1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This is a "No Compile Test" suite.
// http://dev.chromium.org/developers/testing/no-compile-tests
#define FORCE_UNRETAINED_COMPLETENESS_CHECKS_FOR_TESTS 1
#include <stdint.h>
#include <utility>
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/disallow_unretained.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ref.h"
#include "base/memory/ref_counted.h"
namespace base {
void NonConstFunctionWithConstObject() {
struct S : RefCounted<S> {
void Method() {}
} s;
const S* const const_s_ptr = &s;
// Non-`const` methods may not be bound with a `const` receiver.
BindRepeating(&S::Method, const_s_ptr); // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
// `const` pointer cannot be bound to non-`const` parameter.
BindRepeating([] (S*) {}, const_s_ptr); // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
}
void WrongReceiverTypeForNonRefcounted() {
// 1. Non-refcounted objects must use `Unretained()` for the `this` argument.
// 2. Reference-like objects may not be used as the receiver.
struct A {
void Method() {}
void ConstMethod() const {}
} a;
// Using distinct types causes distinct template instantiations, so we get
// assertion failures below where we expect. These types facilitate that.
struct B : A {} b;
struct C : A {} c;
struct D : A {} d;
struct E : A {};
A* ptr_a = &a;
A& ref_a = a;
raw_ptr<A> rawptr_a(&a);
raw_ref<A> rawref_a(a);
const B const_b;
B* ptr_b = &b;
const B* const_ptr_b = &const_b;
B& ref_b = b;
const B& const_ref_b = const_b;
raw_ptr<B> rawptr_b(&b);
raw_ptr<const B> const_rawptr_b(&const_b);
raw_ref<B> rawref_b(b);
raw_ref<const B> const_rawref_b(const_b);
C& ref_c = c;
D& ref_d = d;
const E const_e;
const E& const_ref_e = const_e;
BindRepeating(&A::Method, &a); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&A::Method, ptr_a); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&A::Method, a); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&C::Method, ref_c); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&A::Method, std::ref(a)); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&A::Method, std::cref(a)); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&A::Method, rawptr_a); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&A::Method, rawref_a); // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
BindRepeating(&B::ConstMethod, &b); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&B::ConstMethod, &const_b); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&B::ConstMethod, ptr_b); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&B::ConstMethod, const_ptr_b); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&B::ConstMethod, b); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&D::ConstMethod, ref_d); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&E::ConstMethod, const_ref_e); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&B::ConstMethod, std::ref(b)); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&B::ConstMethod, std::cref(b)); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&B::ConstMethod, rawptr_b); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&B::ConstMethod, const_rawptr_b); // expected-error@*:* {{Receivers may not be raw pointers.}}
BindRepeating(&B::ConstMethod, rawref_b); // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
BindRepeating(&B::ConstMethod, const_rawref_b); // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
}
void WrongReceiverTypeForRefcounted() {
// Refcounted objects must pass a pointer-like `this` argument.
struct A : RefCounted<A> {
void Method() const {}
} a;
// Using distinct types causes distinct template instantiations, so we get
// assertion failures below where we expect. These types facilitate that.
struct B : A {} b;
struct C : A {};
const A const_a;
B& ref_b = b;
const C const_c;
const C& const_ref_c = const_c;
raw_ref<A> rawref_a(a);
raw_ref<const A> const_rawref_a(const_a);
BindRepeating(&A::Method, a); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&B::Method, ref_b); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&C::Method, const_ref_c); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&A::Method, std::ref(a)); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&A::Method, std::cref(a)); // expected-error@*:* {{Cannot convert `this` argument to address.}}
BindRepeating(&A::Method, rawref_a); // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
BindRepeating(&A::Method, const_rawref_a); // expected-error@*:* {{Receivers may not be raw_ref<T>.}}
}
void RemovesConst() {
// Callbacks that expect non-const refs/ptrs should not be callable with const
// ones.
const int i = 0;
const int* p = &i;
BindRepeating([] (int&) {}).Run(i); // expected-error {{no matching member function for call to 'Run'}}
BindRepeating([] (int*) {}, p); // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
BindRepeating([] (int*) {}).Run(p); // expected-error {{no matching member function for call to 'Run'}}
}
void PassingIncorrectRef() {
// Functions that take non-const reference arguments require the parameters to
// be bound as matching `std::ref()`s or `OwnedRef()`s.
int i = 1;
float f = 1.0f;
// No wrapper.
