File: vector_database_unittest.cc

package info (click to toggle)
chromium 139.0.7258.127-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,122,156 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (521 lines) | stat: -rw-r--r-- 19,989 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "components/history_embeddings/vector_database.h"

#include <atomic>
#include <cstdint>
#include <memory>

#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/logging.h"
#include "base/memory/weak_ptr.h"
#include "base/path_service.h"
#include "base/rand_util.h"
#include "base/time/time.h"
#include "base/timer/elapsed_timer.h"
#include "components/history_embeddings/proto/history_embeddings.pb.h"
#include "components/passage_embeddings/passage_embeddings_types.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace history_embeddings {

using passage_embeddings::Embedding;

namespace {

Embedding RandomEmbedding() {
  constexpr size_t kSize = 768u;
  std::vector<float> random_vector(kSize, 0.0f);
  for (float& v : random_vector) {
    v = base::RandFloat();
  }
  Embedding embedding(std::move(random_vector));
  embedding.Normalize();
  return embedding;
}

Embedding DeterministicEmbedding(float value) {
  constexpr size_t kSize = 768u;
  std::vector<float> vector(kSize, 0.0f);
  vector[0] = 1;
  vector[1] = value;
  Embedding embedding(std::move(vector));
  embedding.Normalize();
  embedding.SetPassageWordCount(10);
  return embedding;
}

}  // namespace

TEST(HistoryEmbeddingsVectorDatabaseTest, Constructs) {
  std::make_unique<VectorDatabaseInMemory>();
}

TEST(HistoryEmbeddingsVectorDatabaseTest, EraseNonAsciiCharacters) {
  {
    std::string s = "passage with non-ASCII∅character";
    EraseNonAsciiCharacters(s);
    EXPECT_EQ(s, "passage with non-ASCII character");
  }
  {
    std::string s = "passage with consecutive non-ASCII    spaces";
    EraseNonAsciiCharacters(s);
    EXPECT_EQ(s, "passage with consecutive non-ASCII spaces");
  }
  {
    // Only non-ASCII spaces -> blank.
    std::string s = "    ";
    EraseNonAsciiCharacters(s);
    EXPECT_EQ(s, "");
  }
  {
    std::string s = "a    ";
    EraseNonAsciiCharacters(s);
    EXPECT_EQ(s, "a ");
  }
  {
    std::string s = "    a";
    EraseNonAsciiCharacters(s);
    EXPECT_EQ(s, "a");
  }
  {
    std::string s = "  a  ";
    EraseNonAsciiCharacters(s);
    EXPECT_EQ(s, "a ");
  }
}

TEST(HistoryEmbeddingsVectorDatabaseTest, EmbeddingOperations) {
  Embedding a({1, 1, 1});
  EXPECT_FLOAT_EQ(a.Magnitude(), std::sqrt(3));
  a.Normalize();
  EXPECT_FLOAT_EQ(a.Magnitude(), 1.0f);

  Embedding b({2, 2, 2});
  b.Normalize();
  EXPECT_FLOAT_EQ(a.ScoreWith(b), 1.0f);

  // Verify more similar embeddings have higher scores.
  EXPECT_GT(DeterministicEmbedding(5).ScoreWith(DeterministicEmbedding(4)),
            DeterministicEmbedding(5).ScoreWith(DeterministicEmbedding(3)));

  EXPECT_GT(DeterministicEmbedding(5).ScoreWith(DeterministicEmbedding(6)),
            DeterministicEmbedding(5).ScoreWith(DeterministicEmbedding(7)));
}

TEST(HistoryEmbeddingsVectorDatabaseTest, BestScoreWith) {
  SearchInfo search_info;
  SearchParams search_params;
  search_params.word_match_required_term_ratio = 0.0f;

  UrlData url_data(1, 1, base::Time::Now());
  url_data.passages.add_passages("some deterministic passage");
  url_data.passages.add_passages("more text in another passage");
  url_data.passages.add_passages(
      "some deterministic passage with non-ASCII ∅ character");
  url_data.embeddings.push_back(DeterministicEmbedding(0));
  url_data.embeddings.push_back(DeterministicEmbedding(1));
  url_data.embeddings.push_back(DeterministicEmbedding(2));

