1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/history_embeddings/vector_database.h"
#include <atomic>
#include <cstdint>
#include <memory>
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/logging.h"
#include "base/memory/weak_ptr.h"
#include "base/path_service.h"
#include "base/rand_util.h"
#include "base/time/time.h"
#include "base/timer/elapsed_timer.h"
#include "components/history_embeddings/proto/history_embeddings.pb.h"
#include "components/passage_embeddings/passage_embeddings_types.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace history_embeddings {
using passage_embeddings::Embedding;
namespace {
Embedding RandomEmbedding() {
constexpr size_t kSize = 768u;
std::vector<float> random_vector(kSize, 0.0f);
for (float& v : random_vector) {
v = base::RandFloat();
}
Embedding embedding(std::move(random_vector));
embedding.Normalize();
return embedding;
}
Embedding DeterministicEmbedding(float value) {
constexpr size_t kSize = 768u;
std::vector<float> vector(kSize, 0.0f);
vector[0] = 1;
vector[1] = value;
Embedding embedding(std::move(vector));
embedding.Normalize();
embedding.SetPassageWordCount(10);
return embedding;
}
} // namespace
TEST(HistoryEmbeddingsVectorDatabaseTest, Constructs) {
std::make_unique<VectorDatabaseInMemory>();
}
TEST(HistoryEmbeddingsVectorDatabaseTest, EraseNonAsciiCharacters) {
{
std::string s = "passage with non-ASCII∅character";
EraseNonAsciiCharacters(s);
EXPECT_EQ(s, "passage with non-ASCII character");
}
{
std::string s = "passage with consecutive non-ASCII spaces";
EraseNonAsciiCharacters(s);
EXPECT_EQ(s, "passage with consecutive non-ASCII spaces");
}
{
// Only non-ASCII spaces -> blank.
std::string s = " ";
EraseNonAsciiCharacters(s);
EXPECT_EQ(s, "");
}
{
std::string s = "a ";
EraseNonAsciiCharacters(s);
EXPECT_EQ(s, "a ");
}
{
std::string s = " a";
EraseNonAsciiCharacters(s);
EXPECT_EQ(s, "a");
}
{
std::string s = " a ";
EraseNonAsciiCharacters(s);
EXPECT_EQ(s, "a ");
}
}
TEST(HistoryEmbeddingsVectorDatabaseTest, EmbeddingOperations) {
Embedding a({1, 1, 1});
EXPECT_FLOAT_EQ(a.Magnitude(), std::sqrt(3));
a.Normalize();
EXPECT_FLOAT_EQ(a.Magnitude(), 1.0f);
Embedding b({2, 2, 2});
b.Normalize();
EXPECT_FLOAT_EQ(a.ScoreWith(b), 1.0f);
// Verify more similar embeddings have higher scores.
EXPECT_GT(DeterministicEmbedding(5).ScoreWith(DeterministicEmbedding(4)),
DeterministicEmbedding(5).ScoreWith(DeterministicEmbedding(3)));
EXPECT_GT(DeterministicEmbedding(5).ScoreWith(DeterministicEmbedding(6)),
DeterministicEmbedding(5).ScoreWith(DeterministicEmbedding(7)));
}
TEST(HistoryEmbeddingsVectorDatabaseTest, BestScoreWith) {
SearchInfo search_info;
SearchParams search_params;
search_params.word_match_required_term_ratio = 0.0f;
UrlData url_data(1, 1, base::Time::Now());
url_data.passages.add_passages("some deterministic passage");
url_data.passages.add_passages("more text in another passage");
url_data.passages.add_passages(
"some deterministic passage with non-ASCII ∅ character");
url_data.embeddings.push_back(DeterministicEmbedding(0));
url_data.embeddings.push_back(DeterministicEmbedding(1));
url_data.embeddings.push_back(DeterministicEmbedding(2));
Embedding query_embedding = DeterministicEmbedding(0);
UrlScore url_score =
url_data.BestScoreWith(search_info, search_params, query_embedding, 0);
EXPECT_EQ(search_info.skipped_nonascii_passage_count, 1u);
EXPECT_FLOAT_EQ(url_score.score, 1.0f);
EXPECT_FLOAT_EQ(url_score.word_match_score, 0.0f);
// This test checks basic properties of score boosting, for example that
// query terms can be spread across multiple separate passages.
