1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
|
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_FUNCTIONAL_BIND_INTERNAL_H_
#define BASE_FUNCTIONAL_BIND_INTERNAL_H_
#include <stddef.h>
#include <concepts>
#include <functional>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/functional/callback_internal.h"
#include "base/functional/unretained_traits.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ref.h"
#include "base/memory/weak_ptr.h"
#include "base/types/always_false.h"
#include "base/types/is_complete.h"
#include "base/types/is_instantiation.h"
#include "base/types/to_address.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/functional/function_ref.h"
#if PA_BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
#include "base/memory/raw_ptr_asan_bound_arg_tracker.h"
#endif
// See docs/callback.md for user documentation.
//
// Concepts:
// Functor -- A movable type representing something that should be called.
// All function pointers and `Callback<>` are functors even if the
// invocation syntax differs.
// RunType -- A function type (as opposed to function _pointer_ type) for
// a `Callback<>::Run()`. Usually just a convenience typedef.
// (Bound)Args -- A set of types that stores the arguments.
//
// Types:
// `ForceVoidReturn<>` -- Helper class for translating function signatures to
// equivalent forms with a `void` return type.
// `FunctorTraits<>` -- Type traits used to determine the correct RunType and
// invocation manner for a Functor. This is where
// function signature adapters are applied.
// `StorageTraits<>` -- Type traits that determine how a bound argument is
// stored in `BindState<>`.
// `InvokeHelper<>` -- Takes a Functor + arguments and actually invokes it.
// Handles the differing syntaxes needed for `WeakPtr<>`
// support. This is separate from `Invoker<>` to avoid
// creating multiple versions of `Invoker<>`.
// `Invoker<>` -- Unwraps the curried parameters and executes the Functor.
// `BindState<>` -- Stores the curried parameters, and is the main entry point
// into the `Bind()` system.
#if BUILDFLAG(IS_WIN)
namespace Microsoft {
namespace WRL {
template <typename>
class ComPtr;
} // namespace WRL
} // namespace Microsoft
#endif
namespace base {
template <typename T>
struct IsWeakReceiver;
template <typename>
struct BindUnwrapTraits;
template <typename Functor, typename BoundArgsTuple>
struct CallbackCancellationTraits;
template <typename Signature>
class FunctionRef;
// A tag type to return when `Bind()` calls fail. In this case we intentionally
// don't return `void`, since that would produce spurious errors like "variable
// has incomplete type 'void'" when assigning the result of
// `Bind{Once,Repeating}()` to an `auto`.
struct BindFailedCheckPreviousErrors {};
namespace unretained_traits {
// `UnretainedWrapper` will check and report if pointer is dangling upon
// invocation.
struct MayNotDangle {};
// `UnretainedWrapper` won't check if pointer is dangling upon invocation. For
// extra safety, the receiver must be of type `MayBeDangling<>`.
struct MayDangle {};
// `UnretainedWrapper` won't check if pointer is dangling upon invocation. The
// receiver doesn't have to be a `raw_ptr<>`. This is just a temporary state, to
// allow dangling pointers that would otherwise crash if `MayNotDangle` was
// used. It should be replaced ASAP with `MayNotDangle` (after fixing the
// dangling pointers) or with `MayDangle` if there is really no other way (after
// making receivers `MayBeDangling<>`).
struct MayDangleUntriaged {};
} // namespace unretained_traits
namespace internal {
template <typename T,
typename UnretainedTrait,
RawPtrTraits PtrTraits = RawPtrTraits::kEmpty>
class UnretainedWrapper {
// Note that if `PtrTraits` already includes `MayDangle`, `DanglingRawPtrType`
// will be identical to `raw_ptr<T, PtrTraits>`.
using DanglingRawPtrType = MayBeDangling<T, PtrTraits>;
public:
// We want the getter type to match the receiver parameter that it is passed
// into, to minimize `raw_ptr<T>` <-> `T*` conversions. We also would like to
// match `StorageType`, but sometimes we can't have both, as shown in
// https://docs.google.com/document/d/1dLM34aKqbNBfRdOYxxV_T-zQU4J5wjmXwIBJZr7JvZM/edit
// When we can't have both, prefer the former, mostly because
// `GetPtrType`=`raw_ptr<T>` would break if e.g. `UnretainedWrapper()` is
// constructed using `char*`, but the receiver is of type `std::string&`.
// This is enforced by `static_assert()`s in `ParamCanBeBound`.
using GetPtrType = std::conditional_t<
raw_ptr_traits::IsSupportedType<T>::value &&
std::same_as<UnretainedTrait, unretained_traits::MayDangle>,
DanglingRawPtrType,
T*>;
// Raw pointer makes sense only if there are no `PtrTrait`s. If there are,
// it means that a `raw_ptr` is being passed, so use the ctors below instead.
explicit UnretainedWrapper(T* o)
requires(PtrTraits == RawPtrTraits::kEmpty)
: ptr_(o) {
VerifyPreconditions();
}
explicit UnretainedWrapper(const raw_ptr<T, PtrTraits>& o)
requires(raw_ptr_traits::IsSupportedType<T>::value)
: ptr_(o) {
VerifyPreconditions();
}
explicit UnretainedWrapper(raw_ptr<T, PtrTraits>&& o)
requires(raw_ptr_traits::IsSupportedType<T>::value)
: ptr_(std::move(o)) {
VerifyPreconditions();
}
GetPtrType get() const { return GetInternal(ptr_); }
// True if this type is valid. When this is false, a `static_assert` will have
// been fired explaining why.
static constexpr bool value = SupportsUnretained<T>;
private:
// `ptr_` is either a `raw_ptr` or a regular C++ pointer.
template <typename U>
requires std::same_as<T, U>
static GetPtrType GetInternal(U* ptr) {
return ptr;
}
template <typename U, RawPtrTraits Traits>
requires std::same_as<T, U>
static GetPtrType GetInternal(const raw_ptr<U, Traits>& ptr) {
if constexpr (std::same_as<UnretainedTrait,
unretained_traits::MayNotDangle>) {
ptr.ReportIfDangling();
}
return ptr;
}
// `Unretained()` arguments often dangle by design (a common design pattern
// is to manage an object's lifetime inside the callback itself, using
// stateful information), so disable direct dangling pointer detection
// of `ptr_`.
//
// If the callback is invoked, dangling pointer detection will be triggered
// before invoking the bound functor (unless stated otherwise, see
// `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the
// pointer value via `get()` above.
using StorageType =
std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value,
DanglingRawPtrType,
T*>;
// Avoid converting between different `raw_ptr` types when calling `get()`.
// It is allowable to convert `raw_ptr<T>` -> `T*`, but not in the other
// direction. See the comment by `GetPtrType` describing for more details.
static_assert(std::is_pointer_v<GetPtrType> ||
std::same_as<GetPtrType, StorageType>);
// Forces `value` to be materialized, performing a compile-time check of the
// preconditions if it hasn't already occurred. This is called from every
// constructor so the wrappers in bind.h don't have to each check it, and so
// no one can go around them and construct this underlying type directly.
static constexpr void VerifyPreconditions() {
// Using `static_assert(value);` here would work but fire an extra error.
std::ignore = value;
}
StorageType ptr_;
};
// Storage type for `std::reference_wrapper` so `BindState` can internally store
// unprotected references using `raw_ref`.
//
// `std::reference_wrapper<T>` and `T&` do not work, since the reference
// lifetime is not safely protected by MiraclePtr.
//
// `UnretainedWrapper<T>` and `raw_ptr<T>` do not work, since `BindUnwrapTraits`
// would try to pass by `T*` rather than `T&`.
template <typename T,
typename UnretainedTrait,
RawPtrTraits PtrTraits = RawPtrTraits::kEmpty>
class UnretainedRefWrapper {
public:
// Raw reference makes sense only if there are no `PtrTrait`s. If there are,
// it means that a `raw_ref` is being passed, so use the ctors below instead.
explicit UnretainedRefWrapper(T& o)
requires(PtrTraits == RawPtrTraits::kEmpty)
: ref_(o) {
VerifyPreconditions();
}
explicit UnretainedRefWrapper(const raw_ref<T, PtrTraits>& o)
requires(raw_ptr_traits::IsSupportedType<T>::value)
: ref_(o) {
VerifyPreconditions();
}
explicit UnretainedRefWrapper(raw_ref<T, PtrTraits>&& o)
requires(raw_ptr_traits::IsSupportedType<T>::value)
: ref_(std::move(o)) {
VerifyPreconditions();
}
T& get() const { return GetInternal(ref_); }
// See comments in `UnretainedWrapper` regarding this and
// `VerifyPreconditions()`.
static constexpr bool value = SupportsUnretained<T>;
private:
// `ref_` is either a `raw_ref` or a regular C++ reference.
template <typename U>
requires std::same_as<T, U>
static T& GetInternal(U& ref) {
return ref;
}
template <typename U, RawPtrTraits Traits>
requires std::same_as<T, U>
static T& GetInternal(const raw_ref<U, Traits>& ref) {
// The ultimate goal is to crash when a callback is invoked with a
// dangling pointer. This is checked here. For now, it is configured to
// either crash, DumpWithoutCrashing or be ignored. This depends on the
// `PartitionAllocUnretainedDanglingPtr` feature.
if constexpr (std::is_same_v<UnretainedTrait,
unretained_traits::MayNotDangle>) {
ref.ReportIfDangling();
}
// We can't use `operator*` here, we need to use `raw_ptr`'s
// `GetForExtraction` instead of `GetForDereference`. If we did use
// `GetForDereference` then we'd crash in ASAN builds on calling a bound
// callback with a dangling reference parameter even if that parameter is
// not used. This could hide a later unprotected issue that would be reached
// in release builds.
return ref.get();
}
// `Unretained()` arguments often dangle by design (a common design pattern
// is to manage an object's lifetime inside the callback itself, using
// stateful information), so disable direct dangling pointer detection
// of `ref_`.