BindOnce([] (int&) {}, i); // expected-error@*:* {{Bound argument for non-const reference parameter must be wrapped in std::ref() or base::OwnedRef().}}
BindRepeating([] (int&) {}, i); // expected-error@*:* {{Bound argument for non-const reference parameter must be wrapped in std::ref() or base::OwnedRef().}}
// Wrapper, but with mismatched type.
BindOnce([] (int&) {}, f); // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
BindOnce([] (int&) {}, std::ref(f)); // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
BindOnce([] (int&) {}, OwnedRef(f)); // expected-error@*:* {{Type mismatch between bound argument and bound functor's parameter.}}
}
void ArrayAsReceiver() {
// A method should not be bindable with an array of objects. Users could
// unintentionally attempt to do this via array->pointer decay.
struct S : RefCounted<S> {
void Method() const {}
};
S s[2];
BindRepeating(&S::Method, s); // expected-error@*:* {{First bound argument to a method cannot be an array.}}
}
void RefCountedArgs() {
// Refcounted types should not be bound as a raw pointers.
struct S : RefCounted<S> {};
S s;
const S const_s;
S* ptr_s = &s;
const S* const_ptr_s = &const_s;
raw_ptr<S> rawptr(&s);
raw_ptr<const S> const_rawptr(&const_s);
raw_ref<S> rawref(s);
raw_ref<const S> const_rawref(const_s);
BindRepeating([] (S*) {}, &s); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (const S*) {}, &const_s); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (S*) {}, ptr_s); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (const S*) {}, const_ptr_s); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (S*) {}, rawptr); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (const S*) {}, const_rawptr); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (raw_ref<S>) {}, rawref); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
BindRepeating([] (raw_ref<const S>) {}, const_rawref); // expected-error@*:* {{A parameter is a refcounted type and needs scoped_refptr.}}
}
void WeakPtrWithReturnType() {
// WeakPtrs cannot be bound to methods with return types, since if the WeakPtr
// is null when the callback runs, it's not clear what the framework should
// return.
struct S {
int ReturnsInt() const { return 1; }
} s;
WeakPtrFactory<S> weak_factory(&s);
BindRepeating(&S::ReturnsInt, weak_factory.GetWeakPtr()); // expected-error@*:* {{WeakPtrs can only bind to methods without return values.}}
}
void CallbackConversion() {
// Callbacks should not be constructible from other callbacks in ways that
// would drop ref or pointer constness or change arity.
RepeatingCallback<int(int&)> wrong_ref_constness = BindRepeating([] (const int&) {}); // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<int (int &)>'}}
RepeatingCallback<int(int*)> wrong_ptr_constness = BindRepeating([] (const int*) {}); // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<int (int *)>'}}
RepeatingClosure arg_count_too_low = BindRepeating([] (int) {}); // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<void ()>'}}
RepeatingCallback<int(int)> arg_count_too_high = BindRepeating([] { return 0; }); // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<int (int)>'}}
RepeatingClosure discarding_return = BindRepeating([] { return 0; }); // expected-error {{no viable conversion from 'RepeatingCallback<UnboundRunType>' to 'RepeatingCallback<void ()>'}}
}
void CapturingLambdaOrFunctor() {
// Bind disallows capturing lambdas and stateful functors.
int i = 0, j = 0;
struct S {
void operator()() const {}
int x;
};
BindOnce([&] { j = i; }); // expected-error@*:* {{Capturing lambdas and stateful functors are intentionally not supported.}}
BindRepeating([&] { j = i; }); // expected-error@*:* {{Capturing lambdas and stateful functors are intentionally not supported.}}
BindRepeating(S()); // expected-error@*:* {{Capturing lambdas and stateful functors are intentionally not supported.}}
}
void OnceCallbackRequiresNonConstRvalue() {
// `OnceCallback::Run()` can only be invoked on a non-const rvalue.