// Boost scoring is tested further in FindNearestWordMatchBoosting test below.
search_params.query_terms = {
"some",
"passage",
"absent",
};
UrlScore boosted_score =
url_data.BestScoreWith(search_info, search_params, query_embedding, 0);
EXPECT_LT(url_score.score, boosted_score.score);
EXPECT_FLOAT_EQ(url_score.score,
boosted_score.score - boosted_score.word_match_score);
search_params.word_match_max_term_count = 5;
search_params.query_terms = {
"some", "passage", "more", "another", "absent",
};
UrlScore across_score =
url_data.BestScoreWith(search_info, search_params, query_embedding, 0);
EXPECT_LT(boosted_score.score, across_score.score);
}
TEST(HistoryEmbeddingsVectorDatabaseTest, FindNearest) {
VectorDatabaseInMemory database;
for (size_t i = 0; i < 10; i++) {
UrlData url_data(i + 1, i + 1, base::Time::Now());
url_data.passages.add_passages("some deterministic passage");
url_data.embeddings.push_back(DeterministicEmbedding(i));
database.AddUrlData(url_data);
}
SearchParams search_params;
{
std::vector<ScoredUrl> scored_urls =
database
.FindNearest({}, 3, search_params, DeterministicEmbedding(0),
base::BindRepeating([]() { return false; }))
.scored_urls;
EXPECT_THAT(scored_urls,
testing::ElementsAre(testing::Field(&ScoredUrl::url_id, 1),
testing::Field(&ScoredUrl::url_id, 2),
testing::Field(&ScoredUrl::url_id, 3)));
}
{
std::vector<ScoredUrl> scored_urls =
database
.FindNearest({}, 3, search_params, DeterministicEmbedding(20),
base::BindRepeating([]() { return false; }))
.scored_urls;
EXPECT_THAT(scored_urls,
testing::ElementsAre(testing::Field(&ScoredUrl::url_id, 10),
testing::Field(&ScoredUrl::url_id, 9),
testing::Field(&ScoredUrl::url_id, 8)));
}
}
TEST(HistoryEmbeddingsVectorDatabaseTest, FindNearestWordMatchBoosting) {
auto no = base::BindRepeating([]() { return false; });
VectorDatabaseInMemory database;
UrlData url_data1(1, 1, base::Time::Now());
url_data1.passages.add_passages("some deterministic passage");
url_data1.embeddings.push_back(DeterministicEmbedding(0));
database.AddUrlData(url_data1);
UrlData url_data2(2, 2, base::Time::Now());
url_data2.passages.add_passages("hello hello world world world world world");
url_data2.embeddings.push_back(DeterministicEmbedding(0));
database.AddUrlData(url_data2);
// Including a non-ASCII passage to demonstrate safe internal CHECKs.
UrlData url_data3(3, 3, base::Time::Now());
url_data3.passages.add_passages(
"this is some deterministic non-ASCII passage, scores ∅, gets skipped");
url_data3.embeddings.push_back(DeterministicEmbedding(0));
database.AddUrlData(url_data3);
SearchParams search_params;
search_params.word_match_minimum_embedding_score = 0.0f;
search_params.word_match_limit = 4;
search_params.word_match_score_boost_factor = 0.1;
search_params.word_match_max_term_count = 8;
search_params.word_match_required_term_ratio = 0.0f;
search_params.query_terms = {"gets", "skipped"};
// Basic embedding search with no query terms produces flat embedding score.
