1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "base/memory/madv_free_discardable_memory_posix.h"
#include <errno.h>
#include <inttypes.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <atomic>
#include "base/atomicops.h"
#include "base/bits.h"
#include "base/functional/callback.h"
#include "base/logging.h"
#include "base/memory/asan_interface.h"
#include "base/memory/madv_free_discardable_memory_allocator_posix.h"
#include "base/memory/page_size.h"
#include "base/notreached.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/memory_allocator_dump.h"
#include "base/trace_event/memory_dump_manager.h"
#include "base/tracing_buildflags.h"
#include "build/build_config.h"
#if BUILDFLAG(IS_ANDROID)
#include <sys/prctl.h>
#endif
namespace {
constexpr intptr_t kPageMagicCookie = 1;
void* AllocatePages(size_t size_in_pages) {
const size_t length = size_in_pages * base::GetPageSize();
void* data = mmap(nullptr, length, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
PCHECK(data != MAP_FAILED);
#if BUILDFLAG(IS_ANDROID)
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, data, length,
"madv-free-discardable");
#endif
return data;
}
// Checks if the system supports usage of MADV_FREE as a backing for discardable
// memory.
base::MadvFreeSupport ProbePlatformMadvFreeSupport() {
// Note: If the compiling system does not have headers for Linux 4.5+, then
// the MADV_FREE define will not exist and the probe will default to
// unsupported, regardless of whether the target system actually supports
// MADV_FREE.
#if !BUILDFLAG(IS_APPLE) && defined(MADV_FREE)
uint8_t* dummy_page = static_cast<uint8_t*>(AllocatePages(1));
dummy_page[0] = 1;
base::MadvFreeSupport support = base::MadvFreeSupport::kUnsupported;
// Check if the MADV_FREE advice value exists.
int retval = madvise(dummy_page, base::GetPageSize(), MADV_FREE);
if (!retval) {
// For Linux 4.5 to 4.12, MADV_FREE on a swapless system will lead to memory
// being immediately discarded. Verify that the memory was not discarded.
if (dummy_page[0]) {
support = base::MadvFreeSupport::kSupported;
}
}
PCHECK(!munmap(dummy_page, base::GetPageSize()));
return support;
#else
return base::MadvFreeSupport::kUnsupported;
#endif
}
} // namespace
namespace base {
MadvFreeDiscardableMemoryPosix::MadvFreeDiscardableMemoryPosix(
size_t size_in_bytes,
std::atomic<size_t>* allocator_byte_count)
: size_in_bytes_(size_in_bytes),
allocated_pages_((size_in_bytes_ + base::GetPageSize() - 1) /
base::GetPageSize()),
allocator_byte_count_(allocator_byte_count),
page_first_word_((size_in_bytes_ + base::GetPageSize() - 1) /
base::GetPageSize()) {
data_ = AllocatePages(allocated_pages_);
(*allocator_byte_count_) += size_in_bytes_;
}
MadvFreeDiscardableMemoryPosix::~MadvFreeDiscardableMemoryPosix() {
if (Deallocate()) {
DVLOG(1) << "Region evicted during destructor with " << allocated_pages_
<< " pages";
}
}
bool MadvFreeDiscardableMemoryPosix::Lock() {
DFAKE_SCOPED_LOCK(thread_collision_warner_);
DCHECK(!is_locked_);
// Locking fails if the memory has been deallocated.
if (!data_) {
return false;
}
// We need to unpoison here since locking pages writes to them.
// Note that even if locking fails, we want to unpoison anyways after
// deallocation.
