1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/autofill/core/browser/crowdsourcing/randomized_encoder.h"
#include <string_view>
#include "base/numerics/safe_conversions.h"
#include "base/strings/stringprintf.h"
#include "components/autofill/core/common/signatures.h"
#include "components/unified_consent/pref_names.h"
#include "net/base/hex_utils.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace autofill {
namespace {
constexpr size_t kBitsPerByte = 8;
constexpr size_t kEncodedChunkLengthInBytes = 64;
constexpr size_t kEncodedChunkLengthInBits =
kEncodedChunkLengthInBytes * kBitsPerByte;
// Get the |i|-th bit of |s| where |i| counts up from the 0-bit of the first
// character in |s|. It is expected that the caller guarantees that |i| is a
// valid bit-offset into |s|
bool GetBit(std::string_view s, size_t i) {
DCHECK_LT(i / kBitsPerByte, s.length());
return static_cast<bool>((s[i / kBitsPerByte]) & (1 << (i % kBitsPerByte)));
}
// This is a reference encoder implementation. This implementation performs the
// all bits encoding one full byte at a time and then packs the selected bits
// into a final output buffer.
std::string ReferenceEncodeImpl(std::string_view coins,
std::string_view noise,
std::string_view value,
size_t bit_offset,
size_t bit_stride) {
// Encode all of the bits.
std::string all_bits(noise);
size_t value_length = std::min(value.length(), noise.length());
for (size_t i = 0; i < value_length; ++i) {
all_bits[i] = (value[i] & coins[i]) | (all_bits[i] & ~coins[i]);
}
// Select the only the ones matching bit_offset and bit_stride.
std::string output(all_bits.length() / bit_stride, 0);
size_t src_offset = bit_offset;
size_t dst_offset = 0;
while (src_offset < all_bits.length() * kBitsPerByte) {
bool bit_value = GetBit(all_bits, src_offset);
output[dst_offset / kBitsPerByte] |=
(bit_value << (dst_offset % kBitsPerByte));
src_offset += bit_stride;
dst_offset += 1;
}
return output;
}
// A test version of the RandomizedEncoder class. Exposes "ForTest" methods.
class TestRandomizedEncoder : public RandomizedEncoder {
public:
using RandomizedEncoder::GetChunkCount;
using RandomizedEncoder::GetCoins;
using RandomizedEncoder::GetNoise;
using RandomizedEncoder::RandomizedEncoder;
};
// Data structure used to drive the encoding test cases.
struct EncodeParams {
// The type of encoding to perform with the RandomizedEncoder.
AutofillRandomizedValue_EncodingType encoding_type;
// The bit offset to start from with the reference encoder.
size_t bit_offset;
// The bit stride to select the next bit to encode with the reference encoder.
size_t bit_stride;
};
// A table to test cases, mapping encoding scheme to the reference encoder.
const EncodeParams kEncodeParams[] = {
// One bit per byte. These all require 8 bytes to encode and have 8-bit
// strides, starting from a different initial bit offset.
{AutofillRandomizedValue_EncodingType_BIT_0, 0, 8},
{AutofillRandomizedValue_EncodingType_BIT_1, 1, 8},
{AutofillRandomizedValue_EncodingType_BIT_2, 2, 8},
{AutofillRandomizedValue_EncodingType_BIT_3, 3, 8},
{AutofillRandomizedValue_EncodingType_BIT_4, 4, 8},
{AutofillRandomizedValue_EncodingType_BIT_5, 5, 8},
{AutofillRandomizedValue_EncodingType_BIT_6, 6, 8},
{AutofillRandomizedValue_EncodingType_BIT_7, 7, 8},
// Four bits per byte. These require 32 bytes to encode and have 2-bit
// strides/
{AutofillRandomizedValue_EncodingType_EVEN_BITS, 0, 2},
{AutofillRandomizedValue_EncodingType_ODD_BITS, 1, 2},
// All bits per byte. This require 64 bytes to encode and has a 1-bit
// stride.