//
// If the callback is invoked, dangling pointer detection will be triggered
// before invoking the bound functor (unless stated otherwise, see
// `UnsafeDangling()` and `UnsafeDanglingUntriaged()`), when retrieving the
// pointer value via `get()` above.
using StorageType =
std::conditional_t<raw_ptr_traits::IsSupportedType<T>::value,
raw_ref<T, DisableDanglingPtrDetection>,
T&>;
static constexpr void VerifyPreconditions() { std::ignore = value; }
StorageType ref_;
};
// Can't use `is_instantiation` to detect the unretained wrappers, since they
// have non-type template params.
template <template <typename, typename, RawPtrTraits> typename WrapperT,
typename T>
inline constexpr bool kIsUnretainedWrapper = false;
template <template <typename, typename, RawPtrTraits> typename WrapperT,
typename T,
typename UnretainedTrait,
RawPtrTraits PtrTraits>
inline constexpr bool
kIsUnretainedWrapper<WrapperT, WrapperT<T, UnretainedTrait, PtrTraits>> =
true;
// The class is used to wrap `UnretainedRefWrapper` when the latter is used as
// a method receiver (a reference on `this` argument). This is needed because
// the internal callback mechanism expects the receiver to have the type
// `MyClass*` and to have `operator*`.
// This is used as storage.
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
class UnretainedRefWrapperReceiver {
public:
// NOLINTNEXTLINE(google-explicit-constructor)
UnretainedRefWrapperReceiver(
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>&& obj)
: obj_(std::move(obj)) {}
T& operator*() const { return obj_.get(); }
T* operator->() const { return &obj_.get(); }
private:
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits> obj_;
};
// `MethodReceiverStorage` converts the current receiver type to its stored
// type. For instance, it converts pointers to `scoped_refptr`, and wraps
// `UnretainedRefWrapper` to make it compliant with the internal callback
// invocation mechanism.
template <typename T>
struct MethodReceiverStorage {
using Type = std::
conditional_t<IsPointerOrRawPtr<T>, scoped_refptr<RemovePointerT<T>>, T>;
};
template <typename T, typename UnretainedTrait, RawPtrTraits PtrTraits>
struct MethodReceiverStorage<
UnretainedRefWrapper<T, UnretainedTrait, PtrTraits>> {
// We can't use `UnretainedRefWrapper` as a receiver directly (see
// `UnretainedRefWrapperReceiver` for why).
using Type = UnretainedRefWrapperReceiver<T, UnretainedTrait, PtrTraits>;
};
template <typename T>
class RetainedRefWrapper {
public:
explicit RetainedRefWrapper(T* o) : ptr_(o) {}
explicit RetainedRefWrapper(scoped_refptr<T> o) : ptr_(std::move(o)) {}
T* get() const { return ptr_.get(); }
private:
scoped_refptr<T> ptr_;
};
template <typename T>
struct IgnoreResultHelper {
explicit IgnoreResultHelper(T functor) : functor_(std::move(functor)) {}
explicit operator bool() const { return !!functor_; }
T functor_;
};
template <typename T, typename Deleter = std::default_delete<T>>
class OwnedWrapper {
public:
explicit OwnedWrapper(T* o) : ptr_(o) {}
explicit OwnedWrapper(std::unique_ptr<T, Deleter>&& ptr)
: ptr_(std::move(ptr)) {}
T* get() const { return ptr_.get(); }
private:
std::unique_ptr<T, Deleter> ptr_;
};
template <typename T>
class OwnedRefWrapper {
public:
explicit OwnedRefWrapper(const T& t) : t_(t) {}
explicit OwnedRefWrapper(T&& t) : t_(std::move(t)) {}
T& get() const { return t_; }
private:
mutable T t_;
};
// `PassedWrapper` is a copyable adapter for a scoper that ignores `const`.
//
// It is needed to get around the fact that `Bind()` takes a const reference to
// all its arguments. Because `Bind()` takes a const reference to avoid
// unnecessary copies, it is incompatible with movable-but-not-copyable
// types; doing a destructive "move" of the type into `Bind()` would violate
// the const correctness.
//
// This conundrum cannot be solved without either rvalue references or an O(2^n)
// blowup of `Bind()` templates to handle each combination of regular types and
// movable-but-not-copyable types. Thus we introduce a wrapper type that is
// copyable to transmit the correct type information down into `BindState<>`.
// Ignoring `const` in this type makes sense because it is only created when we
// are explicitly trying to do a destructive move.
//
// Two notes:
// 1) `PassedWrapper` supports any type that has a move constructor, however
// the type will need to be specifically allowed in order for it to be
// bound to a `Callback`. We guard this explicitly at the call of `Passed()`
// to make for clear errors. Things not given to `Passed()` will be
// forwarded and stored by value which will not work for general move-only
// types.
// 2) `is_valid_` is distinct from `nullptr` because it is valid to bind a null
// scoper to a `Callback` and allow the `Callback` to execute once.
//
// TODO(crbug.com/40840557): We have rvalue references and such now. Remove.
template <typename T>
class PassedWrapper {
public:
explicit PassedWrapper(T&& scoper) : scoper_(std::move(scoper)) {}
PassedWrapper(PassedWrapper&& other)
: is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
T Take() const {
CHECK(is_valid_);
is_valid_ = false;
return std::move(scoper_);
}
private:
mutable bool is_valid_ = true;
mutable T scoper_;
};
template <typename T>
using Unwrapper = BindUnwrapTraits<std::decay_t<T>>;
template <typename T>
decltype(auto) Unwrap(T&& o) {
return Unwrapper<T>::Unwrap(std::forward<T>(o));
}
// `kIsWeakMethod` is a helper that determines if we are binding a `WeakPtr<>`
// to a method. It is used internally by `Bind()` to select the correct
// `InvokeHelper` that will no-op itself in the event the `WeakPtr<>` for the
// target object is invalidated.
//
// The first argument should be the type of the object that will be received by
// the method.
template <bool is_method, typename... Args>
inline constexpr bool kIsWeakMethod = false;
template <typename T, typename... Args>
inline constexpr bool kIsWeakMethod<true, T, Args...> =
IsWeakReceiver<T>::value;
// Packs a list of types to hold them in a single type.
template <typename... Types>
struct TypeList {};
// Implements `DropTypeListItem`.
template <size_t n, typename List>
requires is_instantiation<List, TypeList>
struct DropTypeListItemImpl {
using Type = List;
};
template <size_t n, typename T, typename... List>
requires(n > 0)
struct DropTypeListItemImpl<n, TypeList<T, List...>>
: DropTypeListItemImpl<n - 1, TypeList<List...>> {};
// A type-level function that drops `n` list items from a given `TypeList`.
template <size_t n, typename List>
using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
// Implements `TakeTypeListItem`.
template <size_t n, typename List, typename... Accum>
requires is_instantiation<List, TypeList>
struct TakeTypeListItemImpl {
using Type = TypeList<Accum...>;
};
template <size_t n, typename T, typename... List, typename... Accum>
requires(n > 0)
struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
: TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
// A type-level function that takes the first `n` items from a given `TypeList`;
// e.g. `TakeTypeListItem<3, TypeList<A, B, C, D>>` -> `TypeList<A, B, C>`.
template <size_t n, typename List>
using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
// Implements `MakeFunctionType`.
template <typename R, typename ArgList>
struct MakeFunctionTypeImpl;
template <typename R, typename... Args>
struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
using Type = R(Args...);
};
// A type-level function that constructs a function type that has `R` as its
// return type and has a `TypeList`'s items as its arguments.
template <typename R, typename ArgList>
using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
// Implements `ExtractArgs` and `ExtractReturnType`.
template <typename Signature>
struct ExtractArgsImpl;
template <typename R, typename... Args>
struct ExtractArgsImpl<R(Args...)> {
using ReturnType = R;
using ArgsList = TypeList<Args...>;
};
// A type-level function that extracts function arguments into a `TypeList`;
// e.g. `ExtractArgs<R(A, B, C)>` -> `TypeList<A, B, C>`.
template <typename Signature>
using ExtractArgs = typename ExtractArgsImpl<Signature>::ArgsList;
// A type-level function that extracts the return type of a function.