  Embedding query_embedding = DeterministicEmbedding(0);
  UrlScore url_score =
      url_data.BestScoreWith(search_info, search_params, query_embedding, 0);
  EXPECT_EQ(search_info.skipped_nonascii_passage_count, 1u);
  EXPECT_FLOAT_EQ(url_score.score, 1.0f);
  EXPECT_FLOAT_EQ(url_score.word_match_score, 0.0f);

  // This test checks basic properties of score boosting, for example that
  // query terms can be spread across multiple separate passages.
  // Boost scoring is tested further in FindNearestWordMatchBoosting test below.
  search_params.query_terms = {
      "some",
      "passage",
      "absent",
  };
  UrlScore boosted_score =
      url_data.BestScoreWith(search_info, search_params, query_embedding, 0);
  EXPECT_LT(url_score.score, boosted_score.score);
  EXPECT_FLOAT_EQ(url_score.score,
                  boosted_score.score - boosted_score.word_match_score);

  search_params.word_match_max_term_count = 5;
  search_params.query_terms = {
      "some", "passage", "more", "another", "absent",
  };
  UrlScore across_score =
      url_data.BestScoreWith(search_info, search_params, query_embedding, 0);
  EXPECT_LT(boosted_score.score, across_score.score);
}

TEST(HistoryEmbeddingsVectorDatabaseTest, FindNearest) {
  VectorDatabaseInMemory database;
  for (size_t i = 0; i < 10; i++) {
    UrlData url_data(i + 1, i + 1, base::Time::Now());
    url_data.passages.add_passages("some deterministic passage");
    url_data.embeddings.push_back(DeterministicEmbedding(i));
    database.AddUrlData(url_data);
  }
  SearchParams search_params;
  {
    std::vector<ScoredUrl> scored_urls =
        database
            .FindNearest({}, 3, search_params, DeterministicEmbedding(0),
                         base::BindRepeating([]() { return false; }))
            .scored_urls;
    EXPECT_THAT(scored_urls,
                testing::ElementsAre(testing::Field(&ScoredUrl::url_id, 1),
                                     testing::Field(&ScoredUrl::url_id, 2),
                                     testing::Field(&ScoredUrl::url_id, 3)));
  }

  {
    std::vector<ScoredUrl> scored_urls =
        database
            .FindNearest({}, 3, search_params, DeterministicEmbedding(20),
                         base::BindRepeating([]() { return false; }))
            .scored_urls;
    EXPECT_THAT(scored_urls,
                testing::ElementsAre(testing::Field(&ScoredUrl::url_id, 10),
                                     testing::Field(&ScoredUrl::url_id, 9),
                                     testing::Field(&ScoredUrl::url_id, 8)));
  }
}

TEST(HistoryEmbeddingsVectorDatabaseTest, FindNearestWordMatchBoosting) {
  auto no = base::BindRepeating([]() { return false; });
  VectorDatabaseInMemory database;

  UrlData url_data1(1, 1, base::Time::Now());
  url_data1.passages.add_passages("some deterministic passage");
  url_data1.embeddings.push_back(DeterministicEmbedding(0));
  database.AddUrlData(url_data1);

  UrlData url_data2(2, 2, base::Time::Now());
  url_data2.passages.add_passages("hello hello world world world world world");
  url_data2.embeddings.push_back(DeterministicEmbedding(0));
  database.AddUrlData(url_data2);

  // Including a non-ASCII passage to demonstrate safe internal CHECKs.
  UrlData url_data3(3, 3, base::Time::Now());
  url_data3.passages.add_passages(
      "this is some deterministic non-ASCII passage, scores ∅, gets skipped");
  url_data3.embeddings.push_back(DeterministicEmbedding(0));
  database.AddUrlData(url_data3);

  SearchParams search_params;
  search_params.word_match_minimum_embedding_score = 0.0f;
  search_params.word_match_limit = 4;
  search_params.word_match_score_boost_factor = 0.1;
  search_params.word_match_max_term_count = 8;
  search_params.word_match_required_term_ratio = 0.0f;
  search_params.query_terms = {"gets", "skipped"};

  // Basic embedding search with no query terms produces flat embedding score.
  Embedding query_embedding = DeterministicEmbedding(0);
  std::vector<ScoredUrl> scored_urls =
      database.FindNearest({}, 3, search_params, query_embedding, no)
          .scored_urls;
  EXPECT_EQ(scored_urls.size(), 3u);
  EXPECT_FLOAT_EQ(scored_urls[0].score, 1.0f);
  EXPECT_FLOAT_EQ(scored_urls[1].score, 1.0f);
  EXPECT_FLOAT_EQ(scored_urls[2].score, 0.0f);
  EXPECT_FLOAT_EQ(scored_urls[2].word_match_score, 0.0f);