// Using distinct types causes distinct template instantiations, so we get
// assertion failures below where we expect. These types facilitate that.
enum class A {};
enum class B {};
enum class C {};
OnceCallback<void(A)> cb_a = BindOnce([] (A) {});
const OnceCallback<void(B)> const_cb_b = BindOnce([] (B) {});
const OnceCallback<void(C)> const_cb_c = BindOnce([] (C) {});
cb_a.Run(A{}); // expected-error@*:* {{OnceCallback::Run() may only be invoked on a non-const rvalue, i.e. std::move(callback).Run().}}
const_cb_b.Run(B{}); // expected-error@*:* {{OnceCallback::Run() may only be invoked on a non-const rvalue, i.e. std::move(callback).Run().}}
std::move(const_cb_c).Run(C{}); // expected-error@*:* {{OnceCallback::Run() may only be invoked on a non-const rvalue, i.e. std::move(callback).Run().}}
}
void OnceCallbackAsArgMustBeNonConstRvalue() {
// A `OnceCallback` passed to another callback must be a non-const rvalue.
auto cb = BindOnce([] (int) {});
const auto const_cb = BindOnce([] (int) {});
BindOnce(cb, 0); // expected-error@*:* {{BindOnce() requires non-const rvalue for OnceCallback binding, i.e. base::BindOnce(std::move(callback)).}}
BindOnce(std::move(const_cb), 0); // expected-error@*:* {{BindOnce() requires non-const rvalue for OnceCallback binding, i.e. base::BindOnce(std::move(callback)).}}
}
void OnceCallbackBoundByRepeatingCallback() {
// `BindRepeating()` does not accept `OnceCallback`s.
BindRepeating(BindOnce([] (int) {}), 0); // expected-error@*:* {{BindRepeating() cannot bind OnceCallback. Use BindOnce() with std::move().}}
}
void MoveOnlyArg() {
// Move-only types require `std::move()` for `BindOnce()` and `base::Passed()` for `BindRepeating()`.
struct S {
S() = default;
S(S&&) = default;
S& operator=(S&&) = default;
} s1, s2;
BindOnce([] (S) {}, s1); // expected-error@*:* {{Attempting to bind a move-only type. Use std::move() to transfer ownership to the created callback.}}
BindOnce([] (S) {}, Passed(&s1)); // expected-error@*:* {{Use std::move() instead of base::Passed() with base::BindOnce().}}
BindRepeating([] (S) {}, s2); // expected-error@*:* {{base::BindRepeating() argument is a move-only type. Use base::Passed() instead of std::move() to transfer ownership from the callback to the bound functor.}}
BindRepeating([] (S) {}, std::move(s2)); // expected-error@*:* {{base::BindRepeating() argument is a move-only type. Use base::Passed() instead of std::move() to transfer ownership from the callback to the bound functor.}}
}
void NonCopyableNonMovable() {
// Arguments must be either copyable or movable to be captured.
struct S {
S() = default;
S(const S&) = delete;
S& operator=(const S&) = delete;
} s;
BindOnce([](const S&) {}, s); // expected-error@*:* {{Cannot capture argument: is the argument copyable or movable?}}
}
void OverloadedFunction() {
// Overloaded function types cannot be disambiguated. (It might be nice to fix
// this.)
void F(int);
void F(float);
BindOnce(&F, 1); // expected-error {{reference to overloaded function could not be resolved; did you mean to call it?}}
BindRepeating(&F, 1.0f); // expected-error {{reference to overloaded function could not be resolved; did you mean to call it?}}
}
void OverloadedOperator() {
// It's not possible to bind to a functor with an overloaded `operator()()`
// unless the caller supplies arguments that can invoke a unique overload.
struct A {
int64_t operator()(int, int64_t x) { return x; }
uint64_t operator()(int, uint64_t x) { return x; }
A operator()(double, A a) { return a; }
} a;
// Using distinct types causes distinct template instantiations, so we get
// assertion failures below where we expect. These types facilitate that.
struct B : A {} b;
struct C : A {} c;
struct D : A {} d;
// Partial function application isn't supported, even if it's sufficient to
// "narrow the field" to a single candidate that _could_ eventually match.
BindOnce(a); // expected-error@*:* {{Could not determine how to invoke functor.}}
BindOnce(b, 1.0); // expected-error@*:* {{Could not determine how to invoke functor.}}
// The supplied args don't match any candidates.
