EQ(kPayloadLen, bytes.size() - 6);
size_t error_pos = bytes.size();
// Now write some trailing junk after the message.
EncodeString8(SpanFrom("trailing junk"), &bytes);
internals::WriteTokenStart(MajorType::UNSIGNED,
std::numeric_limits<uint64_t>::max(), &bytes);
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_TRAILING_JUNK, error_pos));
EXPECT_EQ("", out);
}
TEST(ParseCBORTest, EnvelopeContentsLengthMismatch) {
constexpr uint8_t kPartialPayloadLen = 5;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0,
0, 0, kPartialPayloadLen, // envelope
0xbf}; // map start
EncodeString8(SpanFrom("key"), &bytes);
// kPartialPayloadLen would need to indicate the length of the entire map,
// all the way past the 0xff map stop character. Instead, it only covers
// a portion of the map.
EXPECT_EQ(bytes.size() - 6, kPartialPayloadLen);
EncodeString8(SpanFrom("value"), &bytes);
bytes.push_back(0xff); // map stop
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(span<uint8_t>(bytes.data(), bytes.size()), json_writer.get());
EXPECT_THAT(status, StatusIs(Error::CBOR_ENVELOPE_CONTENTS_LENGTH_MISMATCH,
bytes.size()));
EXPECT_EQ("", out);
}
// =============================================================================
// cbor::EnvelopeHeader - for parsing envelope headers
// =============================================================================
// Note most of converage for this is historically on a higher level of
// ParseCBOR(). This provides just a few essnetial scenarios for now.
template <typename T>
class EnvelopeHeaderTest : public ::testing::Test {};
TEST(EnvelopeHeaderTest, EnvelopeStartLegacy) {
std::vector<uint8_t> bytes = {0xd8, // Tag start
0x5a, // Byte string, 4 bytes length
0, 0, 0, 2, // Length
0xbf, 0xff}; // map start / map end
auto result = EnvelopeHeader::Parse(SpanFrom(bytes));
ASSERT_THAT(result.status(), StatusIsOk());
EXPECT_THAT((*result).header_size(), Eq(6u));
EXPECT_THAT((*result).content_size(), Eq(2u));
EXPECT_THAT((*result).outer_size(), Eq(8u));
}
TEST(EnvelopeHeaderTest, EnvelopeStartSpecCompliant) {
std::vector<uint8_t> bytes = {0xd8, // Tag start
0x18, // Tag type (CBOR)
0x5a, // Byte string, 4 bytes length
0, 0, 0, 2, // Length
0xbf, 0xff}; // map start / map end
auto result = EnvelopeHeader::Parse(SpanFrom(bytes));
ASSERT_THAT(result.status(), StatusIsOk());
EXPECT_THAT((*result).header_size(), Eq(7u));
EXPECT_THAT((*result).content_size(), Eq(2u));
EXPECT_THAT((*result).outer_size(), Eq(9u));
}
TEST(EnvelopeHeaderTest, EnvelopeStartShortLen) {
std::vector<uint8_t> bytes = {0xd8, // Tag start
0x18, // Tag type (CBOR)
0x58, // Byte string, 1 byte length
2, // Length
0xbf, 0xff}; // map start / map end
auto result = EnvelopeHeader::Parse(SpanFrom(bytes));
ASSERT_THAT(result.status(), StatusIsOk());
EXPECT_THAT((*result).header_size(), Eq(4u));
EXPECT_THAT((*result).content_size(), Eq(2u));
EXPECT_THAT((*result).outer_size(), Eq(6u));
}
TEST(EnvelopeHeaderTest, ParseFragment) {
std::vector<uint8_t> bytes = {0xd8, // Tag start
0x18, // Tag type (CBOR)
0x5a, // Byte string, 4 bytes length
0, 0, 0, 20, 0xbf}; // map start
auto result = EnvelopeHeader::ParseFromFragment(SpanFrom(bytes));
ASSERT_THAT(result.status(), StatusIsOk());
EXPECT_THAT((*result).header_size(), Eq(7u));
EXPECT_THAT((*result).content_size(), Eq(20u));
EXPECT_THAT((*result).outer_size(), Eq(27u));
result = EnvelopeHeader::Parse(SpanFrom(bytes));
ASSERT_THAT(result.status(),
StatusIs(Error::CBOR_ENVELOPE_CONTENTS_LENGTH_MISMATCH, 8));
}
// =============================================================================
// cbor::AppendString8EntryToMap - for limited in-place editing of messages
// =============================================================================
template <typename T>
class AppendString8EntryToMapTest : public ::testing::Test {};
using ContainerTestTypes = ::testing::Types<std::vector<uint8_t>, std::string>;
TYPED_TEST_SUITE(AppendString8EntryToMapTest, ContainerTestTypes);
TEST(AppendString8EntryToMapTest, AppendsEntrySuccessfully) {
constexpr uint8_t kPayloadLen = 12;
std::vector<uint8_t> bytes = {0xd8, 0x5a, 0, 0, 0, kPayloadLen, // envelope
0xbf}; // map start
size_t pos_before_payload = bytes.size() - 1;
EncodeString8(SpanFrom("key"), &bytes);
EncodeString8(SpanFrom("value"), &bytes);
bytes.push_back(0xff); // A perfectly fine cbor message.
