1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include <vector>
#include "base/check_op.h"
#include "base/numerics/safe_math.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "components/safe_browsing/core/browser/db/v4_rice.h"
#if BUILDFLAG(IS_WIN)
#include <winsock2.h>
#elif BUILDFLAG(IS_POSIX)
#include <arpa/inet.h>
#endif
using ::google::protobuf::RepeatedField;
#if !defined(ARCH_CPU_LITTLE_ENDIAN) || (ARCH_CPU_LITTLE_ENDIAN != 1)
#error The code below assumes little-endianness.
#endif
namespace safe_browsing {
namespace {
const int kBitsPerByte = 8;
const unsigned int kMaxBitIndex = kBitsPerByte * sizeof(uint32_t);
} // namespace
// static
V4DecodeResult V4RiceDecoder::ValidateInput(const int32_t rice_parameter,
const int32_t num_entries,
const std::string& encoded_data) {
if (num_entries < 0) {
return NUM_ENTRIES_NEGATIVE_FAILURE;
}
if (num_entries == 0) {
return DECODE_SUCCESS;
}
if (rice_parameter <= 0) {
return RICE_PARAMETER_NON_POSITIVE_FAILURE;
}
if (encoded_data.empty()) {
return ENCODED_DATA_UNEXPECTED_EMPTY_FAILURE;
}
return DECODE_SUCCESS;
}
// static
V4DecodeResult V4RiceDecoder::DecodeIntegers(const int64_t first_value,
const int32_t rice_parameter,
const int32_t num_entries,
const std::string& encoded_data,
RepeatedField<int32_t>* out) {
DCHECK(out);
V4DecodeResult result =
ValidateInput(rice_parameter, num_entries, encoded_data);
if (result != DECODE_SUCCESS) {
return result;
}
out->Reserve(num_entries + 1);
base::CheckedNumeric<int32_t> last_value(first_value);
out->Add(last_value.ValueOrDie());
if (num_entries == 0) {
return DECODE_SUCCESS;
}
V4RiceDecoder decoder(rice_parameter, num_entries, encoded_data);
while (decoder.HasAnotherValue()) {
uint32_t offset;
result = decoder.GetNextValue(&offset);
if (result != DECODE_SUCCESS) {
return result;
}
last_value += offset;
if (!last_value.IsValid()) {
return DECODED_INTEGER_OVERFLOW_FAILURE;
}
out->Add(last_value.ValueOrDie());
}
return DECODE_SUCCESS;
}
// static
V4DecodeResult V4RiceDecoder::DecodePrefixes(const int64_t first_value,
const int32_t rice_parameter,
const int32_t num_entries,
const std::string& encoded_data,
std::vector<uint32_t>* out) {
DCHECK(out);
V4DecodeResult result =
ValidateInput(rice_parameter, num_entries, encoded_data);
if (result != DECODE_SUCCESS) {
return result;
}
out->reserve((num_entries + 1));
base::CheckedNumeric<uint32_t> last_value(first_value);
out->push_back(htonl(last_value.ValueOrDie()));
if (num_entries > 0) {
V4RiceDecoder decoder(rice_parameter, num_entries, encoded_data);
while (decoder.HasAnotherValue()) {
uint32_t offset;
result = decoder.GetNextValue(&offset);
if (result != DECODE_SUCCESS) {
return result;
}
last_value += offset;
if (!last_value.IsValid()) {
return DECODED_INTEGER_OVERFLOW_FAILURE;
}
// This flipping is done so that the decoded uint32_t is interpreted
// correctly as a string of 4 bytes.
out->push_back(htonl(last_value.ValueOrDie()));
}
}
// Flipping the bytes, as done above, destroys the sort order. Sort the
// values back.
std::sort(out->begin(), out->end());
// This flipping is done so that when the vector is interpreted as a string,
// the bytes are in the correct order.