// e.g. `ExtractReturnType<R(A, B, C)>` -> `R`.
template <typename Signature>
using ExtractReturnType = typename ExtractArgsImpl<Signature>::ReturnType;
template <typename Callable,
typename Signature = decltype(&Callable::operator())>
struct ExtractCallableRunTypeImpl;
#define BIND_INTERNAL_EXTRACT_CALLABLE_RUN_TYPE_WITH_QUALS(quals) \
template <typename Callable, typename R, typename... Args> \
struct ExtractCallableRunTypeImpl<Callable, \
R (Callable::*)(Args...) quals> { \
using Type = R(Args...); \
}
BIND_INTERNAL_EXTRACT_CALLABLE_RUN_TYPE_WITH_QUALS();
BIND_INTERNAL_EXTRACT_CALLABLE_RUN_TYPE_WITH_QUALS(const);
BIND_INTERNAL_EXTRACT_CALLABLE_RUN_TYPE_WITH_QUALS(noexcept);
BIND_INTERNAL_EXTRACT_CALLABLE_RUN_TYPE_WITH_QUALS(const noexcept);
#undef BIND_INTERNAL_EXTRACT_CALLABLE_RUN_TYPE_WITH_QUALS
// Evaluated to the RunType of the given callable type; e.g.
// `ExtractCallableRunType<decltype([](int, char*) { return 0.1; })>` ->
// `double(int, char*)`.
template <typename Callable>
using ExtractCallableRunType =
typename ExtractCallableRunTypeImpl<Callable>::Type;
// True when `Functor` has a non-overloaded `operator()()`, e.g.:
// struct S1 {
// int operator()(int);
// };
// static_assert(HasNonOverloadedCallOp<S1>);
//
// int i = 0;
// auto f = [i] {};
// static_assert(HasNonOverloadedCallOp<decltype(f)>);
//
// struct S2 {
// int operator()(int);
// std::string operator()(std::string);
// };
// static_assert(!HasNonOverloadedCallOp<S2>);
//
// static_assert(!HasNonOverloadedCallOp<void(*)()>);
//
// struct S3 {};
// static_assert(!HasNonOverloadedCallOp<S3>);
// ```
template <typename Functor>
concept HasNonOverloadedCallOp = requires { &Functor::operator(); };
template <typename T>
inline constexpr bool IsObjCArcBlockPointer = false;
#if __OBJC__ && HAS_FEATURE(objc_arc)
template <typename R, typename... Args>
inline constexpr bool IsObjCArcBlockPointer<R (^)(Args...)> = true;
#endif
// True when `Functor` has an overloaded `operator()()` that can be invoked with
// the provided `BoundArgs`.
//
// Do not decay `Functor` before testing this, lest it give an incorrect result
// for overloads with different ref-qualifiers.
template <typename Functor, typename... BoundArgs>
concept HasOverloadedCallOp = requires {
// The functor must be invocable with the bound args.
requires requires(Functor&& f, BoundArgs&&... args) {
std::forward<Functor>(f)(std::forward<BoundArgs>(args)...);
};
// Now exclude invocables that are not cases of overloaded `operator()()`s:
// * `operator()()` exists, but isn't overloaded
requires !HasNonOverloadedCallOp<std::decay_t<Functor>>;
// * Function pointer (doesn't have `operator()()`)
requires !std::is_pointer_v<std::decay_t<Functor>>;
// * Block pointer (doesn't have `operator()()`)
requires !IsObjCArcBlockPointer<std::decay_t<Functor>>;
};
// `ForceVoidReturn<>` converts a signature to have a `void` return type.
template <typename Sig>
struct ForceVoidReturn;
template <typename R, typename... Args>
struct ForceVoidReturn<R(Args...)> {
using RunType = void(Args...);
};
// `FunctorTraits<>`
//
// See description at top of file. This must be declared here so it can be
// referenced in `DecayedFunctorTraits`.
template <typename Functor, typename... BoundArgs>
struct FunctorTraits;
// Provides functor traits for pre-decayed functor types.
template <typename Functor, typename... BoundArgs>
struct DecayedFunctorTraits;
// Callable types.
// This specialization handles lambdas (captureless and capturing) and functors
// with a call operator. Capturing lambdas and stateful functors are explicitly
// disallowed by `BindHelper<>::Bind()`; e.g.:
// ```
// // Captureless lambda: Allowed
// [] { return 42; };
//
// // Capturing lambda: Disallowed
// int x;
// [x] { return x; };
//
// // Empty class with `operator()()`: Allowed
// struct Foo {
// void operator()() const {}
// // No non-`static` member variables and no virtual functions.
// };
// ```
template <typename Functor, typename... BoundArgs>
requires HasNonOverloadedCallOp<Functor>
struct DecayedFunctorTraits<Functor, BoundArgs...> {
using RunType = ExtractCallableRunType<Functor>;
static constexpr bool is_method = false;
static constexpr bool is_nullable = false;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = std::is_empty_v<Functor>;
template <typename RunFunctor, typename... RunArgs>
static ExtractReturnType<RunType> Invoke(RunFunctor&& functor,
RunArgs&&... args) {
return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...);
}
};
// Functions.
template <typename R, typename... Args, typename... BoundArgs>
struct DecayedFunctorTraits<R (*)(Args...), BoundArgs...> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename Function, typename... RunArgs>
static R Invoke(Function&& function, RunArgs&&... args) {
return std::forward<Function>(function)(std::forward<RunArgs>(args)...);
}
};
template <typename R, typename... Args, typename... BoundArgs>
struct DecayedFunctorTraits<R (*)(Args...) noexcept, BoundArgs...>
: DecayedFunctorTraits<R (*)(Args...), BoundArgs...> {};
#if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
// `__stdcall` and `__fastcall` functions.
#define BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONV_AND_QUALS(conv, quals) \
template <typename R, typename... Args, typename... BoundArgs> \
struct DecayedFunctorTraits<R(conv*)(Args...) quals, BoundArgs...> \
: DecayedFunctorTraits<R (*)(Args...) quals, BoundArgs...> {}
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONV_AND_QUALS(__stdcall, );
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONV_AND_QUALS(__stdcall, noexcept);
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONV_AND_QUALS(__fastcall, );
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONV_AND_QUALS(__fastcall, noexcept);
#undef BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONV_AND_QUALS
#endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
#if __OBJC__ && HAS_FEATURE(objc_arc)
// Objective-C blocks. Blocks can be bound as the compiler will ensure their
// lifetimes will be correctly managed.
template <typename R, typename... Args, typename... BoundArgs>
struct DecayedFunctorTraits<R (^)(Args...), BoundArgs...> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename BlockType, typename... RunArgs>
static R Invoke(BlockType&& block, RunArgs&&... args) {
// According to LLVM documentation (§ 6.3), "local variables of automatic
// storage duration do not have precise lifetime." Use
// `objc_precise_lifetime` to ensure that the Objective-C block is not
// deallocated until it has finished executing even if the `Callback<>` is
// destroyed during the block execution.
// https://clang.llvm.org/docs/AutomaticReferenceCounting.html#precise-lifetime-semantics
__attribute__((objc_precise_lifetime)) R (^scoped_block)(Args...) = block;
return scoped_block(std::forward<RunArgs>(args)...);
}
};
#endif // __OBJC__ && HAS_FEATURE(objc_arc)
// Methods.
template <typename R,
typename Receiver,
typename... Args,
typename... BoundArgs>
struct DecayedFunctorTraits<R (Receiver::*)(Args...), BoundArgs...> {
using RunType = R(Receiver*, Args...);
static constexpr bool is_method = true;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = true;
template <typename Method, typename ReceiverPtr, typename... RunArgs>
static R Invoke(Method method,
ReceiverPtr&& receiver_ptr,
RunArgs&&... args) {
return ((*receiver_ptr).*method)(std::forward<RunArgs>(args)...);
}
};
template <typename R,
typename Receiver,
typename... Args,
typename... BoundArgs>
struct DecayedFunctorTraits<R (Receiver::*)(Args...) const, BoundArgs...>
: DecayedFunctorTraits<R (Receiver::*)(Args...), BoundArgs...> {
using RunType = R(const Receiver*, Args...);
};
#define BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONST_AND_QUALS(constqual, \
quals) \
template <typename R, typename Receiver, typename... Args, \
typename... BoundArgs> \
struct DecayedFunctorTraits<R (Receiver::*)(Args...) constqual quals, \
BoundArgs...> \
: DecayedFunctorTraits<R (Receiver::*)(Args...) constqual, \
BoundArgs...> {}
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONST_AND_QUALS(, noexcept);
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONST_AND_QUALS(const, noexcept);
#undef BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_WITH_CONST_AND_QUALS
#if BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
// `__stdcall` methods.