BindOnce(c, 1, nullptr); // expected-error@*:* {{Could not determine how to invoke functor.}}
// The supplied args inexactly match multiple candidates.
BindOnce(d, 1, 1); // expected-error@*:* {{Could not determine how to invoke functor.}}
}
void RefQualifiedOverloadedOperator() {
// Invocations with lvalues should attempt to use lvalue-ref-qualified
// methods.
struct A {
void operator()() const& = delete;
void operator()() && {}
} a;
// Using distinct types causes distinct template instantiations, so we get
// assertion failures below where we expect. This type facilitates that.
struct B : A {};
BindRepeating(a); // expected-error@*:* {{Could not determine how to invoke functor.}}
BindRepeating(B()); // expected-error@*:* {{Could not determine how to invoke functor.}}
// Invocations with rvalues should attempt to use rvalue-ref-qualified
// methods.
struct C {
void operator()() const& {}
void operator()() && = delete;
};
BindRepeating(Passed(C())); // expected-error@*:* {{Could not determine how to invoke functor.}}
BindOnce(C()); // expected-error@*:* {{Could not determine how to invoke functor.}}
}
// Define a type that disallows `Unretained()` via the internal customization
// point, so the next test can use it.
struct BlockViaCustomizationPoint {};
namespace internal {
template <>
constexpr bool kCustomizeSupportsUnretained<BlockViaCustomizationPoint> = false;
} // namespace internal
void CanDetectTypesThatDisallowUnretained() {
// It shouldn't be possible to directly bind any type that doesn't support
// `Unretained()`, whether because it's incomplete, or is marked with
// `DISALLOW_RETAINED()`, or has `kCustomizeSupportsUnretained` specialized to
// be `false`.
struct BlockPublicly {
DISALLOW_UNRETAINED();
} publicly;
class BlockPrivately {
DISALLOW_UNRETAINED();
} privately;
struct BlockViaInheritance : BlockPublicly {} inheritance;
BlockViaCustomizationPoint customization;
struct BlockDueToBeingIncomplete;
BlockDueToBeingIncomplete* ptr_incomplete;
BindOnce([](BlockPublicly*) {}, &publicly); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
BindOnce([](BlockPrivately*) {}, &privately); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
BindOnce([](BlockViaInheritance*) {}, &inheritance); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
BindOnce([](BlockViaCustomizationPoint*) {}, &customization); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
BindOnce([](BlockDueToBeingIncomplete*) {}, ptr_incomplete); // expected-error@*:* {{Argument requires unretained storage, but type is not fully defined.}}
}
void OtherWaysOfPassingDisallowedTypes() {
// In addition to the direct passing tested above, arguments passed as
// `Unretained()` pointers or as refs must support `Unretained()`.
struct A {
void Method() {}
DISALLOW_UNRETAINED();
} a;
// Using distinct types causes distinct template instantiations, so we get
// assertion failures below where we expect. This type facilitates that.
struct B : A {} b;
BindOnce(&A::Method, Unretained(&a)); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
BindOnce([] (const A&) {}, std::cref(a)); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
BindOnce([] (B&) {}, std::ref(b)); // expected-error@*:* {{Argument requires unretained storage, but type does not support `Unretained()`.}}
}
void UnsafeDangling() {
// Pointers marked as `UnsafeDangling` may only be be received by
// `MayBeDangling` args with matching traits.
int i;
BindOnce([] (int*) {}, UnsafeDangling(&i)); // expected-error@*:* {{base::UnsafeDangling() pointers should only be passed to parameters marked MayBeDangling<T>.}}
BindOnce([] (MayBeDangling<int>) {},
UnsafeDangling<int, RawPtrTraits::kDummyForTest>(&i)); // expected-error@*:* {{Pointers passed to MayBeDangling<T> parameters must be created by base::UnsafeDangling() with the same RawPtrTraits.}}
BindOnce([] (raw_ptr<int>) {}, UnsafeDanglingUntriaged(&i)); // expected-error@*:* {{Use T* or T& instead of raw_ptr<T> for function parameters, unless you must mark the parameter as MayBeDangling<T>.}}
}
} // namespace base
|