File: scorer.h

package info (click to toggle)
chromium 139.0.7258.127-2
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 6,122,156 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (226 lines) | stat: -rw-r--r-- 8,673 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This abstract class loads a client-side model and lets you compute a phishing
// score for a set of previously extracted features.  The phishing score
// corresponds to the probability that the features are indicative of a phishing
// site.
//
// See features.h for a list of features that are currently used.

#ifndef COMPONENTS_SAFE_BROWSING_CONTENT_RENDERER_PHISHING_CLASSIFIER_SCORER_H_
#define COMPONENTS_SAFE_BROWSING_CONTENT_RENDERER_PHISHING_CLASSIFIER_SCORER_H_

#include <stddef.h>
#include <stdint.h>

#include <string>
#include <unordered_set>

#include "base/files/file.h"
#include "base/files/memory_mapped_file.h"
#include "base/functional/callback.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/read_only_shared_memory_region.h"
#include "base/memory/weak_ptr.h"
#include "base/observer_list.h"
#include "base/task/sequenced_task_runner.h"
#include "build/build_config.h"
#include "components/optimization_guide/machine_learning_tflite_buildflags.h"
#include "components/safe_browsing/core/common/fbs/client_model_generated.h"
#include "components/safe_browsing/core/common/proto/client_model.pb.h"
#include "components/safe_browsing/core/common/proto/csd.pb.h"
#include "third_party/skia/include/core/SkBitmap.h"

namespace safe_browsing {
class FeatureMap;

// Enum used to keep stats about the status of the Scorer creation.
// These values are persisted to logs. Entries should not be renumbered and
// numeric values should never be reused.
enum ScorerCreationStatus {
  SCORER_SUCCESS = 0,
  SCORER_FAIL_MODEL_OPEN_FAIL = 1,       // Not used anymore
  SCORER_FAIL_MODEL_FILE_EMPTY = 2,      // Not used anymore
  SCORER_FAIL_MODEL_FILE_TOO_LARGE = 3,  // Not used anymore
  SCORER_FAIL_MODEL_PARSE_ERROR = 4,
  SCORER_FAIL_MODEL_MISSING_FIELDS = 5,
  SCORER_FAIL_MAP_VISUAL_TFLITE_MODEL = 6,
  SCORER_FAIL_FLATBUFFER_INVALID_REGION = 7,
  SCORER_FAIL_FLATBUFFER_INVALID_MAPPING = 8,
  SCORER_FAIL_FLATBUFFER_FAILED_VERIFY = 9,
  SCORER_FAIL_FLATBUFFER_BAD_INDICES_OR_FIELDS = 10,  // Not used anymore
  SCORER_FAIL_FLATBUFFER_INVALID_IMAGE_EMBEDDING_TFLITE_MODEL = 11,
  SCORER_STATUS_MAX  // Always add new values before this one.
};

// Scorer methods are virtual to simplify mocking of this class,
// and to allow inheritance.
class Scorer {
 public:
  ~Scorer();
  // Most clients should use the factory method.  This constructor is public
  // to allow for mock implementations.
  Scorer();

  // Factory method which creates a new Scorer object by parsing the given
  // flatbuffer or tflite model. If parsing fails this method returns NULL.
  // Use this only if region is valid.
  static std::unique_ptr<Scorer> Create(base::ReadOnlySharedMemoryRegion region,
                                        base::File visual_tflite_model);

  static std::unique_ptr<Scorer> CreateScorerWithImageEmbeddingModel(
      base::ReadOnlySharedMemoryRegion region,
      base::File visual_tflite_model,
      base::File image_embedding_model);

  void AttachImageEmbeddingModel(base::File image_embedding_model);

  // This method computes the probability that the given features are indicative
  // of phishing.  It returns a score value that falls in the range [0.0,1.0]
  // (range is inclusive on both ends).
  double ComputeScore(const FeatureMap& features) const;

#if BUILDFLAG(BUILD_WITH_TFLITE_LIB)
  // This method applies the TfLite visual model to the given bitmap for image
  // classification. It asynchronously returns the list of scores for each
  // category, in the same order as `tflite_thresholds()`.
  void ApplyVisualTfLiteModel(
      const SkBitmap& bitmap,
      base::OnceCallback<void(std::vector<double>)> callback) const;

  // This method applies the TfLite visual model to the given bitmap for
  // image embedding. It asynchronously returns an ImageFeatureEmbedding object
  // which contains a vector of floats which is the feature vector result from
  // the Image Embedder process.
  void ApplyVisualTfLiteModelImageEmbedding(
      const SkBitmap& bitmap,
      base::OnceCallback<void(ImageFeatureEmbedding)> callback) const;
#endif