#define BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_STDCALL_WITH_QUALS(quals) \
template <typename R, typename Receiver, typename... Args, \
typename... BoundArgs> \
struct DecayedFunctorTraits<R (__stdcall Receiver::*)(Args...) quals, \
BoundArgs...> \
: public DecayedFunctorTraits<R (Receiver::*)(Args...) quals, \
BoundArgs...> {}
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_STDCALL_WITH_QUALS();
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_STDCALL_WITH_QUALS(const);
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_STDCALL_WITH_QUALS(noexcept);
BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_STDCALL_WITH_QUALS(const noexcept);
#undef BIND_INTERNAL_DECAYED_FUNCTOR_TRAITS_STDCALL_WITH_QUALS
#endif // BUILDFLAG(IS_WIN) && !defined(ARCH_CPU_64_BITS)
// `IgnoreResult`s.
template <typename T, typename... BoundArgs>
struct DecayedFunctorTraits<IgnoreResultHelper<T>, BoundArgs...>
: FunctorTraits<T, BoundArgs...> {
using RunType = typename ForceVoidReturn<
typename FunctorTraits<T, BoundArgs...>::RunType>::RunType;
template <typename IgnoreResultType, typename... RunArgs>
static void Invoke(IgnoreResultType&& ignore_result_helper,
RunArgs&&... args) {
FunctorTraits<T, BoundArgs...>::Invoke(
std::forward<IgnoreResultType>(ignore_result_helper).functor_,
std::forward<RunArgs>(args)...);
}
};
// `OnceCallback`s.
template <typename R, typename... Args, typename... BoundArgs>
struct DecayedFunctorTraits<OnceCallback<R(Args...)>, BoundArgs...> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = true;
static constexpr bool is_stateless = true;
template <typename CallbackType, typename... RunArgs>
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
DCHECK(!callback.is_null());
return std::forward<CallbackType>(callback).Run(
std::forward<RunArgs>(args)...);
}
};
// `RepeatingCallback`s.
template <typename R, typename... Args, typename... BoundArgs>
struct DecayedFunctorTraits<RepeatingCallback<R(Args...)>, BoundArgs...> {
using RunType = R(Args...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = true;
static constexpr bool is_callback = true;
static constexpr bool is_stateless = true;
template <typename CallbackType, typename... RunArgs>
static R Invoke(CallbackType&& callback, RunArgs&&... args) {
DCHECK(!callback.is_null());
return std::forward<CallbackType>(callback).Run(
std::forward<RunArgs>(args)...);
}
};
// For most functors, the traits should not depend on how the functor is passed,
// so decay the functor.
template <typename Functor, typename... BoundArgs>
// This requirement avoids "implicit instantiation of undefined template" errors
// when the underlying `DecayedFunctorTraits<>` cannot be instantiated. Instead,
// this template will also not be instantiated, and the caller can detect and
// handle that.
requires IsComplete<DecayedFunctorTraits<std::decay_t<Functor>, BoundArgs...>>
struct FunctorTraits<Functor, BoundArgs...>
: DecayedFunctorTraits<std::decay_t<Functor>, BoundArgs...> {};
// For `overloaded operator()()`s, it's possible the ref qualifiers of the
// functor matter, so be careful to use the undecayed type.
template <typename Functor, typename... BoundArgs>
requires HasOverloadedCallOp<Functor, BoundArgs...>
struct FunctorTraits<Functor, BoundArgs...> {
// For an overloaded operator()(), it is not possible to resolve the
// actual declared type. Since it is invocable with the bound args, make up a
// signature based on their types.
using RunType = decltype(std::declval<Functor>()(
std::declval<BoundArgs>()...))(std::decay_t<BoundArgs>...);
static constexpr bool is_method = false;
static constexpr bool is_nullable = false;
static constexpr bool is_callback = false;
static constexpr bool is_stateless = std::is_empty_v<std::decay_t<Functor>>;
template <typename RunFunctor, typename... RunArgs>
static ExtractReturnType<RunType> Invoke(RunFunctor&& functor,
RunArgs&&... args) {
return std::forward<RunFunctor>(functor)(std::forward<RunArgs>(args)...);
}
};
// `StorageTraits<>`
//
// See description at top of file.
template <typename T>
struct StorageTraits {
// The type to use for storing the bound arg inside `BindState`.
using Type = T;
// True iff all compile-time preconditions for using this specialization are
// satisfied. Specializations that set this to `false` should ensure a
// `static_assert()` explains why.
static constexpr bool value = true;
};
// For `T*`, store as `UnretainedWrapper<T>` for safety, as it internally uses
// `raw_ptr<T>` (when possible).
template <typename T>
struct StorageTraits<T*> {
using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle>;
static constexpr bool value = Type::value;
};
// For `raw_ptr<T>`, store as `UnretainedWrapper<T>` for safety. This may seem
// contradictory, but this ensures guaranteed protection for the pointer even
// during execution of callbacks with parameters of type `raw_ptr<T>`.
template <typename T, RawPtrTraits PtrTraits>
struct StorageTraits<raw_ptr<T, PtrTraits>> {
using Type = UnretainedWrapper<T, unretained_traits::MayNotDangle, PtrTraits>;
static constexpr bool value = Type::value;
};
// Unwrap `std::reference_wrapper` and store it in a custom wrapper so that
// references are also protected with `raw_ptr<T>`.
template <typename T>
struct StorageTraits<std::reference_wrapper<T>> {
using Type = UnretainedRefWrapper<T, unretained_traits::MayNotDangle>;
static constexpr bool value = Type::value;
};
template <typename T>
using ValidateStorageTraits = StorageTraits<std::decay_t<T>>;
// `InvokeHelper<>`
//
// There are 2 logical `InvokeHelper<>` specializations: normal, weak.
//
// The normal type just calls the underlying runnable.
//
// Weak calls need special syntax that is applied to the first argument to check
// if they should no-op themselves.
template <bool is_weak_call,
typename Traits,
typename ReturnType,
size_t... indices>
struct InvokeHelper;
template <typename Traits, typename ReturnType, size_t... indices>
struct InvokeHelper<false, Traits, ReturnType, indices...> {
template <typename Functor, typename BoundArgsTuple, typename... RunArgs>
static inline ReturnType MakeItSo(Functor&& functor,
BoundArgsTuple&& bound,
RunArgs&&... args) {
return Traits::Invoke(
Unwrap(std::forward<Functor>(functor)),
Unwrap(std::get<indices>(std::forward<BoundArgsTuple>(bound)))...,
std::forward<RunArgs>(args)...);
}
};
template <typename Traits,
typename ReturnType,
size_t index_target,
size_t... index_tail>
struct InvokeHelper<true, Traits, ReturnType, index_target, index_tail...> {
template <typename Functor, typename BoundArgsTuple, typename... RunArgs>
static inline void MakeItSo(Functor&& functor,
BoundArgsTuple&& bound,
RunArgs&&... args) {
static_assert(index_target == 0);
// Note the validity of the weak pointer should be tested _after_ it is
// unwrapped, otherwise it creates a race for weak pointer implementations
// that allow cross-thread usage and perform `Lock()` in `Unwrap()` traits.
const auto& target = Unwrap(std::get<0>(bound));
if (!target) {
return;
}
Traits::Invoke(
Unwrap(std::forward<Functor>(functor)), target,
Unwrap(std::get<index_tail>(std::forward<BoundArgsTuple>(bound)))...,
std::forward<RunArgs>(args)...);
}
};
// `Invoker<>`
//
// See description at the top of the file.
template <typename Traits, typename StorageType, typename UnboundRunType>
struct Invoker;
template <typename Traits,
typename StorageType,
typename R,
typename... UnboundArgs>
struct Invoker<Traits, StorageType, R(UnboundArgs...)> {
private:
using Indices = std::make_index_sequence<
std::tuple_size_v<decltype(StorageType::bound_args_)>>;
public:
static R RunOnce(BindStateBase* base,
PassingType<UnboundArgs>... unbound_args) {
auto* const storage = static_cast<StorageType*>(base);
return RunImpl(std::move(storage->functor_),
std::move(storage->bound_args_), Indices(),
std::forward<UnboundArgs>(unbound_args)...);
}
static R Run(BindStateBase* base, PassingType<UnboundArgs>... unbound_args) {
auto* const storage = static_cast<const StorageType*>(base);
return RunImpl(storage->functor_, storage->bound_args_, Indices(),
std::forward<UnboundArgs>(unbound_args)...);
}
private:
// The "templated struct with a lambda that asserts" pattern below is used
// repeatedly in Bind/Callback code to verify compile-time preconditions. The
// goal is to print only the root cause failure when users violate a
// precondition, and not also a host of resulting compile errors.
//
// There are three key aspects:
// 1. By placing the assertion inside a lambda that initializes a variable,
// the assertion will not be verified until the compiler tries to read
// the value of that variable. This allows the containing types to be
// complete. As a result, code that needs to know if the assertion failed
// can read the variable's value and get the right answer. (If we instead
// placed the assertion at struct scope, the resulting type would be
// incomplete when the assertion failed; in practice, reading a
// `constexpr` member of an incomplete type seems to return the default
// value regardless of what the code tried to set the value to, which
// makes it impossible for other code to check whether the assertion
// failed.)
// 2. Code that will not successfully compile unless the assertion holds is
// guarded by a constexpr if that checks the variable.