{AutofillRandomizedValue_EncodingType_ALL_BITS, 0u, 1},
};
using RandomizedEncoderTest = ::testing::TestWithParam<EncodeParams>;
// As described in randomized_encoder.cc
// TODO(crbug.com/40570965): resolve circular dependency and remove
// hardcoded constant
TEST(RandomizedEncoderTest, CorrectUrlConsentFlag) {
EXPECT_STREQ(
TestRandomizedEncoder::kUrlKeyedAnonymizedDataCollectionEnabled,
unified_consent::prefs::kUrlKeyedAnonymizedDataCollectionEnabled);
}
TEST_P(RandomizedEncoderTest, Encode) {
const FormSignature form_signature(0x1234567812345678);
const FieldSignature field_signature(0xCAFEBABE);
const std::string data_type = TestRandomizedEncoder::kFormCssClass;
const EncodeParams& params = GetParam();
const std::string value("This is some text for testing purposes.");
TestRandomizedEncoder encoder("this is the seed", params.encoding_type, true);
size_t chunk_count = encoder.GetChunkCount(value, data_type);
size_t padded_input_length = chunk_count * kEncodedChunkLengthInBytes;
EXPECT_LE(value.length(), padded_input_length);
// Encode the output string.
std::string actual_result =
encoder.Encode(form_signature, field_signature, data_type, value);
// Capture the coin and noise bits used for the form, field and metadata type.
std::string coins = encoder.GetCoins(form_signature, field_signature,
data_type, padded_input_length);
std::string noise = encoder.GetNoise(form_signature, field_signature,
data_type, padded_input_length);
// Use the reference encoder implementation to get the expected output.
std::string expected_result = ReferenceEncodeImpl(
coins, noise, value, params.bit_offset, params.bit_stride);
// The results should be the same.
EXPECT_EQ(padded_input_length / params.bit_stride, actual_result.length());
EXPECT_EQ(expected_result, actual_result);
}
TEST_P(RandomizedEncoderTest, EncodeLarge) {
const std::string data_types[] = {TestRandomizedEncoder::kFormName,
TestRandomizedEncoder::kFormUrl};
for (std::string data_type : data_types) {
const FormSignature form_signature(0x8765432187654321);
const FieldSignature field_signature(0xDEADBEEF);
const EncodeParams& params = GetParam();
const std::string value(
"This is some text for testing purposes. It exceeds the maximum "
"encoding "
"size. This serves to validate that truncation is performed. Lots and "
"lots of text. Yay!");
TestRandomizedEncoder encoder("this is the seed", params.encoding_type,
true);
size_t chunk_count = encoder.GetChunkCount(value, data_type);
size_t padded_input_length = chunk_count * kEncodedChunkLengthInBytes;
EXPECT_EQ(data_type == TestRandomizedEncoder::kFormUrl, chunk_count > 1);
// Encode the output string.
std::string actual_result =
encoder.Encode(form_signature, field_signature, data_type, value);
if (data_type == TestRandomizedEncoder::kFormUrl) {
EXPECT_LE(value.length(), actual_result.length() * params.bit_stride);
} else {
EXPECT_GT(value.length(), actual_result.length() * params.bit_stride);
}
// Capture the coin and noise bits used for the form, field and metadata
// type.
std::string coins = encoder.GetCoins(form_signature, field_signature,
data_type, padded_input_length);
std::string noise = encoder.GetNoise(form_signature, field_signature,
data_type, padded_input_length);
// Use the reference encoder implementation to get the expected output.
std::string expected_result = ReferenceEncodeImpl(
coins, noise, value, params.bit_offset, params.bit_stride);
// The results should be the same.
EXPECT_EQ(padded_input_length / params.bit_stride, actual_result.length());
EXPECT_EQ(expected_result, actual_result);
}
}
INSTANTIATE_TEST_SUITE_P(All,
RandomizedEncoderTest,
::testing::ValuesIn(kEncodeParams));
namespace {
// Data structure used to drive the decoding test cases.
struct DecodeParams {
// The number of samples for this test.
size_t num_votes;
// The lower and upper bound of the confidence interval given |num_votes|
// samples. If fewer than (lower_bound * num_votes) samples are one then the
// bit is a zero. If more than (upper_bound * num_votes) samples are one then
// the bit is a one.
double lower_bound;
double upper_bound;
};
// The fundamental idea of this algorithm is to count the number of reported 1s
// and 0s from a crowdsourced set of votes and look for a threshold that gives
// us confidence that we have seen enough 1s or 0s to assume that the actual
// value is a 1 or 0.