ASAN_UNPOISON_MEMORY_REGION(data_, allocated_pages_ * base::GetPageSize());
size_t page_index;
for (page_index = 0; page_index < allocated_pages_; ++page_index) {
if (!LockPage(page_index)) {
break;
}
}
if (page_index < allocated_pages_) {
DVLOG(1) << "Region eviction discovered during lock with "
<< allocated_pages_ << " pages";
Deallocate();
return false;
}
DCHECK(IsResident());
is_locked_ = true;
return true;
}
void MadvFreeDiscardableMemoryPosix::Unlock() {
DFAKE_SCOPED_LOCK(thread_collision_warner_);
DCHECK(is_locked_);
DCHECK(data_ != nullptr);
for (size_t page_index = 0; page_index < allocated_pages_; ++page_index) {
UnlockPage(page_index);
}
#ifdef MADV_FREE
if (!keep_memory_for_testing_) {
int retval =
madvise(data_, allocated_pages_ * base::GetPageSize(), MADV_FREE);
DPCHECK(!retval);
}
#endif
ASAN_POISON_MEMORY_REGION(data_, allocated_pages_ * base::GetPageSize());
is_locked_ = false;
}
void* MadvFreeDiscardableMemoryPosix::data() const {
DFAKE_SCOPED_LOCK(thread_collision_warner_);
DCHECK(is_locked_);
DCHECK(data_ != nullptr);
return data_;
}
bool MadvFreeDiscardableMemoryPosix::LockPage(size_t page_index) {
// We require the byte-level representation of std::atomic<intptr_t> to be
// equivalent to that of an intptr_t. Since std::atomic<intptr_t> has standard
// layout, having equal size is sufficient but not necessary for them to have
// the same byte-level representation.
static_assert(sizeof(intptr_t) == sizeof(std::atomic<intptr_t>),
"Incompatible layout of std::atomic.");
DCHECK(std::atomic<intptr_t>{}.is_lock_free());
std::atomic<intptr_t>* page_as_atomic =
reinterpret_cast<std::atomic<intptr_t>*>(
static_cast<uint8_t*>(data_) + page_index * base::GetPageSize());
intptr_t expected = kPageMagicCookie;
// Recall that we set the first word of the page to |kPageMagicCookie|
// (non-zero) during unlocking. Thus, if the value has changed, the page has
// been discarded. Restore the page's original first word from before
// unlocking only if the page has not been discarded.
if (!std::atomic_compare_exchange_strong_explicit(
page_as_atomic, &expected,
static_cast<intptr_t>(page_first_word_[page_index]),
std::memory_order_relaxed, std::memory_order_relaxed)) {
return false;
}
return true;
}
void MadvFreeDiscardableMemoryPosix::UnlockPage(size_t page_index) {
DCHECK(std::atomic<intptr_t>{}.is_lock_free());
std::atomic<intptr_t>* page_as_atomic =
reinterpret_cast<std::atomic<intptr_t>*>(
static_cast<uint8_t*>(data_) + page_index * base::GetPageSize());
// Store the first word of the page for use during unlocking.
page_first_word_[page_index].store(*page_as_atomic,
std::memory_order_relaxed);
// Store a non-zero value into the first word of the page, so we can tell when
// the page is discarded during locking.
page_as_atomic->store(kPageMagicCookie, std::memory_order_relaxed);
}
void MadvFreeDiscardableMemoryPosix::DiscardPage(size_t page_index) {
DFAKE_SCOPED_LOCK(thread_collision_warner_);
DCHECK(!is_locked_);
DCHECK(page_index < allocated_pages_);
int retval =
madvise(static_cast<uint8_t*>(data_) + base::GetPageSize() * page_index,
base::GetPageSize(), MADV_DONTNEED);
DPCHECK(!retval);
}
bool MadvFreeDiscardableMemoryPosix::IsLockedForTesting() const {
DFAKE_SCOPED_LOCK(thread_collision_warner_);
return is_locked_;
}
void MadvFreeDiscardableMemoryPosix::DiscardForTesting() {
DFAKE_SCOPED_LOCK(thread_collision_warner_);
DCHECK(!is_locked_);
int retval =
madvise(data_, base::GetPageSize() * allocated_pages_, MADV_DONTNEED);
DPCHECK(!retval);
}
trace_event::MemoryAllocatorDump*
MadvFreeDiscardableMemoryPosix::CreateMemoryAllocatorDump(
const char* name,
trace_event::ProcessMemoryDump* pmd) const {
DFAKE_SCOPED_LOCK(thread_collision_warner_);
using base::trace_event::MemoryAllocatorDump;
std::string allocator_dump_name = base::StringPrintf(
"discardable/segment_0x%" PRIXPTR, reinterpret_cast<uintptr_t>(this));
MemoryAllocatorDump* allocator_dump =
pmd->CreateAllocatorDump(allocator_dump_name);
bool is_discarded = IsDiscarded();
MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(name);
// The effective_size is the amount of unused space as a result of being
// page-aligned.