  // Even with zero embedding similarity score, word match text search can
  // still be applied when enabled.
  search_params.word_match_search_non_ascii_passages = true;
  scored_urls = database.FindNearest({}, 3, search_params, query_embedding, no)
                    .scored_urls;
  EXPECT_FLOAT_EQ(scored_urls[0].score, 1.0f);
  EXPECT_FLOAT_EQ(scored_urls[1].score, 1.0f);
  EXPECT_GT(scored_urls[2].score, 0.0f);
  EXPECT_GT(scored_urls[2].word_match_score, 0.0f);
  search_params.word_match_search_non_ascii_passages = false;

  // Set up some query terms to boost score with word matches against passage.
  // Additional unmatched terms provide no boost. N occurrences of a matching
  // term will independently yield an extra (0.1 * N / 4) with N
  // capped at denominator so that each term's max boost is the boost_factor.
  // But there's an overall normalizing divide with smoothing factor, so
  // the final value will be slightly less.

  // Here we have (0.1 * 1 / 4) * 3 terms, for a total boost of 0.075.
  // Normalized by dividing by (smooth + query-terms-length)
  //  -> 0.075 / (1 + 8) = 0.008333333
  search_params.query_terms = {"some",  "deterministic", "passage", "and",
                               "other", "nonboosting",   "query",   "terms"};
  scored_urls = database.FindNearest({}, 3, search_params, query_embedding, no)
                    .scored_urls;
  EXPECT_EQ(scored_urls[0].url_id, 1);
  EXPECT_EQ(scored_urls[1].url_id, 2);
  EXPECT_EQ(scored_urls[2].url_id, 3);
  EXPECT_FLOAT_EQ(scored_urls[0].score, 1.008333333f);
  EXPECT_FLOAT_EQ(scored_urls[1].score, 1.0f);
  EXPECT_FLOAT_EQ(scored_urls[2].score, 0.0f);

  // Here we have one too many terms, so there's no boost at all.
  search_params.query_terms = {"some",  "deterministic", "passage",
                               "and",   "other",         "nonboosting",
                               "query", "terms",         "extra"};
  scored_urls = database.FindNearest({}, 3, search_params, query_embedding, no)
                    .scored_urls;
  EXPECT_EQ(scored_urls[0].url_id, 1);
  EXPECT_EQ(scored_urls[1].url_id, 2);
  EXPECT_EQ(scored_urls[2].url_id, 3);
  EXPECT_FLOAT_EQ(scored_urls[0].score, 1.0f);
  EXPECT_FLOAT_EQ(scored_urls[1].score, 1.0f);
  EXPECT_FLOAT_EQ(scored_urls[2].score, 0.0f);

  // Here we have (0.1 * 2 / 4) + (0.1 * 4 / 4) even though "world" appears 5
  // times in passage, because the occurrence count is capped by denominator.
  // And then also divided to normalize with smoothing: 0.15 / (1 + 2) = 0.05
  search_params.query_terms = {"hello", "world"};
  scored_urls = database.FindNearest({}, 3, search_params, query_embedding, no)
                    .scored_urls;
  EXPECT_EQ(scored_urls[0].url_id, 2);
  EXPECT_EQ(scored_urls[1].url_id, 1);
  EXPECT_EQ(scored_urls[2].url_id, 3);
  EXPECT_FLOAT_EQ(scored_urls[0].score, 1.05f);
  EXPECT_FLOAT_EQ(scored_urls[1].score, 1.0f);
  EXPECT_FLOAT_EQ(scored_urls[2].score, 0.0f);
}

TEST(HistoryEmbeddingsVectorDatabaseTest, SearchCanBeHaltedEarly) {
  VectorDatabaseInMemory database;
  for (size_t i = 0; i < 3; i++) {
    UrlData url_data(i + 1, i + 1, base::Time::Now());
    for (size_t j = 0; j < 3; j++) {
      url_data.passages.add_passages("a random passage");
      url_data.embeddings.push_back(RandomEmbedding());
    }
    database.AddUrlData(url_data);
  }
  Embedding query = RandomEmbedding();
  SearchParams search_params;