//
// Due to the symmetriy of the problem, we can conveniently choose the following
// null-hypothesis:
//
// N0: The true value of a bit is random on each pageload.
//
// In this case, we expect a binomial distribution B(n, 0.5), for which we can
// find a confidence interval that a sample of size n ends up in this interval.
// If a sample is outside of this interval, we can assume with the given
// confidence that we can reject the null-hypothesis and assume that the actual
// value is 0 or 1.
//
// For the confidence interval, we use the Wilson Score interval.
// https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval
//
// The confidence intervals are calculate as:
//
// import scipy.stats as st
// import math
//
// def ConfidenceInterval(ph, n, confidence):
// """
// Args:
// confidence: e.g. 0.95 for a 95% confidence
// ph = p hat (see Wilson Score inverval link above)
// n = number of samples
// """
// alpha = 1 - confidence
// # for the 95% confidence interval this gives 1.96.
// z = st.norm.ppf(1 - alpha/2)
//
// base = (ph + z*z/(2*n)) / (1 + z*z/n)
// offset = z / (1 + z*z/n) * math.sqrt(ph*(1-ph)/n + z*z/(4*n*n))
//
// return [base - offset, base + offset]
//
// Note: The string being encoded/decoded for each "sample" consists of a common
// prefix followed by the decimal value of the sample number (i.e., "foo 25").
// Avoid test cases that skew the distribution of the appended noise to far
// from random (for example, using 0-199, more than 55% of the appended noise
// starts with the ASCII digit '1').
const DecodeParams kDecodeParams[] = {
// 99.0 % confidence interval
{150, 0.39709349666174232, 0.60290650333825768},
{256, 0.42052859913480434, 0.57947140086519566},
// 99.5% confidence interval
{150, 0.38829956746162475, 0.61170043253837525},
{256, 0.41359977651950797, 0.58640022348049203},
};
using RandomizedDecoderTest = ::testing::TestWithParam<DecodeParams>;
// Generate a hex string representing the 128 bit value where each byte has
// value |i|. This lets us spread the seeds across the 128 bit space.
std::string Make128BitSeed(size_t i) {
EXPECT_LT(i, 256u);
return net::HexDump(
std::string(128 / kBitsPerByte, static_cast<char>(i & 0xFF)));
}
} // namespace
TEST(RandomizedEncoderTest, GetChunkCount) {
TestRandomizedEncoder encoder(
"secret", AutofillRandomizedValue_EncodingType_ALL_BITS, true);
std::string_view url_type = TestRandomizedEncoder::kFormUrl;
EXPECT_EQ(encoder.GetChunkCount("", url_type), 0);
EXPECT_EQ(encoder.GetChunkCount("1", url_type), 1);
EXPECT_EQ(encoder.GetChunkCount(std::string(33, '-'), url_type), 1);
EXPECT_EQ(encoder.GetChunkCount(std::string(64, '-'), url_type), 1);
EXPECT_EQ(encoder.GetChunkCount(std::string(65, '-'), url_type), 2);
EXPECT_EQ(encoder.GetChunkCount(std::string(512, '-'), url_type), 8);
EXPECT_EQ(encoder.GetChunkCount(std::string(513, '-'), url_type), 8);
EXPECT_EQ(encoder.GetChunkCount(std::string(1000, '-'), url_type), 8);
std::string_view name_type = TestRandomizedEncoder::kFormName;
EXPECT_EQ(encoder.GetChunkCount("", name_type), 1);
EXPECT_EQ(encoder.GetChunkCount("1", name_type), 1);
EXPECT_EQ(encoder.GetChunkCount(std::string(33, '-'), name_type), 1);
EXPECT_EQ(encoder.GetChunkCount(std::string(70, '-'), name_type), 1);
EXPECT_EQ(encoder.GetChunkCount(std::string(1000, '-'), name_type), 1);
}
TEST_P(RandomizedDecoderTest, Decode) {
static const std::string_view prefixes[] = {
"This is the common prefix to encode and recover",
"This is the longer common prefix to encode and recover to test input "
"|data_type==FORM_URL| values can be up to 8 * 64 bytes.",
};
for (std::string_view common_prefix : prefixes) {
static const FormSignature form_signature(0x8765432187654321);
static const FieldSignature field_signature(0xDEADBEEF);
static const std::string data_type = TestRandomizedEncoder::kFormUrl;
const size_t num_votes = GetParam().num_votes;
const double lower_bound = GetParam().lower_bound;
const double upper_bound = GetParam().upper_bound;
size_t chunk_count =
TestRandomizedEncoder(
"secret", AutofillRandomizedValue_EncodingType_ALL_BITS, true)
.GetChunkCount(base::StringPrintf("%.*s%zu",
base::saturated_cast<int>(
common_prefix.length()),
common_prefix.data(), num_votes),
data_type);
SCOPED_TRACE(testing::Message() << "chunk_count=" << chunk_count);
// This vector represents the aggregate counts of the number of times a
// separate encoding of out sample string had a given bit encoded as a one.