EXPECT_EQ(kPayloadLen, bytes.size() - pos_before_payload);
std::vector<uint8_t> msg(bytes.begin(), bytes.end());
Status status =
AppendString8EntryToCBORMap(SpanFrom("foo"), SpanFrom("bar"), &msg);
EXPECT_THAT(status, StatusIsOk());
std::string out;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(SpanFrom(msg), json_writer.get());
EXPECT_EQ("{\"key\":\"value\",\"foo\":\"bar\"}", out);
EXPECT_THAT(status, StatusIsOk());
}
TYPED_TEST(AppendString8EntryToMapTest, AppendThreeEntries) {
std::vector<uint8_t> encoded = {
0xd8, 0x5a, 0, 0, 0, 2, EncodeIndefiniteLengthMapStart(), EncodeStop()};
EXPECT_THAT(
AppendString8EntryToCBORMap(SpanFrom("key"), SpanFrom("value"), &encoded),
StatusIsOk());
EXPECT_THAT(AppendString8EntryToCBORMap(SpanFrom("key1"), SpanFrom("value1"),
&encoded),
StatusIsOk());
EXPECT_THAT(AppendString8EntryToCBORMap(SpanFrom("key2"), SpanFrom("value2"),
&encoded),
StatusIsOk());
TypeParam msg(encoded.begin(), encoded.end());
std::string out;
Status status;
std::unique_ptr<ParserHandler> json_writer =
json::NewJSONEncoder(&out, &status);
ParseCBOR(SpanFrom(msg), json_writer.get());
EXPECT_EQ("{\"key\":\"value\",\"key1\":\"value1\",\"key2\":\"value2\"}", out);
EXPECT_THAT(status, StatusIsOk());
}
TEST(AppendString8EntryToMapTest, MapStartExpected_Error) {
std::vector<uint8_t> msg = {
0xd8, 0x5a, 0, 0, 0, 1, EncodeIndefiniteLengthArrayStart()};
Status status =
AppendString8EntryToCBORMap(SpanFrom("key"), SpanFrom("value"), &msg);
EXPECT_THAT(status, StatusIs(Error::CBOR_MAP_START_EXPECTED, 6u));
}
TEST(AppendString8EntryToMapTest, MapStopExpected_Error) {
std::vector<uint8_t> msg = {
0xd8, 0x5a, 0, 0, 0, 2, EncodeIndefiniteLengthMapStart(), 42};
Status status =
AppendString8EntryToCBORMap(SpanFrom("key"), SpanFrom("value"), &msg);
EXPECT_THAT(status, StatusIs(Error::CBOR_MAP_STOP_EXPECTED, 7u));
}
TEST(AppendString8EntryToMapTest, InvalidEnvelope_Error) {
{ // Second byte is wrong.
std::vector<uint8_t> msg = {
0x5a, 0, 0, 0, 2, EncodeIndefiniteLengthMapStart(), EncodeStop(), 0};
Status status =
AppendString8EntryToCBORMap(SpanFrom("key"), SpanFrom("value"), &msg);
EXPECT_THAT(status, StatusIs(Error::CBOR_INVALID_ENVELOPE, 0u));
}
{ // Second byte is wrong.
std::vector<uint8_t> msg = {
0xd8, 0x7a, 0, 0, 0, 2, EncodeIndefiniteLengthMapStart(), EncodeStop()};
Status status =
AppendString8EntryToCBORMap(SpanFrom("key"), SpanFrom("value"), &msg);
EXPECT_THAT(status, StatusIs(Error::CBOR_INVALID_ENVELOPE, 1u));
}
{ // Invalid envelope size example.
std::vector<uint8_t> msg = {
0xd8, 0x5a, 0, 0, 0, 3, EncodeIndefiniteLengthMapStart(), EncodeStop(),
};
Status status =
AppendString8EntryToCBORMap(SpanFrom("key"), SpanFrom("value"), &msg);
EXPECT_THAT(status,
StatusIs(Error::CBOR_ENVELOPE_CONTENTS_LENGTH_MISMATCH, 8u));
}
{ // Invalid envelope size example.
std::vector<uint8_t> msg = {
0xd8, 0x5a, 0, 0, 0, 1, EncodeIndefiniteLengthMapStart(), EncodeStop(),
};
Status status =
AppendString8EntryToCBORMap(SpanFrom("key"), SpanFrom("value"), &msg);
EXPECT_THAT(status, StatusIs(Error::CBOR_INVALID_ENVELOPE, 0));
}
}
} // namespace cbor
} // namespace v8_crdtp
|