  // An ordinary search with full results:
  {
    std::vector<ScoredUrl> scored_urls =
        database
            .FindNearest({}, 3, search_params, query,
                         base::BindRepeating([]() { return false; }))
            .scored_urls;
    EXPECT_EQ(scored_urls.size(), 3u);
  }

  // A halted search with fewer results:
  {
    std::atomic<size_t> counter(0u);
    base::WeakPtrFactory<std::atomic<size_t>> weak_factory(&counter);
    std::vector<ScoredUrl> scored_urls =
        database
            .FindNearest({}, 3, search_params, query,
                         base::BindRepeating(
                             [](auto weak_counter) {
                               (*weak_counter)++;
                               return *weak_counter > 2u;
                             },
                             weak_factory.GetWeakPtr()))
            .scored_urls;
    EXPECT_EQ(scored_urls.size(), 2u);
  }
}

TEST(HistoryEmbeddingsVectorDatabaseTest, TimeRangeNarrowsSearchResult) {
  const base::Time now = base::Time::Now();
  VectorDatabaseInMemory database;
  for (size_t i = 0; i < 3; i++) {
    UrlData url_data(i + 1, i + 1, now + base::Minutes(i));
    for (size_t j = 0; j < 3; j++) {
      url_data.passages.add_passages("some random passage");
      url_data.embeddings.push_back(RandomEmbedding());
    }
    database.AddUrlData(url_data);
  }
  Embedding query = RandomEmbedding();
  SearchParams search_params;

  // An ordinary search with full results:
  {
    std::vector<ScoredUrl> scored_urls =
        database
            .FindNearest({}, 3, search_params, query,
                         base::BindRepeating([]() { return false; }))
            .scored_urls;
    EXPECT_EQ(scored_urls.size(), 3u);
  }

  // Narrowed searches with time range.
  {
    std::vector<ScoredUrl> scored_urls =
        database
            .FindNearest(now, 3, search_params, query,
                         base::BindRepeating([]() { return false; }))
            .scored_urls;
    EXPECT_EQ(scored_urls.size(), 3u);
  }
  {
    std::vector<ScoredUrl> scored_urls =
        database
            .FindNearest(now + base::Seconds(30), 3, search_params, query,
                         base::BindRepeating([]() { return false; }))
            .scored_urls;
    EXPECT_EQ(scored_urls.size(), 2u);
  }
  {
    std::vector<ScoredUrl> scored_urls =
        database
            .FindNearest(now + base::Seconds(90), 3, search_params, query,
                         base::BindRepeating([]() { return false; }))
            .scored_urls;
    EXPECT_EQ(scored_urls.size(), 1u);
  }
  {
    std::vector<ScoredUrl> scored_urls =
        database
            .FindNearest(now + base::Minutes(2), 3, search_params, query,
                         base::BindRepeating([]() { return false; }))
            .scored_urls;
    EXPECT_EQ(scored_urls.size(), 1u);
  }
  {
    std::vector<ScoredUrl> scored_urls =
        database
            .FindNearest(now + base::Seconds(121), 3, search_params, query,
                         base::BindRepeating([]() { return false; }))
            .scored_urls;
    EXPECT_EQ(scored_urls.size(), 0u);
  }
}

// Note: Disabled by default so as to not burden the bots. Enable when needed.
TEST(HistoryEmbeddingsVectorDatabaseTest, DISABLED_ManyVectorsAreFastEnough) {
  VectorDatabaseInMemory database;
  size_t count = 0;
  // Estimate for expected URL count...
  for (size_t i = 0; i < 15000; i++) {
    UrlData url_data(i + 1, i + 1, base::Time::Now());
    // Times 3 embeddings each, on average.
    for (size_t j = 0; j < 3; j++) {
      url_data.passages.add_passages("one of many passages");
      url_data.embeddings.push_back(RandomEmbedding());
      count++;
    }
    database.AddUrlData(url_data);
  }
  Embedding query = RandomEmbedding();
  base::ElapsedTimer timer;

  // Since inner loop atomic checks can impact performance, simulate that here.
  SearchParams search_params;
  std::atomic<size_t> id(0u);
  base::WeakPtrFactory<std::atomic<size_t>> weak_factory(&id);
  database.FindNearest(
      {}, 3, search_params, query,
      base::BindRepeating(
          [](auto weak_id) { return !weak_id || *weak_id != 0u; },
          weak_factory.GetWeakPtr()));