std::vector<size_t> num_times_bit_is_1(
/*count=*/kEncodedChunkLengthInBits * chunk_count,
/*value=*/0);
// Perform |num_votes| independent encoding operations, with seeds
// (somewhat) evenly spread out across a 128-bit space.
for (size_t i = 0; i < num_votes; ++i) {
// Create a new encoder with a different secret each time.
TestRandomizedEncoder encoder(
Make128BitSeed(i), AutofillRandomizedValue_EncodingType_ALL_BITS,
true);
// Encode the common prefix plus some non-constant data.
std::string encoded = encoder.Encode(
form_signature, field_signature, data_type,
base::StringPrintf("%.*s%zu",
base::saturated_cast<int>(common_prefix.length()),
common_prefix.data(), i));
// Update |num_times_bit_is_1| for each bit in the encoded string.
for (size_t b = 0; b < kEncodedChunkLengthInBits * chunk_count; ++b) {
num_times_bit_is_1[b] += GetBit(encoded, b);
}
}
// Use |num_times_bit_is_1| to reconstruct the encoded string, bit by bit,
// as well as a record of whether or not each bit in the reconstruction
// buffer was validated with sufficient confidence.
std::string output(kEncodedChunkLengthInBytes * chunk_count,
static_cast<char>(0));
std::vector<bool> bit_is_valid(kEncodedChunkLengthInBits * chunk_count);
const double threshold_for_zero = lower_bound * num_votes;
const double threshold_for_one = upper_bound * num_votes;
for (size_t b = 0; b < kEncodedChunkLengthInBits * chunk_count; ++b) {
if (num_times_bit_is_1[b] < threshold_for_zero) {
// bit it already zero, just mark it as valid
bit_is_valid[b] = true;
} else if (num_times_bit_is_1[b] > threshold_for_one) {
output[b / kBitsPerByte] |= (1 << (b % kBitsPerByte));
bit_is_valid[b] = true;
}
}
// Validation: All bits overlapping the constant prefix should be valid.
for (size_t b = 0; b < common_prefix.length() * kBitsPerByte; ++b) {
EXPECT_TRUE(bit_is_valid[b]) << "True bit found to be noise at " << b;
}
// Validation: All of the recovered prefix bits should match the prefix.
for (size_t i = 0; i < common_prefix.length(); ++i) {
EXPECT_EQ(common_prefix[i], output[i])
<< "Incorrect char at offset " << i;
}
// Validation: Most noise bits should be invalid, but we may get some false
// positives. Instead, we expect that no noise byte will have all of its
// bits turn up as valid.
for (size_t i = common_prefix.length();
i < kEncodedChunkLengthInBytes * chunk_count; ++i) {
size_t num_valid_bits = 0;
for (size_t b = 0; b < kBitsPerByte; ++b) {
num_valid_bits += bit_is_valid[i * kBitsPerByte + b];
}
EXPECT_LT(num_valid_bits, kBitsPerByte)
<< "Noise byte at offset " << i << " decoded as " << output[i];
}
}
}
INSTANTIATE_TEST_SUITE_P(All,
RandomizedDecoderTest,
::testing::ValuesIn(kDecodeParams));
} // namespace
} // namespace autofill
|