// 3. By placing the variable inside an independent, templated struct and
// naming it `value`, we allow checking multiple conditions via
// `std::conjunction_v<>`. This short-circuits type instantiation, so
// that when one condition fails, the others are never examined and thus
// never assert. As a result, we can verify dependent conditions without
// worrying that "if one fails, we'll get errors from several others".
// (This would not be true if we simply checked all the values with `&&`,
// which would instantiate all the types before evaluating the
// expression.)
//
// For caller convenience and to avoid potential repetition, the actual
// condition to be checked is always used as the default value of a template
// argument, so callers can simply instantiate the struct with no template
// params to verify the condition.
// Weak calls are only supported for functions with a `void` return type.
// Otherwise, the desired function result would be unclear if the `WeakPtr<>`
// is invalidated. In theory, we could support default-constructible return
// types (and return the default value) or allow callers to specify a default
// return value via a template arg. It's not clear these are necessary.
template <bool is_weak_call, bool v = !is_weak_call || std::is_void_v<R>>
struct WeakCallReturnsVoid {
static constexpr bool value = [] {
static_assert(v,
"WeakPtrs can only bind to methods without return values.");
return v;
}();
};
template <typename Functor, typename BoundArgsTuple, size_t... indices>
static inline R RunImpl(Functor&& functor,
BoundArgsTuple&& bound,
std::index_sequence<indices...>,
UnboundArgs&&... unbound_args) {
#if PA_BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
RawPtrAsanBoundArgTracker raw_ptr_asan_bound_arg_tracker;
raw_ptr_asan_bound_arg_tracker.AddArgs(
std::get<indices>(std::forward<BoundArgsTuple>(bound))...,
std::forward<UnboundArgs>(unbound_args)...);
#endif // PA_BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
using DecayedArgsTuple = std::decay_t<BoundArgsTuple>;
static constexpr bool kIsWeakCall =
kIsWeakMethod<Traits::is_method,
std::tuple_element_t<indices, DecayedArgsTuple>...>;
if constexpr (WeakCallReturnsVoid<kIsWeakCall>::value) {
// Do not `Unwrap()` here, as that immediately triggers dangling pointer
// detection. Dangling pointer detection should only be triggered if the
// callback is not cancelled, but cancellation status is not determined
// until later inside the `InvokeHelper::MakeItSo()` specialization for
// weak calls.
//
// Dangling pointers when invoking a cancelled callback are not considered
// a memory safety error because protecting raw pointers usage with weak
// receivers (where the weak receiver usually own the pointed objects) is
// a common and broadly used pattern in the codebase.
return InvokeHelper<kIsWeakCall, Traits, R, indices...>::MakeItSo(
std::forward<Functor>(functor), std::forward<BoundArgsTuple>(bound),
std::forward<UnboundArgs>(unbound_args)...);
}
}
};
// Allow binding a method call with no receiver.
// TODO(crbug.com/41484339): Remove or make safe.
template <typename... Unused>
void VerifyMethodReceiver(Unused&&...) {}
template <typename Receiver, typename... Unused>
void VerifyMethodReceiver(Receiver&& receiver, Unused&&...) {
// Asserts that a callback is not the first owner of a ref-counted receiver.
if constexpr (IsPointerOrRawPtr<std::decay_t<Receiver>> &&
IsRefCountedType<RemovePointerT<std::decay_t<Receiver>>>) {
DCHECK(receiver);
// It's error prone to make the implicit first reference to ref-counted
// types. In the example below, `BindOnce()` would make the implicit first
// reference to the ref-counted `Foo`. If `PostTask()` failed or the posted
// task ran fast enough, the newly created instance could be destroyed
// before `oo` makes another reference.
// ```
// Foo::Foo() {
// ThreadPool::PostTask(FROM_HERE, BindOnce(&Foo::Bar, this));
// }
//
// scoped_refptr<Foo> oo = new Foo();
// ```
//
// Hence, `Bind()` refuses to create the first reference to ref-counted
// objects, and `DCHECK()`s otherwise. As above, that typically happens
// around `PostTask()` in their constructors, and such objects can be
// destroyed before `new` returns if the tasks resolve fast enough.
//
// Instead, consider adding a static factory, and keeping the first
// reference alive explicitly.
// ```
// // static
// scoped_refptr<Foo> Foo::Create() {
// auto foo = base::WrapRefCounted(new Foo());
// ThreadPool::PostTask(FROM_HERE, BindOnce(&Foo::Bar, foo));
// return foo;
// }
//
// scoped_refptr<Foo> oo = Foo::Create();
// ```
DCHECK(receiver->HasAtLeastOneRef());
}
}
// `BindState<>`
//
// This stores all the state passed into `Bind()`.
template <bool is_method,
bool is_nullable,
bool is_callback,
typename Functor,
typename... BoundArgs>
struct BindState final : BindStateBase {
private:
using BoundArgsTuple = std::tuple<BoundArgs...>;
public:
template <typename ForwardFunctor, typename... ForwardBoundArgs>
static BindState* Create(BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args) {
if constexpr (is_method) {
VerifyMethodReceiver(bound_args...);
}
return new BindState(invoke_func, std::forward<ForwardFunctor>(functor),
std::forward<ForwardBoundArgs>(bound_args)...);
}
Functor functor_;
BoundArgsTuple bound_args_;
private:
using CancellationTraits =
CallbackCancellationTraits<Functor, BoundArgsTuple>;
template <typename ForwardFunctor, typename... ForwardBoundArgs>
requires CancellationTraits::is_cancellable
explicit BindState(BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args)
: BindStateBase(invoke_func, &Destroy, &QueryCancellationTraits),
functor_(std::forward<ForwardFunctor>(functor)),
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
CheckFunctorIsNonNull();
}
template <typename ForwardFunctor, typename... ForwardBoundArgs>
requires(!CancellationTraits::is_cancellable)
explicit BindState(BindStateBase::InvokeFuncStorage invoke_func,
ForwardFunctor&& functor,
ForwardBoundArgs&&... bound_args)
: BindStateBase(invoke_func, &Destroy),
functor_(std::forward<ForwardFunctor>(functor)),
bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) {
CheckFunctorIsNonNull();
}
~BindState() = default;
static bool QueryCancellationTraits(
const BindStateBase* base,
BindStateBase::CancellationQueryMode mode) {
auto* const storage = static_cast<const BindState*>(base);
static constexpr std::make_index_sequence<sizeof...(BoundArgs)> kIndices;
return (mode == BindStateBase::CancellationQueryMode::kIsCancelled)
? storage->IsCancelled(kIndices)
: storage->MaybeValid(kIndices);
}
static void Destroy(const BindStateBase* self) {
delete static_cast<const BindState*>(self);
}
// Helpers to do arg tuple expansion.
template <size_t... indices>
bool IsCancelled(std::index_sequence<indices...>) const {
return CancellationTraits::IsCancelled(functor_,
std::get<indices>(bound_args_)...);
}
template <size_t... indices>
bool MaybeValid(std::index_sequence<indices...>) const {
return CancellationTraits::MaybeValid(functor_,
std::get<indices>(bound_args_)...);
}
void CheckFunctorIsNonNull() const {
if constexpr (is_nullable) {
// Check the validity of `functor_` to avoid hard-to-diagnose crashes.
// Ideally we'd do this unconditionally, but release builds limit this to
// the case of nested callbacks (e.g. `Bind(callback, ...)`) to limit
// binary size impact.
if constexpr (is_callback) {
CHECK(!!functor_);
} else {
DCHECK(!!functor_);
}
}
}
};
template <typename... BoundArgs>
struct ValidateBindStateTypeCommonChecks {
private:
// Refcounted parameters must be passed as `scoped_refptr` instead of raw
// pointers, to ensure they are not deleted before use.
// TODO(danakj): Ban native references and `std::reference_wrapper` too.
template <typename T,
bool v =
(IsRawRef<T> && IsRefCountedType<base::RemoveRawRefT<T>>) ||
(IsPointerOrRawPtr<T> &&
IsRefCountedType<base::RemovePointerT<T>>)>
struct RefCountedTypeNotPassedByRawPointer {
static constexpr bool value = [] {
static_assert(
!v, "A parameter is a refcounted type and needs scoped_refptr.");
return !v;
}();
};
public:
using CommonCheckResult = std::conjunction<
RefCountedTypeNotPassedByRawPointer<std::decay_t<BoundArgs>>...,
ValidateStorageTraits<BoundArgs>...>;
};
// Used to determine and validate the appropriate `BindState`. The
// specializations below cover all cases. The members are similar in intent to
// those in `StorageTraits`; see comments there.