Embedding query_embedding = DeterministicEmbedding(0);
std::vector<ScoredUrl> scored_urls =
database.FindNearest({}, 3, search_params, query_embedding, no)
.scored_urls;
EXPECT_EQ(scored_urls.size(), 3u);
EXPECT_FLOAT_EQ(scored_urls[0].score, 1.0f);
EXPECT_FLOAT_EQ(scored_urls[1].score, 1.0f);
EXPECT_FLOAT_EQ(scored_urls[2].score, 0.0f);
EXPECT_FLOAT_EQ(scored_urls[2].word_match_score, 0.0f);
// Even with zero embedding similarity score, word match text search can
// still be applied when enabled.
search_params.word_match_search_non_ascii_passages = true;
scored_urls = database.FindNearest({}, 3, search_params, query_embedding, no)
.scored_urls;
EXPECT_FLOAT_EQ(scored_urls[0].score, 1.0f);
EXPECT_FLOAT_EQ(scored_urls[1].score, 1.0f);
EXPECT_GT(scored_urls[2].score, 0.0f);
EXPECT_GT(scored_urls[2].word_match_score, 0.0f);
search_params.word_match_search_non_ascii_passages = false;
// Set up some query terms to boost score with word matches against passage.
// Additional unmatched terms provide no boost. N occurrences of a matching
// term will independently yield an extra (0.1 * N / 4) with N
// capped at denominator so that each term's max boost is the boost_factor.
// But there's an overall normalizing divide with smoothing factor, so
// the final value will be slightly less.
// Here we have (0.1 * 1 / 4) * 3 terms, for a total boost of 0.075.
// Normalized by dividing by (smooth + query-terms-length)
// -> 0.075 / (1 + 8) = 0.008333333
search_params.query_terms = {"some", "deterministic", "passage", "and",
"other", "nonboosting", "query", "terms"};
scored_urls = database.FindNearest({}, 3, search_params, query_embedding, no)
.scored_urls;
EXPECT_EQ(scored_urls[0].url_id, 1);
EXPECT_EQ(scored_urls[1].url_id, 2);
EXPECT_EQ(scored_urls[2].url_id, 3);
EXPECT_FLOAT_EQ(scored_urls[0].score, 1.008333333f);
EXPECT_FLOAT_EQ(scored_urls[1].score, 1.0f);
EXPECT_FLOAT_EQ(scored_urls[2].score, 0.0f);
// Here we have one too many terms, so there's no boost at all.
search_params.query_terms = {"some", "deterministic", "passage",
"and", "other", "nonboosting",
"query", "terms", "extra"};
scored_urls = database.FindNearest({}, 3, search_params, query_embedding, no)
.scored_urls;
EXPECT_EQ(scored_urls[0].url_id, 1);
EXPECT_EQ(scored_urls[1].url_id, 2);
EXPECT_EQ(scored_urls[2].url_id, 3);
EXPECT_FLOAT_EQ(scored_urls[0].score, 1.0f);
EXPECT_FLOAT_EQ(scored_urls[1].score, 1.0f);
EXPECT_FLOAT_EQ(scored_urls[2].score, 0.0f);
// Here we have (0.1 * 2 / 4) + (0.1 * 4 / 4) even though "world" appears 5
// times in passage, because the occurrence count is capped by denominator.
// And then also divided to normalize with smoothing: 0.15 / (1 + 2) = 0.05
search_params.query_terms = {"hello", "world"};
scored_urls = database.FindNearest({}, 3, search_params, query_embedding, no)
.scored_urls;
EXPECT_EQ(scored_urls[0].url_id, 2);
EXPECT_EQ(scored_urls[1].url_id, 1);
EXPECT_EQ(scored_urls[2].url_id, 3);
EXPECT_FLOAT_EQ(scored_urls[0].score, 1.05f);
EXPECT_FLOAT_EQ(scored_urls[1].score, 1.0f);
EXPECT_FLOAT_EQ(scored_urls[2].score, 0.0f);
}
TEST(HistoryEmbeddingsVectorDatabaseTest, SearchCanBeHaltedEarly) {
VectorDatabaseInMemory database;
for (size_t i = 0; i < 3; i++) {
UrlData url_data(i + 1, i + 1, base::Time::Now());
for (size_t j = 0; j < 3; j++) {
url_data.passages.add_passages("a random passage");
url_data.embeddings.push_back(RandomEmbedding());
}
database.AddUrlData(url_data);
}
Embedding query = RandomEmbedding();
SearchParams search_params;