dump->AddScalar(MemoryAllocatorDump::kNameSize,
MemoryAllocatorDump::kUnitsBytes,
is_discarded ? 0U : static_cast<uint64_t>(size_in_bytes_));
allocator_dump->AddScalar(
MemoryAllocatorDump::kNameSize, MemoryAllocatorDump::kUnitsBytes,
is_discarded
? 0U
: static_cast<uint64_t>(allocated_pages_ * base::GetPageSize()));
allocator_dump->AddScalar(MemoryAllocatorDump::kNameObjectCount,
MemoryAllocatorDump::kUnitsObjects, 1U);
allocator_dump->AddScalar(
"wasted_size", MemoryAllocatorDump::kUnitsBytes,
static_cast<uint64_t>(allocated_pages_ * base::GetPageSize() -
size_in_bytes_));
allocator_dump->AddScalar("locked_size", MemoryAllocatorDump::kUnitsBytes,
is_locked_ ? size_in_bytes_ : 0U);
allocator_dump->AddScalar("page_count", MemoryAllocatorDump::kUnitsObjects,
static_cast<uint64_t>(allocated_pages_));
// The amount of space that is discarded, but not unmapped (i.e. the memory
// was discarded while unlocked, but the pages are still mapped in memory
// since Deallocate() has not been called yet). This instance is discarded if
// it is unlocked and not all pages are resident in memory.
allocator_dump->AddScalar(
"discarded_size", MemoryAllocatorDump::kUnitsBytes,
is_discarded ? allocated_pages_ * base::GetPageSize() : 0U);
pmd->AddSuballocation(dump->guid(), allocator_dump_name);
return dump;
}
bool MadvFreeDiscardableMemoryPosix::IsValid() const {
DFAKE_SCOPED_RECURSIVE_LOCK(thread_collision_warner_);
return data_ != nullptr;
}
void MadvFreeDiscardableMemoryPosix::SetKeepMemoryForTesting(bool keep_memory) {
DFAKE_SCOPED_LOCK(thread_collision_warner_);
DCHECK(is_locked_);
keep_memory_for_testing_ = keep_memory;
}
bool MadvFreeDiscardableMemoryPosix::IsResident() const {
DFAKE_SCOPED_RECURSIVE_LOCK(thread_collision_warner_);
#if BUILDFLAG(IS_APPLE)
std::vector<char> vec(allocated_pages_);
#else
std::vector<unsigned char> vec(allocated_pages_);
#endif
int retval =
mincore(data_, allocated_pages_ * base::GetPageSize(), vec.data());
DPCHECK(retval == 0 || errno == EAGAIN);
for (size_t i = 0; i < allocated_pages_; ++i) {
if (!(vec[i] & 1)) {
return false;
}
}
return true;
}
bool MadvFreeDiscardableMemoryPosix::IsDiscarded() const {
return !is_locked_ && !IsResident();
}
bool MadvFreeDiscardableMemoryPosix::Deallocate() {
DFAKE_SCOPED_RECURSIVE_LOCK(thread_collision_warner_);
if (data_) {
ASAN_UNPOISON_MEMORY_REGION(data_, allocated_pages_ * base::GetPageSize());
int retval = munmap(data_, allocated_pages_ * base::GetPageSize());
PCHECK(!retval);
data_ = nullptr;
(*allocator_byte_count_) -= size_in_bytes_;
return true;
}
return false;
}
MadvFreeSupport GetMadvFreeSupport() {
static MadvFreeSupport kMadvFreeSupport = ProbePlatformMadvFreeSupport();
return kMadvFreeSupport;
}
} // namespace base
|