template <bool is_method,
bool is_nullable,
bool is_callback,
typename Functor,
typename... BoundArgs>
struct ValidateBindStateType;
template <bool is_nullable,
bool is_callback,
typename Functor,
typename... BoundArgs>
struct ValidateBindStateType<false,
is_nullable,
is_callback,
Functor,
BoundArgs...> {
using Type = BindState<false,
is_nullable,
is_callback,
std::decay_t<Functor>,
typename ValidateStorageTraits<BoundArgs>::Type...>;
static constexpr bool value =
ValidateBindStateTypeCommonChecks<BoundArgs...>::CommonCheckResult::value;
};
template <bool is_nullable, bool is_callback, typename Functor>
struct ValidateBindStateType<true, is_nullable, is_callback, Functor> {
using Type = BindState<true, is_nullable, is_callback, std::decay_t<Functor>>;
static constexpr bool value = true;
};
template <bool is_nullable,
bool is_callback,
typename Functor,
typename Receiver,
typename... BoundArgs>
struct ValidateBindStateType<true,
is_nullable,
is_callback,
Functor,
Receiver,
BoundArgs...> {
private:
using DecayedReceiver = std::decay_t<Receiver>;
using ReceiverStorageType =
typename MethodReceiverStorage<DecayedReceiver>::Type;
template <bool v = !std::is_array_v<std::remove_reference_t<Receiver>>>
struct FirstBoundArgIsNotArray {
static constexpr bool value = [] {
static_assert(v, "First bound argument to a method cannot be an array.");
return v;
}();
};
template <bool v = !IsRawRef<DecayedReceiver>>
struct ReceiverIsNotRawRef {
static constexpr bool value = [] {
static_assert(v, "Receivers may not be raw_ref<T>. If using a raw_ref<T> "
"here is safe and has no lifetime concerns, use "
"base::Unretained() and document why it's safe.");
return v;
}();
};
template <bool v = !IsPointerOrRawPtr<DecayedReceiver> ||
IsRefCountedType<RemovePointerT<DecayedReceiver>>>
struct ReceiverIsNotRawPtr {
static constexpr bool value = [] {
static_assert(v,
"Receivers may not be raw pointers. If using a raw pointer "
"here is safe and has no lifetime concerns, use "
"base::Unretained() and document why it's safe.");
return v;
}();
};
public:
using Type = BindState<true,
is_nullable,
is_callback,
std::decay_t<Functor>,
ReceiverStorageType,
typename ValidateStorageTraits<BoundArgs>::Type...>;
static constexpr bool value =
std::conjunction_v<FirstBoundArgIsNotArray<>,
ReceiverIsNotRawRef<>,
ReceiverIsNotRawPtr<>,
typename ValidateBindStateTypeCommonChecks<
BoundArgs...>::CommonCheckResult>;
};
// Transforms `T` into an unwrapped type, which is passed to the target
// function; e.g.:
// * `is_once` cases:
// ** `TransformToUnwrappedType<true, int&&>` -> `int&&`
// ** `TransformToUnwrappedType<true, const int&>` -> `int&&`
// ** `TransformToUnwrappedType<true, OwnedWrapper<int>&>` -> `int*&&`
// * `!is_once` cases:
// ** `TransformToUnwrappedType<false, int&&>` -> `const int&`
// ** `TransformToUnwrappedType<false, const int&>` -> `const int&`
// ** `TransformToUnwrappedType<false, OwnedWrapper<int>&>` -> `int* const &`
template <bool is_once,
typename T,
typename StoredType = std::decay_t<T>,
typename ForwardedType =
std::conditional_t<is_once, StoredType&&, const StoredType&>>
using TransformToUnwrappedType =
decltype(Unwrap(std::declval<ForwardedType>()));
// Used to convert `this` arguments to underlying pointer types; e.g.:
// `int*` -> `int*`
// `std::unique_ptr<int>` -> `int*`
// `int` -> (assertion failure; `this` must be a pointer-like object)
template <typename T>
struct ValidateReceiverType {
private:
// Pointer-like receivers use a different specialization, so this never
// succeeds.
template <bool v = AlwaysFalse<T>>
struct ReceiverMustBePointerLike {
static constexpr bool value = [] {
static_assert(v,
"Cannot convert `this` argument to address. Method calls "
"must be bound using a pointer-like `this` argument.");
return v;
}();
};
public:
// These members are similar in intent to those in `StorageTraits`; see
// comments there.
using Type = T;
static constexpr bool value = ReceiverMustBePointerLike<>::value;
};
template <typename T>
requires requires(T&& t) { base::to_address(t); }
struct ValidateReceiverType<T> {
using Type = decltype(base::to_address(std::declval<T>()));
static constexpr bool value = true;
};
// Transforms `Args` into unwrapped types, and packs them into a `TypeList`. If
// `is_method` is true, tries to dereference the first argument to support smart
// pointers.
template <bool is_once, bool is_method, typename... Args>
struct ValidateUnwrappedTypeList {
// These members are similar in intent to those in `StorageTraits`; see
// comments there.
using Type = TypeList<TransformToUnwrappedType<is_once, Args>...>;
static constexpr bool value = true;
};
template <bool is_once, typename Receiver, typename... Args>
struct ValidateUnwrappedTypeList<is_once, true, Receiver, Args...> {
private:
using ReceiverStorageType =
typename MethodReceiverStorage<std::decay_t<Receiver>>::Type;
using UnwrappedReceiver =
TransformToUnwrappedType<is_once, ReceiverStorageType>;
using ValidatedReceiver = ValidateReceiverType<UnwrappedReceiver>;
public:
using Type = TypeList<typename ValidatedReceiver::Type,
TransformToUnwrappedType<is_once, Args>...>;
static constexpr bool value = ValidatedReceiver::value;
};
// `IsUnretainedMayDangle` is true iff `StorageType` is marked with
// `unretained_traits::MayDangle`. Note that it is false for
// `unretained_traits::MayDangleUntriaged`.
template <typename StorageType>
inline constexpr bool IsUnretainedMayDangle = false;
template <typename T, RawPtrTraits PtrTraits>
inline constexpr bool IsUnretainedMayDangle<
UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraits>> = true;
// `UnretainedAndRawPtrHaveCompatibleTraits` is true iff `StorageType` is marked
// with `unretained_traits::MayDangle`, `FunctionParamType` is a `raw_ptr`, and
// `StorageType::GetPtrType` is the same type as `FunctionParamType`.
template <typename StorageType, typename FunctionParamType>
inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits = false;
template <typename T,
RawPtrTraits PtrTraitsInUnretained,
RawPtrTraits PtrTraitsInReceiver>
inline constexpr bool UnretainedAndRawPtrHaveCompatibleTraits<
UnretainedWrapper<T, unretained_traits::MayDangle, PtrTraitsInUnretained>,
raw_ptr<T, PtrTraitsInReceiver>> =
std::same_as<typename UnretainedWrapper<T,
unretained_traits::MayDangle,
PtrTraitsInUnretained>::GetPtrType,
raw_ptr<T, PtrTraitsInReceiver>>;
// Helpers to make error messages slightly more readable.
template <int i>
struct BindArgument {
template <typename ForwardingType>
struct ForwardedAs {
template <typename FunctorParamType>
struct ToParamWithType {
static constexpr bool kRawPtr = IsRawPtr<FunctorParamType>;
static constexpr bool kRawPtrMayBeDangling =
IsRawPtrMayDangle<FunctorParamType>;
static constexpr bool kCanBeForwardedToBoundFunctor =
std::is_convertible_v<ForwardingType, FunctorParamType>;
// If the bound type can't be forwarded, then test if `FunctorParamType`
// is a non-const lvalue reference and a reference to the unwrapped type
// could have been successfully forwarded.
static constexpr bool kIsUnwrappedForwardableNonConstReference =
std::is_lvalue_reference_v<FunctorParamType> &&
!std::is_const_v<std::remove_reference_t<FunctorParamType>> &&
std::is_convertible_v<std::decay_t<ForwardingType>&,
FunctorParamType>;
// Also intentionally drop the `const` qualifier from `ForwardingType`, to
// test if it could have been successfully forwarded if `Passed()` had
// been used.
static constexpr bool kWouldBeForwardableWithPassed =
std::is_convertible_v<std::decay_t<ForwardingType>&&,
FunctorParamType>;
};
};
template <typename BoundAsType>
struct BoundAs {
template <typename StorageType>
struct StoredAs {
static constexpr bool kBindArgumentCanBeCaptured =
std::constructible_from<StorageType, BoundAsType>;
// If the argument can't be captured, intentionally drop the `const`
// qualifier from `BoundAsType`, to test if it could have been
// successfully captured if `std::move()` had been used.
static constexpr bool kWouldBeCapturableWithStdMove =
std::constructible_from<StorageType, std::decay_t<BoundAsType>&&>;
};
};
template <typename FunctionParamType>
struct ToParamWithType {
template <typename StorageType>
struct StoredAs {
static constexpr bool kBoundPtrMayDangle =
IsUnretainedMayDangle<StorageType>;
static constexpr bool kMayDangleAndMayBeDanglingHaveMatchingTraits =
UnretainedAndRawPtrHaveCompatibleTraits<StorageType,
FunctionParamType>;
};
};
};
// Helper to assert that parameter `i` of type `Arg` can be bound, which means:
// * `Arg` can be retained internally as `Storage`
// * `Arg` can be forwarded as `Unwrapped` to `Param`
template <int i,
bool is_method,
typename Arg,
typename Storage,
typename Unwrapped,
typename Param>
struct ParamCanBeBound {
private:
using UnwrappedParam = BindArgument<i>::template ForwardedAs<
Unwrapped>::template ToParamWithType<Param>;
using ParamStorage = BindArgument<i>::template ToParamWithType<
Param>::template StoredAs<Storage>;
using BoundStorage =
BindArgument<i>::template BoundAs<Arg>::template StoredAs<Storage>;
template <bool v = !UnwrappedParam::kRawPtr ||
UnwrappedParam::kRawPtrMayBeDangling>
struct NotRawPtr {
static constexpr bool value = [] {
static_assert(
v, "Use T* or T& instead of raw_ptr<T> for function parameters, "
"unless you must mark the parameter as MayBeDangling<T>.");
return v;
}();
};
template <bool v = !ParamStorage::kBoundPtrMayDangle ||
UnwrappedParam::kRawPtrMayBeDangling ||
// Exempt `this` pointer as it is not passed as a regular
// function argument.