// An ordinary search with full results:
{
std::vector<ScoredUrl> scored_urls =
database
.FindNearest({}, 3, search_params, query,
base::BindRepeating([]() { return false; }))
.scored_urls;
EXPECT_EQ(scored_urls.size(), 3u);
}
// A halted search with fewer results:
{
std::atomic<size_t> counter(0u);
base::WeakPtrFactory<std::atomic<size_t>> weak_factory(&counter);
std::vector<ScoredUrl> scored_urls =
database
.FindNearest({}, 3, search_params, query,
base::BindRepeating(
[](auto weak_counter) {
(*weak_counter)++;
return *weak_counter > 2u;
},
weak_factory.GetWeakPtr()))
.scored_urls;
EXPECT_EQ(scored_urls.size(), 2u);
}
}
TEST(HistoryEmbeddingsVectorDatabaseTest, TimeRangeNarrowsSearchResult) {
const base::Time now = base::Time::Now();
VectorDatabaseInMemory database;
for (size_t i = 0; i < 3; i++) {
UrlData url_data(i + 1, i + 1, now + base::Minutes(i));
for (size_t j = 0; j < 3; j++) {
url_data.passages.add_passages("some random passage");
url_data.embeddings.push_back(RandomEmbedding());
}
database.AddUrlData(url_data);
}
Embedding query = RandomEmbedding();
SearchParams search_params;
// An ordinary search with full results:
{
std::vector<ScoredUrl> scored_urls =
database
.FindNearest({}, 3, search_params, query,
base::BindRepeating([]() { return false; }))
.scored_urls;
EXPECT_EQ(scored_urls.size(), 3u);
}
// Narrowed searches with time range.
{
std::vector<ScoredUrl> scored_urls =
database
.FindNearest(now, 3, search_params, query,
base::BindRepeating([]() { return false; }))
.scored_urls;
EXPECT_EQ(scored_urls.size(), 3u);
}
{
std::vector<ScoredUrl> scored_urls =
database
.FindNearest(now + base::Seconds(30), 3, search_params, query,
base::BindRepeating([]() { return false; }))
.scored_urls;
EXPECT_EQ(scored_urls.size(), 2u);
}
{
std::vector<ScoredUrl> scored_urls =
database
.FindNearest(now + base::Seconds(90), 3, search_params, query,
base::BindRepeating([]() { return false; }))
.scored_urls;
EXPECT_EQ(scored_urls.size(), 1u);
}
{
std::vector<ScoredUrl> scored_urls =
database
.FindNearest(now + base::Minutes(2), 3, search_params, query,
base::BindRepeating([]() { return false; }))
.scored_urls;
EXPECT_EQ(scored_urls.size(), 1u);
}
{
std::vector<ScoredUrl> scored_urls =
database
.FindNearest(now + base::Seconds(121), 3, search_params, query,
base::BindRepeating([]() { return false; }))
.scored_urls;
EXPECT_EQ(scored_urls.size(), 0u);
}
}
// Note: Disabled by default so as to not burden the bots. Enable when needed.
TEST(HistoryEmbeddingsVectorDatabaseTest, DISABLED_ManyVectorsAreFastEnough) {
VectorDatabaseInMemory database;
size_t count = 0;
// Estimate for expected URL count...
for (size_t i = 0; i < 15000; i++) {
UrlData url_data(i + 1, i + 1, base::Time::Now());
// Times 3 embeddings each, on average.
for (size_t j = 0; j < 3; j++) {
url_data.passages.add_passages("one of many passages");
url_data.embeddings.push_back(RandomEmbedding());
count++;
}
database.AddUrlData(url_data);
}
Embedding query = RandomEmbedding();
base::ElapsedTimer timer;
// Since inner loop atomic checks can impact performance, simulate that here.
SearchParams search_params;
std::atomic<size_t> id(0u);
base::WeakPtrFactory<std::atomic<size_t>> weak_factory(&id);
database.FindNearest(
{}, 3, search_params, query,
base::BindRepeating(
[](auto weak_id) { return !weak_id || *weak_id != 0u; },
weak_factory.GetWeakPtr()));
// This could be an assertion with an extraordinarily high threshold, but for
// now we avoid any possibility of blowing up trybots and just need the info.