for (size_t i = 0; i < out->size(); i++) {
(*out)[i] = ntohl((*out)[i]);
}
return DECODE_SUCCESS;
}
V4RiceDecoder::V4RiceDecoder(const int rice_parameter,
const int num_entries,
const std::string& encoded_data)
: rice_parameter_(rice_parameter),
num_entries_(num_entries),
data_(encoded_data),
current_word_(0) {
DCHECK_LE(0, num_entries_);
DCHECK_LE(2u, rice_parameter_);
DCHECK_GE(28u, rice_parameter_);
data_byte_index_ = 0;
current_word_bit_index_ = kMaxBitIndex;
}
V4RiceDecoder::~V4RiceDecoder() = default;
bool V4RiceDecoder::HasAnotherValue() const {
return num_entries_ > 0;
}
V4DecodeResult V4RiceDecoder::GetNextValue(uint32_t* value) {
if (!HasAnotherValue()) {
return DECODE_NO_MORE_ENTRIES_FAILURE;
}
V4DecodeResult result;
uint32_t q = 0;
uint32_t bit;
do {
result = GetNextBits(1, &bit);
if (result != DECODE_SUCCESS) {
return result;
}
q += bit;
} while (bit);
uint32_t r = 0;
result = GetNextBits(rice_parameter_, &r);
if (result != DECODE_SUCCESS) {
return result;
}
*value = (q << rice_parameter_) + r;
num_entries_--;
return DECODE_SUCCESS;
}
V4DecodeResult V4RiceDecoder::GetNextWord(uint32_t* word) {
if (data_byte_index_ >= data_.size()) {
return DECODE_RAN_OUT_OF_BITS_FAILURE;
}
const size_t mask = 0xFF;
*word = (data_[data_byte_index_] & mask);
data_byte_index_++;
current_word_bit_index_ = 0;
if (data_byte_index_ < data_.size()) {
*word |= ((data_[data_byte_index_] & mask) << 8);
data_byte_index_++;
if (data_byte_index_ < data_.size()) {
*word |= ((data_[data_byte_index_] & mask) << 16);
data_byte_index_++;
if (data_byte_index_ < data_.size()) {
*word |= ((data_[data_byte_index_] & mask) << 24);
data_byte_index_++;
}
}
}
return DECODE_SUCCESS;
}
V4DecodeResult V4RiceDecoder::GetNextBits(unsigned int num_requested_bits,
uint32_t* x) {
if (num_requested_bits > kMaxBitIndex) {
return DECODE_REQUESTED_TOO_MANY_BITS_FAILURE;
}
if (current_word_bit_index_ == kMaxBitIndex) {
V4DecodeResult result = GetNextWord(¤t_word_);
if (result != DECODE_SUCCESS) {
return result;
}
}
unsigned int num_bits_left_in_current_word =
kMaxBitIndex - current_word_bit_index_;
if (num_bits_left_in_current_word >= num_requested_bits) {
// All the bits that we need are in |current_word_|.
*x = GetBitsFromCurrentWord(num_requested_bits);
} else {
// |current_word_| contains fewer bits than we need so read the remaining
// bits from |current_word_| into |lower|, and then call GetNextBits on the
// remaining number of bits, which will read in a new word into
// |current_word_|.
uint32_t lower = GetBitsFromCurrentWord(num_bits_left_in_current_word);
unsigned int num_bits_from_next_word =
num_requested_bits - num_bits_left_in_current_word;
uint32_t upper;
V4DecodeResult result = GetNextBits(num_bits_from_next_word, &upper);
if (result != DECODE_SUCCESS) {
return result;
}
*x = (upper << num_bits_left_in_current_word) | lower;
}
return DECODE_SUCCESS;
}
uint32_t V4RiceDecoder::GetBitsFromCurrentWord(
unsigned int num_requested_bits) {
uint32_t mask = 0xFFFFFFFF >> (kMaxBitIndex - num_requested_bits);
uint32_t x = current_word_ & mask;
current_word_ = current_word_ >> num_requested_bits;
current_word_bit_index_ += num_requested_bits;
return x;
}
std::string V4RiceDecoder::DebugString() const {
// Calculates the total number of bits that we have read from the buffer,
// excluding those that have been read into current_word_ but not yet
// consumed byt GetNextBits().
unsigned bits_read = (data_byte_index_ - sizeof(uint32_t)) * kBitsPerByte +
current_word_bit_index_;
return base::StringPrintf(
"bits_read: %x; current_word_: %x; data_byte_index_; %x, "
"current_word_bit_index_: %x; rice_parameter_: %x",
bits_read, current_word_, data_byte_index_, current_word_bit_index_,
rice_parameter_);
}
std::ostream& operator<<(std::ostream& os, const V4RiceDecoder& rice_decoder) {
os << rice_decoder.DebugString();
return os;
}
} // namespace safe_browsing
|