(is_method && i == 0)>
struct MayBeDanglingPtrPassedCorrectly {
static constexpr bool value = [] {
static_assert(v, "base::UnsafeDangling() pointers should only be passed "
"to parameters marked MayBeDangling<T>.");
return v;
}();
};
template <bool v =
!UnwrappedParam::kRawPtrMayBeDangling ||
(ParamStorage::kBoundPtrMayDangle &&
ParamStorage::kMayDangleAndMayBeDanglingHaveMatchingTraits)>
struct MayDangleAndMayBeDanglingHaveMatchingTraits {
static constexpr bool value = [] {
static_assert(
v, "Pointers passed to MayBeDangling<T> parameters must be created "
"by base::UnsafeDangling() with the same RawPtrTraits.");
return v;
}();
};
// With `BindRepeating()`, there are two decision points for how to handle a
// move-only type:
//
// 1. Whether the move-only argument should be moved into the internal
// `BindState`. Either `std::move()` or `Passed()` is sufficient to trigger
// move-only semantics.
// 2. Whether or not the bound, move-only argument should be moved to the
// bound functor when invoked. When the argument is bound with `Passed()`,
// invoking the callback will destructively move the bound, move-only
// argument to the bound functor. In contrast, if the argument is bound
// with `std::move()`, `RepeatingCallback` will attempt to call the bound
// functor with a constant reference to the bound, move-only argument. This
// will fail if the bound functor accepts that argument by value, since the
// argument cannot be copied. It is this latter case that this
// assertion aims to catch.
//
// In contrast, `BindOnce()` only has one decision point. Once a move-only
// type is captured by value into the internal `BindState`, the bound,
// move-only argument will always be moved to the functor when invoked.
// Failure to use `std::move()` will simply fail the
// `MoveOnlyTypeMustUseStdMove` assertion below instead.
//
// Note: `Passed()` is a legacy of supporting move-only types when repeating
// callbacks were the only callback type. A `RepeatingCallback` with a
// `Passed()` argument is really a `OnceCallback` and should eventually be
// migrated.
template <bool v = UnwrappedParam::kCanBeForwardedToBoundFunctor ||
!UnwrappedParam::kWouldBeForwardableWithPassed>
struct MoveOnlyTypeMustUseBasePassed {
static constexpr bool value = [] {
static_assert(v,
"base::BindRepeating() argument is a move-only type. Use "
"base::Passed() instead of std::move() to transfer "
"ownership from the callback to the bound functor.");
return v;
}();
};
template <bool v = UnwrappedParam::kCanBeForwardedToBoundFunctor ||
!UnwrappedParam::kIsUnwrappedForwardableNonConstReference>
struct NonConstRefParamMustBeWrapped {
static constexpr bool value = [] {
static_assert(v,
"Bound argument for non-const reference parameter must be "
"wrapped in std::ref() or base::OwnedRef().");
return v;
}();
};
// Generic failed-to-forward message for cases that didn't match one of the
// two assertions above.
template <bool v = UnwrappedParam::kCanBeForwardedToBoundFunctor>
struct CanBeForwardedToBoundFunctor {
static constexpr bool value = [] {
static_assert(v,
"Type mismatch between bound argument and bound functor's "
"parameter.");
return v;
}();
};
// The most common reason for failing to capture a parameter is attempting to
// pass a move-only type as an lvalue.
template <bool v = BoundStorage::kBindArgumentCanBeCaptured ||
!BoundStorage::kWouldBeCapturableWithStdMove>
struct MoveOnlyTypeMustUseStdMove {
static constexpr bool value = [] {
static_assert(v,
"Attempting to bind a move-only type. Use std::move() to "
"transfer ownership to the created callback.");
return v;
}();
};
// Any other reason the parameter could not be captured.
template <bool v = BoundStorage::kBindArgumentCanBeCaptured>
struct BindArgumentCanBeCaptured {
static constexpr bool value = [] {
// In practice, failing this precondition should be rare, as the storage
// type is deduced from the arguments passed to `Bind()`.
static_assert(
v, "Cannot capture argument: is the argument copyable or movable?");
return v;
}();
};
public:
static constexpr bool value =
std::conjunction_v<NotRawPtr<>,
MayBeDanglingPtrPassedCorrectly<>,
MayDangleAndMayBeDanglingHaveMatchingTraits<>,
MoveOnlyTypeMustUseBasePassed<>,
NonConstRefParamMustBeWrapped<>,
CanBeForwardedToBoundFunctor<>,
MoveOnlyTypeMustUseStdMove<>,
BindArgumentCanBeCaptured<>>;
};
// Takes three same-length `TypeList`s, and checks `ParamCanBeBound` for each
// triple.
template <bool is_method,
typename Index,
typename Args,
typename UnwrappedTypeList,
typename ParamsList>
struct ParamsCanBeBound {
static constexpr bool value = false;
};
template <bool is_method,
size_t... Ns,
typename... Args,
typename... UnwrappedTypes,
typename... Params>
struct ParamsCanBeBound<is_method,
std::index_sequence<Ns...>,
TypeList<Args...>,
TypeList<UnwrappedTypes...>,
TypeList<Params...>> {
static constexpr bool value =
std::conjunction_v<ParamCanBeBound<Ns,
is_method,
Args,
std::decay_t<Args>,
UnwrappedTypes,
Params>...>;
};
// Core implementation of `Bind()`, which checks common preconditions before
// returning an appropriate callback.
template <template <typename> class CallbackT>
struct BindHelper {
private:
static constexpr bool kIsOnce =
is_instantiation<CallbackT<void()>, OnceCallback>;
template <typename Traits, bool v = IsComplete<Traits>>
struct TraitsAreInstantiable {
static constexpr bool value = [] {
static_assert(
v, "Could not determine how to invoke functor. If this functor has "
"an overloaded operator()(), bind all arguments to it, and ensure "
"the result will select a unique overload.");
return v;
}();
};
template <typename Functor,
bool v = !is_instantiation<std::decay_t<Functor>, OnceCallback> ||
(kIsOnce && std::is_rvalue_reference_v<Functor&&> &&
!std::is_const_v<std::remove_reference_t<Functor>>)>
struct OnceCallbackFunctorIsValid {
static constexpr bool value = [] {
if constexpr (kIsOnce) {
static_assert(v,
"BindOnce() requires non-const rvalue for OnceCallback "
"binding, i.e. base::BindOnce(std::move(callback)).");
} else {
static_assert(v, "BindRepeating() cannot bind OnceCallback. Use "
"BindOnce() with std::move().");
}
return v;
}();
};
template <typename... Args>
struct NoBindArgToOnceCallbackIsBasePassed {
static constexpr bool value = [] {
// Can't use a defaulted template param since it can't come after `Args`.
constexpr bool v =
!kIsOnce ||
(... && !is_instantiation<std::decay_t<Args>, PassedWrapper>);
static_assert(
v,
"Use std::move() instead of base::Passed() with base::BindOnce().");
return v;
}();
};
template <
typename Functor,
bool v =
!is_instantiation<std::remove_cvref_t<Functor>, FunctionRef> &&
!is_instantiation<std::remove_cvref_t<Functor>, absl::FunctionRef>>
struct NotFunctionRef {
static constexpr bool value = [] {
static_assert(
v,
"Functor may not be a FunctionRef, since that is a non-owning "
"reference that may go out of scope before the callback executes.");
return v;
}();
};
template <typename Traits, bool v = Traits::is_stateless>
struct IsStateless {
static constexpr bool value = [] {
static_assert(
v, "Capturing lambdas and stateful functors are intentionally not "
"supported. Use a non-capturing lambda or stateless functor (i.e. "
"has no non-static data members) and bind arguments directly.");
return v;
}();
};
template <typename Functor, typename... Args>
static auto BindImpl(Functor&& functor, Args&&... args) {
// There are a lot of variables and type aliases here. An example will be
// illustrative. Assume we call:
// ```
// struct S {
// double f(int, const std::string&);
// } s;
// int16_t i;
// BindOnce(&S::f, Unretained(&s), i);
// ```
// This means our template params are:
// ```
// template <typename> class CallbackT = OnceCallback
// typename Functor = double (S::*)(int, const std::string&)
// typename... Args =
// UnretainedWrapper<S, unretained_traits::MayNotDangle>, int16_t
// ```
// And the implementation below is effectively:
// ```
// using Traits = struct {
// using RunType = double(S*, int, const std::string&);
// static constexpr bool is_method = true;
// static constexpr bool is_nullable = true;
// static constexpr bool is_callback = false;
// static constexpr bool is_stateless = true;
// ...