LOG(INFO) << "Searched " << count << " embeddings in " << timer.Elapsed();
}
base::FilePath GetWordMatchBoostTestDataPath() {
base::FilePath test_data_dir;
base::PathService::Get(base::DIR_SRC_TEST_DATA_ROOT, &test_data_dir);
return test_data_dir.AppendASCII(
"components/test/data/history_embeddings/word_match_boost_test_data");
}
// This is a utility test to produce a simple test data protobuf text file. It
// shows structure and can be enabled if we need to produce a stub or extra test
// files, but the main test file should be filled manually with real test cases.
TEST(HistoryEmbeddingsVectorDatabaseTest,
DISABLED_GenerateWordMatchBoostProtoDataTest) {
proto::WordMatchBoostTest test;
proto::WordMatchBoostTestCase* test_case = test.add_cases();
auto* params = test_case->mutable_params();
params->set_minimum_embedding_score(0.0f);
params->set_score_boost_factor(0.2f);
params->set_word_match_limit(5);
params->set_smoothing_factor(1);
params->set_max_term_count(3);
params->set_required_term_ratio(1.0f);
test_case->set_query("example test query");
test_case->mutable_passages()->add_passages("this is an example passage");
test_case->mutable_passages()->add_passages(
"this example passage matches the test query term 'query'");
test_case->mutable_passages()->add_passages(
"all of this test data is for test, test, testing!");
test_case->set_expected_score_boost(0.080000043);
EXPECT_TRUE(base::WriteFile(GetWordMatchBoostTestDataPath(),
test.SerializeAsString()));
}
TEST(HistoryEmbeddingsVectorDatabaseTest, WordMatchBoostProtoDataTest) {
extern uint32_t HashString(std::string_view str);
auto no = base::BindRepeating([]() { return false; });
std::string test_proto_content;
EXPECT_TRUE(base::ReadFileToString(GetWordMatchBoostTestDataPath(),
&test_proto_content));
history_embeddings::proto::WordMatchBoostTest test;
EXPECT_TRUE(test.ParseFromString(test_proto_content));
std::unordered_set<uint32_t> stop_words_hashes;
for (const std::string& stop_word : test.stop_words()) {
stop_words_hashes.insert(HashString(stop_word));
}
for (const proto::WordMatchBoostTestCase& test_case : test.cases()) {
VectorDatabaseInMemory database;
SearchParams search_params;
search_params.word_match_minimum_embedding_score =
test_case.params().minimum_embedding_score();
search_params.word_match_limit = test_case.params().word_match_limit();
search_params.word_match_score_boost_factor =
test_case.params().score_boost_factor();
search_params.word_match_smoothing_factor =
test_case.params().smoothing_factor();
search_params.word_match_max_term_count =
test_case.params().max_term_count();
search_params.word_match_required_term_ratio =
test_case.params().required_term_ratio();
UrlData url_data(1, 1, base::Time::Now());
for (const std::string& passage : test_case.passages().passages()) {
url_data.passages.add_passages(passage);
url_data.embeddings.push_back(DeterministicEmbedding(0));
}
database.AddUrlData(url_data);
// Basic embedding search with no query terms produces flat embedding score.
Embedding query_embedding = DeterministicEmbedding(0);
std::vector<ScoredUrl> scored_urls =
database.FindNearest({}, 1, /*search_params=*/{}, query_embedding, no)
.scored_urls;
EXPECT_EQ(scored_urls.size(), 1u);
EXPECT_FLOAT_EQ(scored_urls[0].score, 1.0f);
// Set up some query terms to boost score with word matches against
// passages.
search_params.query_terms =
SplitQueryToTerms(stop_words_hashes, test_case.query(),
test_case.params().minimum_term_length());
scored_urls =
database.FindNearest({}, 1, search_params, query_embedding, no)
.scored_urls;
EXPECT_EQ(scored_urls.size(), 1u);
// Embedding score without boost is 1.0f; subtract it to determine boost.
float word_match_boost = scored_urls[0].score - 1.0f;
EXPECT_FLOAT_EQ(word_match_boost, test_case.expected_score_boost());
}
}
} // namespace history_embeddings
|