  // Returns the version number of the loaded client model.
  int model_version() const;

  int dom_model_version() const;

  bool HasVisualTfLiteModel() const;

  // -- Accessors used by the page feature extractor ---------------------------

  // Returns a callback to find if a page word is in the model.
  base::RepeatingCallback<bool(uint32_t)> find_page_word_callback() const;

  // Returns a callback to find if a page term is in the model.
  base::RepeatingCallback<bool(const std::string&)> find_page_term_callback()
      const;

  // Return the maximum number of words per term for the loaded model.
  size_t max_words_per_term() const;

  // Returns the murmurhash3 seed for the loaded model.
  uint32_t murmurhash3_seed() const;

  // Return the maximum number of unique shingle hashes per page.
  size_t max_shingles_per_page() const;

  // Return the number of words in a shingle.
  size_t shingle_size() const;

  // Returns the threshold probability above which we send a CSD ping.
  float threshold_probability() const;

  // Returns the version of the visual TFLite model.
  int tflite_model_version() const;

  // Returns the image embedding model version.
  int image_embedding_tflite_model_version() const;

  // Returns the thresholds configured for the visual TFLite model categories.
  const google::protobuf::RepeatedPtrField<TfLiteModelMetadata::Threshold>&
  tflite_thresholds() const;

  // Disable copy and move.
  Scorer(const Scorer&) = delete;
  Scorer& operator=(const Scorer&) = delete;

 private:
  friend class PhishingScorerTest;

  bool has_page_term(const std::string& str) const;
  bool has_page_word(uint32_t page_word_hash) const;

  double ComputeRuleScore(const flat::ClientSideModel_::Rule* rule,
                          const FeatureMap& features) const;

  // Helper function which converts log odds to a probability in the range
  // [0.0,1.0].
  double LogOdds2Prob(const double log_odds) const;

  // Apply the tflite model to the bitmap. The scores are returned by running
  // `callback` on the provided `callback_task_runner`. This is expected to be
  // run on a helper thread.
  static void ApplyVisualTfLiteModelHelper(
      const SkBitmap& bitmap,
      int input_width,
      int input_height,
      std::string model_data,
      scoped_refptr<base::SequencedTaskRunner> callback_task_runner,
      base::OnceCallback<void(std::vector<double>)> callback);

  // Apply the TfLite model to the bitmap. The ImageFeatureEmbedding object is
  // returned by ruinning the `callback` provided by `callback_task_runner`.
  // This is expected to be run on a helper thread.
  static void ApplyImageEmbeddingTfLiteModelHelper(
      const SkBitmap& bitmap,
      int input_width,
      int input_height,
      const std::string& model_data,
      scoped_refptr<base::SequencedTaskRunner> callback_task_runner,
      base::OnceCallback<void(ImageFeatureEmbedding)> callback);

  // Unowned. Points within flatbuffer_mapping_ and should not be free()d.
  // It remains valid till flatbuffer_mapping_ is valid and should be reassigned
  // if the mapping is updated.
  raw_ptr<const flat::ClientSideModel> flatbuffer_model_;
  base::ReadOnlySharedMemoryMapping flatbuffer_mapping_;
  google::protobuf::RepeatedPtrField<TfLiteModelMetadata::Threshold>
      thresholds_;
  base::MemoryMappedFile image_embedding_model_;
  base::MemoryMappedFile visual_tflite_model_;
  base::WeakPtrFactory<Scorer> weak_ptr_factory_{this};
};

// A small wrapper around a Scorer that allows callers to observe for changes in
// the model.
class ScorerStorage {
 public:
  static ScorerStorage* GetInstance();

  class Observer : public base::CheckedObserver {
   public:
    virtual void OnScorerChanged() = 0;
  };

  ScorerStorage();
  ~ScorerStorage();
  ScorerStorage(const ScorerStorage&) = delete;
  ScorerStorage& operator=(const ScorerStorage&) = delete;

  void SetScorer(std::unique_ptr<Scorer> scorer);
  Scorer* GetScorer() const;
  // We will clear the scorer in situations where the OptimizationGuide server
  // provides a null model to replace a bad model on disk.
  void ClearScorer();

  void AddObserver(Observer* observer);
  void RemoveObserver(Observer* observer);

 private:
  std::unique_ptr<Scorer> scorer_;
  base::ObserverList<Observer> observers_;
};

}  // namespace safe_browsing

#endif  // COMPONENTS_SAFE_BROWSING_CONTENT_RENDERER_PHISHING_CLASSIFIER_SCORER_H_