// };
// using ValidatedUnwrappedTypes = struct {
// using Type = TypeList<S*, int16_t>;
// static constexpr bool value = true;
// };
// using BoundArgsList = TypeList<S*, int16_t>;
// using RunParamsList = TypeList<S*, int, const std::string&>;
// using BoundParamsList = TypeList<S*, int>;
// using ValidatedBindState = struct {
// using Type =
// BindState<double (S::*)(int, const std::string&),
// UnretainedWrapper<S, unretained_traits::MayNotDangle>,
// int16_t>;
// static constexpr bool value = true;
// };
// if constexpr (true) {
// using UnboundRunType = double(const std::string&);
// using CallbackType = OnceCallback<double(const std::string&)>;
// ...
// ```
using Traits = FunctorTraits<TransformToUnwrappedType<kIsOnce, Functor&&>,
TransformToUnwrappedType<kIsOnce, Args&&>...>;
if constexpr (TraitsAreInstantiable<Traits>::value) {
using ValidatedUnwrappedTypes =
ValidateUnwrappedTypeList<kIsOnce, Traits::is_method, Args&&...>;
using BoundArgsList = TypeList<Args...>;
using RunParamsList = ExtractArgs<typename Traits::RunType>;
using BoundParamsList = TakeTypeListItem<sizeof...(Args), RunParamsList>;
using ValidatedBindState =
ValidateBindStateType<Traits::is_method, Traits::is_nullable,
Traits::is_callback, Functor, Args...>;
// This conditional checks if each of the `args` matches to the
// corresponding param of the target function. This check does not affect
// the behavior of `Bind()`, but its error message should be more
// readable.
if constexpr (std::conjunction_v<
NotFunctionRef<Functor>, IsStateless<Traits>,
ValidatedUnwrappedTypes,
ParamsCanBeBound<
Traits::is_method,
std::make_index_sequence<sizeof...(Args)>,
BoundArgsList,
typename ValidatedUnwrappedTypes::Type,
BoundParamsList>,
ValidatedBindState>) {
using UnboundRunType =
MakeFunctionType<ExtractReturnType<typename Traits::RunType>,
DropTypeListItem<sizeof...(Args), RunParamsList>>;
using CallbackType = CallbackT<UnboundRunType>;
// Store the invoke func into `PolymorphicInvoke` before casting it to
// `InvokeFuncStorage`, so that we can ensure its type matches to
// `PolymorphicInvoke`, to which `CallbackType` will cast back.
typename CallbackType::PolymorphicInvoke invoke_func;
using Invoker =
Invoker<Traits, typename ValidatedBindState::Type, UnboundRunType>;
if constexpr (kIsOnce) {
invoke_func = Invoker::RunOnce;
} else {
invoke_func = Invoker::Run;
}
return CallbackType(ValidatedBindState::Type::Create(
reinterpret_cast<BindStateBase::InvokeFuncStorage>(invoke_func),
std::forward<Functor>(functor), std::forward<Args>(args)...));
}
}
}
// Special cases for binding to a `Callback` without extra bound arguments.
// `OnceCallback` passed to `OnceCallback`, or `RepeatingCallback` passed to
// `RepeatingCallback`.
template <typename T>
requires is_instantiation<T, CallbackT>
static T BindImpl(T callback) {
// Guard against null pointers accidentally ending up in posted tasks,
// causing hard-to-debug crashes.
CHECK(callback);
return callback;
}
// `RepeatingCallback` passed to `OnceCallback`. The opposite direction is
// intentionally not supported.
template <typename Signature>
requires is_instantiation<OnceCallback<Signature>, CallbackT>
static OnceCallback<Signature> BindImpl(
RepeatingCallback<Signature> callback) {
return BindImpl(OnceCallback<Signature>(callback));
}
// Must be defined after `BindImpl()` since it refers to it.
template <typename Functor, typename... Args>
struct BindImplWouldSucceed {
// Can't use a defaulted template param since it can't come after `Args`.
//
// Determining if `BindImpl()` would succeed is not as simple as verifying
// any conditions it checks directly; those only control when it's safe to
// call other methods, which in turn may fail. However, ultimately, any
// failure will result in returning `void`, so check for a non-`void` return
// type.
static constexpr bool value =
!std::same_as<void,
decltype(BindImpl(std::declval<Functor&&>(),
std::declval<Args&&>()...))>;
};
public:
template <typename Functor, typename... Args>
static auto Bind(Functor&& functor, Args&&... args) {
if constexpr (std::conjunction_v<
OnceCallbackFunctorIsValid<Functor>,
NoBindArgToOnceCallbackIsBasePassed<Args...>,
BindImplWouldSucceed<Functor, Args...>>) {
return BindImpl(std::forward<Functor>(functor),
std::forward<Args>(args)...);
} else {
return BindFailedCheckPreviousErrors();
}
}
};
} // namespace internal
// An injection point to control `this` pointer behavior on a method invocation.
// If `IsWeakReceiver<T>::value` is `true` and `T` is used as a method receiver,
// `Bind()` cancels the method invocation if the receiver tests as false.
// ```
// struct S {
// void f() {}
// };
//
// WeakPtr<S> weak_s = nullptr;
// BindOnce(&S::f, weak_s).Run(); // `S::f()` is not called.
// ```
template <typename T>
struct IsWeakReceiver : std::bool_constant<is_instantiation<T, WeakPtr>> {};
template <typename T>
struct IsWeakReceiver<std::reference_wrapper<T>> : IsWeakReceiver<T> {};
// An injection point to control how objects are checked for maybe validity,
// which is an optimistic thread-safe check for full validity.
template <typename>
struct MaybeValidTraits {
template <typename T>
static bool MaybeValid(const T& o) {
return o.MaybeValid();
}
};
// An injection point to control how bound objects passed to the target
// function. `BindUnwrapTraits<>::Unwrap()` is called for each bound object
// right before the target function is invoked.
template <typename>
struct BindUnwrapTraits {
template <typename T>
static T&& Unwrap(T&& o) {
return std::forward<T>(o);
}
};
template <typename T>
requires internal::kIsUnretainedWrapper<internal::UnretainedWrapper, T> ||
internal::kIsUnretainedWrapper<internal::UnretainedRefWrapper, T> ||
is_instantiation<T, internal::RetainedRefWrapper> ||
is_instantiation<T, internal::OwnedWrapper> ||
is_instantiation<T, internal::OwnedRefWrapper>
struct BindUnwrapTraits<T> {
static decltype(auto) Unwrap(const T& o) { return o.get(); }
};
template <typename T>
struct BindUnwrapTraits<internal::PassedWrapper<T>> {
static T Unwrap(const internal::PassedWrapper<T>& o) { return o.Take(); }
};
#if BUILDFLAG(IS_WIN)
template <typename T>
struct BindUnwrapTraits<Microsoft::WRL::ComPtr<T>> {
static T* Unwrap(const Microsoft::WRL::ComPtr<T>& ptr) { return ptr.Get(); }
};
#endif
// `CallbackCancellationTraits` allows customization of `Callback`'s
// cancellation semantics. By default, callbacks are not cancellable. A
// specialization should set `is_cancellable` and implement an `IsCancelled()`
// that returns whether the callback should be cancelled, as well as a
// `MaybeValid()` that returns whether the underlying functor/object is maybe
// valid.
template <typename Functor, typename BoundArgsTuple>
struct CallbackCancellationTraits {
static constexpr bool is_cancellable = false;
};
// Specialization for a weak receiver.
template <typename Functor, typename... BoundArgs>
requires internal::kIsWeakMethod<
internal::FunctorTraits<Functor, BoundArgs...>::is_method,
BoundArgs...>
struct CallbackCancellationTraits<Functor, std::tuple<BoundArgs...>> {
static constexpr bool is_cancellable = true;
template <typename Receiver, typename... Args>
static bool IsCancelled(const Functor&,
const Receiver& receiver,
const Args&...) {
return !receiver;
}
template <typename Receiver, typename... Args>
static bool MaybeValid(const Functor&,
const Receiver& receiver,
const Args&...) {
return MaybeValidTraits<Receiver>::MaybeValid(receiver);
}
};
// Specialization for a nested `Bind()`.
template <typename Functor, typename... BoundArgs>
requires is_instantiation<Functor, OnceCallback> ||
is_instantiation<Functor, RepeatingCallback>
struct CallbackCancellationTraits<Functor, std::tuple<BoundArgs...>> {
static constexpr bool is_cancellable = true;
static bool IsCancelled(const Functor& functor, const BoundArgs&...) {
return functor.IsCancelled();
}
static bool MaybeValid(const Functor& functor, const BoundArgs&...) {
return MaybeValidTraits<Functor>::MaybeValid(functor);
}
};
} // namespace base
#endif // BASE_FUNCTIONAL_BIND_INTERNAL_H_
|