  // This could be an assertion with an extraordinarily high threshold, but for
  // now we avoid any possibility of blowing up trybots and just need the info.
  LOG(INFO) << "Searched " << count << " embeddings in " << timer.Elapsed();
}

base::FilePath GetWordMatchBoostTestDataPath() {
  base::FilePath test_data_dir;
  base::PathService::Get(base::DIR_SRC_TEST_DATA_ROOT, &test_data_dir);
  return test_data_dir.AppendASCII(
      "components/test/data/history_embeddings/word_match_boost_test_data");
}

// This is a utility test to produce a simple test data protobuf text file.  It
// shows structure and can be enabled if we need to produce a stub or extra test
// files, but the main test file should be filled manually with real test cases.
TEST(HistoryEmbeddingsVectorDatabaseTest,
     DISABLED_GenerateWordMatchBoostProtoDataTest) {
  proto::WordMatchBoostTest test;
  proto::WordMatchBoostTestCase* test_case = test.add_cases();

  auto* params = test_case->mutable_params();
  params->set_minimum_embedding_score(0.0f);
  params->set_score_boost_factor(0.2f);
  params->set_word_match_limit(5);
  params->set_smoothing_factor(1);
  params->set_max_term_count(3);
  params->set_required_term_ratio(1.0f);

  test_case->set_query("example test query");
  test_case->mutable_passages()->add_passages("this is an example passage");
  test_case->mutable_passages()->add_passages(
      "this example passage matches the test query term 'query'");
  test_case->mutable_passages()->add_passages(
      "all of this test data is for test, test, testing!");
  test_case->set_expected_score_boost(0.080000043);
  EXPECT_TRUE(base::WriteFile(GetWordMatchBoostTestDataPath(),
                              test.SerializeAsString()));
}

TEST(HistoryEmbeddingsVectorDatabaseTest, WordMatchBoostProtoDataTest) {
  extern uint32_t HashString(std::string_view str);
  auto no = base::BindRepeating([]() { return false; });
  std::string test_proto_content;
  EXPECT_TRUE(base::ReadFileToString(GetWordMatchBoostTestDataPath(),
                                     &test_proto_content));

  history_embeddings::proto::WordMatchBoostTest test;
  EXPECT_TRUE(test.ParseFromString(test_proto_content));

  std::unordered_set<uint32_t> stop_words_hashes;
  for (const std::string& stop_word : test.stop_words()) {
    stop_words_hashes.insert(HashString(stop_word));
  }

  for (const proto::WordMatchBoostTestCase& test_case : test.cases()) {
    VectorDatabaseInMemory database;
    SearchParams search_params;
    search_params.word_match_minimum_embedding_score =
        test_case.params().minimum_embedding_score();
    search_params.word_match_limit = test_case.params().word_match_limit();
    search_params.word_match_score_boost_factor =
        test_case.params().score_boost_factor();
    search_params.word_match_smoothing_factor =
        test_case.params().smoothing_factor();
    search_params.word_match_max_term_count =
        test_case.params().max_term_count();
    search_params.word_match_required_term_ratio =
        test_case.params().required_term_ratio();
    UrlData url_data(1, 1, base::Time::Now());
    for (const std::string& passage : test_case.passages().passages()) {
      url_data.passages.add_passages(passage);
      url_data.embeddings.push_back(DeterministicEmbedding(0));
    }
    database.AddUrlData(url_data);

    // Basic embedding search with no query terms produces flat embedding score.
    Embedding query_embedding = DeterministicEmbedding(0);
    std::vector<ScoredUrl> scored_urls =
        database.FindNearest({}, 1, /*search_params=*/{}, query_embedding, no)
            .scored_urls;
    EXPECT_EQ(scored_urls.size(), 1u);
    EXPECT_FLOAT_EQ(scored_urls[0].score, 1.0f);

    // Set up some query terms to boost score with word matches against
    // passages.
    search_params.query_terms =
        SplitQueryToTerms(stop_words_hashes, test_case.query(),
                          test_case.params().minimum_term_length());
    scored_urls =
        database.FindNearest({}, 1, search_params, query_embedding, no)
            .scored_urls;
    EXPECT_EQ(scored_urls.size(), 1u);
    // Embedding score without boost is 1.0f; subtract it to determine boost.
    float word_match_boost = scored_urls[0].score - 1.0f;
    EXPECT_FLOAT_EQ(word_match_boost, test_case.expected_score_boost());
  }
}

}  // namespace history_embeddings